BAV21W [Linear]

100VIN Micropower Isolated Flyback Converter with 150V/260mA Switch; 100VIN微功率隔离型反激式转换器, 150V / 260毫安开关
BAV21W
型号: BAV21W
厂家: Linear    Linear
描述:

100VIN Micropower Isolated Flyback Converter with 150V/260mA Switch
100VIN微功率隔离型反激式转换器, 150V / 260毫安开关

转换器 二极管 开关
文件: 总24页 (文件大小:313K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT8300  
100V Micropower Isolated  
IN  
Flyback Converter with  
150V/260mA Switch  
DescripTion  
FeaTures  
TheLT®8300isamicropowerhighvoltageisolatedflyback  
converter. By sampling the isolated output voltage directly  
from the primary-side flyback waveform, the part requires  
nothirdwindingoropto-isolatorforregulation.Theoutput  
voltage is programmed with a single external resistor. In-  
ternalcompensationandsoft-startfurtherreduceexternal  
component count. Boundary mode operation provides a  
small magnetic solution with excellent load regulation.  
LowrippleBurstModeoperationmaintainshighefficiency  
at light load while minimizing the output voltage ripple.  
A 260mA, 150V DMOS power switch is integrated along  
withallhighvoltagecircuitryandcontrollogicintoa5-lead  
ThinSOT™ package.  
n
6V to 100V Input Voltage Range  
n
260mA, 150V Internal DMOS Power Switch  
n
Low Quiescent Current:  
70µA in Sleep Mode  
330µA in Active Mode  
n
Boundary Mode Operation at Heavy Load  
Low-Ripple Burst Mode® Operation at Light Load  
Minimum Load <0.5% (Typ) of Full Output  
n
n
n
V
Set with a Single External Resistor  
OUT  
n
No Transformer Third Winding or Opto-Isolator  
Required for Regulation  
n
n
n
Accurate EN/UVLO Threshold and Hysteresis  
Internal Compensation and Soft-Start  
5-Lead TSOT-23 Package  
The LT8300 operates from an input voltages range of 6V  
to 100V and can deliver up to 2W of isolated output power.  
The high level of integration and the use of boundary  
and low ripple burst modes result in a simple to use, low  
componentcount, andhighefficiencyapplicationsolution  
for isolated power delivery.  
applicaTions  
n
Isolated Telecom, Automotive, Industrial, Medical  
Power Supplies  
n
Isolated Auxiliary/Housekeeping Power Supplies  
L, LT, LTC, LTM, Linear Technology, the Linear logo and Burst Mode are registered trademarks  
and ThinSOT is a trademark of Linear Technology Corporation. All other trademarks are the  
property of their respective owners. Protected by U.S. Patents, including 5438499, 7463497,  
and 7471522.  
Typical applicaTion  
5V Micropower Isolated Flyback Converter  
Efficiency vs Load Current  
100  
+
V
OUT  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
= 36V  
IN  
IN  
5V  
4:1  
36V TO 72V  
1mA TO 300mA  
2.2µF  
300µH  
19µH  
V
IN  
V
IN  
= 48V  
47µF  
1M  
V
= 72V  
IN  
LT8300  
EN/UVLO  
SW  
V
OUT  
40.2k  
210k  
R
FB  
GND  
8300 TA01a  
0
50  
100  
150  
200  
250  
300  
LOAD CURRENT (mA)  
8300 TA01b  
8300f  
1
LT8300  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
(Note 1)  
TOP VIEW  
SW (Note 2)........................................................... 150V  
EN/UVLO 1  
GND 2  
5 V  
IN  
V ......................................................................... 100V  
IN  
EN/UVLO................................................................... V  
IN  
IN  
R
FB  
3
4 SW  
R ...................................................... V – 0.5V to V  
FB  
IN  
S5 PACKAGE  
5-LEAD PLASTIC TSOT-23  
= 150°C, θ = 150°C/W  
Current into R ................................................... 200µA  
FB  
T
Operating Junction Temperature Range (Notes 3, 4)  
LT8300E, LT8300I ............................. –40°C to 125°C  
LT8300H ............................................ –40°C to 150°C  
LT8300MP......................................... –55°C to 150°C  
Storage Temperature Range .................. –65°C to 150°C  
JMAX  
JA  
orDer inForMaTion  
LEAD FREE FINISH  
LT8300ES5#PBF  
LT8300IS5#PBF  
LT8300HS5#PBF  
LT8300MPS5#PBF  
TAPE AND REEL  
PART MARKING*  
LTGFF  
PACKAGE DESCRIPTION  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
TEMPERATURE RANGE  
LT8300ES5#TRPBF  
LT8300IS5#TRPBF  
LT8300HS5#TRPBF  
LT8300MPS5#TRPBF  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 150°C  
–55°C to 150°C  
LTGFF  
LTGFF  
LTGFF  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
8300f  
2
LT8300  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 24V, VEN/UVLO = VIN unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
100  
6
UNIT  
V
IN  
Input Voltage Range  
6
V
V
IN  
UVLO Threshold  
Rising  
Falling  
5.8  
3.2  
V
V
I
V
Quiescent Current  
V
V
= 0.3V  
= 1.1V  
1.2  
200  
70  
2
µA  
µA  
µA  
µA  
Q
IN  
EN/UVLO  
EN/UVLO  
Sleep Mode (Switch Off)  
Active Mode (Switch On)  
330  
l
l
EN/UVLO Shutdown Threshold  
EN/UVLO Enable Threshold  
For Lowest Off I  
0.3  
0.75  
V
Q
Falling  
Hysteresis  
1.199  
1.223  
0.016  
1.270  
V
V
I
EN/UVLO Hysteresis Current  
V
V
V
= 0.3V  
= 1.1V  
= 1.3V  
–0.1  
2.2  
–0.1  
0
2.5  
0
0.1  
2.8  
0.1  
µA  
µA  
µA  
HYS  
EN/UVLO  
EN/UVLO  
EN/UVLO  
f
f
t
t
t
I
I
Maximum Switching Frequency  
Minimum Switching Frequency  
Minimum Switch-On Time  
Minimum Switch-Off Time  
Maximum Switch-Off Time  
Maximum SW Current Limit  
Minimum SW Current Limit  
SW Over Current Limit  
720  
6
750  
7.5  
780  
9
kHz  
kHz  
ns  
MAX  
MIN  
160  
350  
200  
260  
52  
ON(MIN)  
OFF(MIN)  
OFF(MAX)  
SW(MAX)  
SW(MIN)  
ns  
Backup Timer  
µs  
l
l
228  
34  
292  
70  
mA  
mA  
mA  
Ω
To Initiate Soft-Start  
I = 100mA  
SW  
520  
10  
R
Switch On-Resistance  
DS(ON)  
I
I
Switch Leakage Current  
V
= 100V, V = 150V  
0.1  
0.5  
102  
0.01  
µA  
LKG  
IN  
SW  
l
R
FB  
R
FB  
Regulation Current  
98  
100  
0.001  
2.7  
µA  
RFB  
Regulation Current Line Regulation  
6V ≤ V ≤ 100V  
%/V  
ms  
IN  
t
Soft-Start Timer  
SS  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The SW pin is rated to 150V for transients. Depending on the  
leakage inductance voltage spike, operating waveforms of the SW pin  
should be derated to keep the flyback voltage spike below 150V as shown  
in Figure 5.  
Note 3: The LT8300E is guaranteed to meet performance specifications  
from 0°C to 125°C operating junction temperature. Specifications over  
the –40°C to 125°C operating junction temperature range are assured by  
design, characterization and correlation with statistical process controls.  
The LT8300I is guaranteed over the full –40°C to 125°C operating junction  
temperature range. The LT8300H is guaranteed over the full –40°C to  
150°C operating junction temperature range. The LT8300MP is guaranteed  
over the full –55°C to 150°C operating junction temperature range. High  
junction temperatures degrade operating lifetimes. Operating lifetime is  
derated at junction temperature greater than 125°C.  
Note 4: The LT8300 includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature will exceed 150°C when overtemperature protection is active.  
Continuous operation above the specified maximum operating junction  
temperature may impair device reliability.  
8300f  
3
LT8300  
TA = 25°C, unless otherwise noted.  
Typical perForMance characTerisTics  
Switching Frequency  
vs Load Current  
Output Load and Line Regulation  
Output Temperature Variation  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
5.5  
5.4  
5.3  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
500  
FRONT PAGE APPLICATION  
FRONT PAGE APPLICATION  
FRONT PAGE APPLICATION  
V
= 48V, I  
= 200mA  
V
= 48V  
IN  
OUT  
IN  
400  
300  
200  
100  
0
V
V
V
= 36V  
= 48V  
= 72V  
IN  
IN  
IN  
0
50  
100  
150  
200  
250  
300  
–50 –25  
0
25 50 75 100 125 150  
0
50  
100  
150  
200  
250  
300  
LOAD CURRENT (mA)  
AMBIENT TEMPERATURE (°C)  
LOAD CURRENT (mA)  
8300 G01  
8300 G02  
8300 G03  
Boundary Mode Waveforms  
Discontinuous Mode Waveforms  
Burst Mode Waveforms  
I
LPRI  
100mA/DIV  
I
I
LPRI  
100mA/DIV  
LPRI  
100mA/DIV  
V
SW  
V
V
SW  
50V/DIV  
SW  
50V/DIV  
50V/DIV  
V
OUT  
V
V
OUT  
50mV/DIV  
OUT  
50mV/DIV  
50mV/DIV  
8300 G04  
8300 G05  
8300 G06  
2µs/DIV  
2µs/DIV  
20µs/DIV  
FRONT PAGE APPLICATION  
FRONT PAGE APPLICATION  
FRONT PAGE APPLICATION  
V
= 48V, I  
= 300mA  
V
= 48V, I  
= 60mA  
V
= 48V, I  
= 1mA  
IN  
OUT  
IN  
OUT  
IN  
OUT  
VIN Quiescent Current,  
Sleep Mode  
VIN Quiescent Current,  
Active Mode  
VIN Shutdown Current  
100  
90  
80  
70  
60  
50  
380  
360  
340  
320  
300  
280  
10  
8
T
= 150°C  
= 25°C  
J
T
= 150°C  
J
6
T
T
= 25°C  
J
J
4
T
= –55°C  
J
T
= –55°C  
J
T
= 25°C  
J
T
= 150°C  
40  
J
2
T
= –55°C  
80  
J
40  
0
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
0
20  
60  
(V)  
100  
V
(V)  
V
(V)  
IN  
V
IN  
IN  
8300 G08  
8300 G09  
8300 G07  
8300f  
4
LT8300  
TA = 25°C, unless otherwise noted.  
Typical perForMance characTerisTics  
EN/UVLO Enable Threshold  
EN/UVLO Hysteresis Current  
RFB Regulation Current  
1.240  
1.235  
1.230  
1.225  
1.220  
1.215  
1.210  
1.205  
1.200  
5
4
3
2
1
0
105  
104  
103  
102  
101  
100  
99  
98  
97  
96  
95  
–50 –25  
0
25 50 75 100 125 150  
–50 –25  
0
25 50 75 100 125 150  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
8300 G10  
8300 G11  
8300 G12  
RDS(ON)  
Switch Current Limit  
Maximum Switching Frequency  
300  
250  
200  
150  
100  
50  
25  
20  
15  
10  
5
1000  
800  
600  
400  
200  
0
MAXIMUM CURRENT LIMIT  
MINIMUM CURRENT LIMIT  
0
0
–50 –25  
0
25 50 75 100 125 150  
–50 –25  
0
25 50 75 100 125 150  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
8300 G14  
8300 G13  
8300 G15  
Minimum Switching Frequency  
Minimum Switch-On Time  
Minimum Switch-Off Time  
400  
300  
200  
100  
0
400  
300  
200  
100  
0
20  
16  
12  
8
4
0
–50 –25  
0
25 50 75 100 125 150  
–50 –25  
0
25 50 75 100 125 150  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
8300 G17  
8300 G18  
8300 G16  
8300f  
5
LT8300  
pin FuncTions  
EN/UVLO (Pin 1): Enable/Undervoltage Lockout. The  
EN/UVLO pin is used to enable the LT8300. Pull the pin  
below 0.3V to shut down the LT8300. This pin has an ac-  
mary SW pin. The ratio of the R resistor to the internal  
FB  
trimmed 12.23k resistor, times the internal bandgap  
reference, determines the output voltage (plus the effect  
of any non-unity transformer turns ratio). Minimize trace  
area at this pin.  
curate 1.223V threshold and can be used to program a V  
IN  
undervoltage lockout (UVLO) threshold using a resistor  
divider from V to ground. A 2.5µA current hysteresis  
IN  
SW (Pin 4): Drain of the 150V Internal DMOS Power  
Switch. Minimize trace area at this pin to reduce EMI and  
voltage spikes.  
allowstheprogrammingofV UVLOhysteresis. Ifneither  
IN  
function is used, tie this pin directly to V .  
IN  
GND (Pin 2): Ground. Tie this pin directly to local ground  
plane.  
V
(Pin 5): Input Supply. The V pin supplies current  
IN  
IN  
to internal circuitry and serves as a reference voltage for  
R
(Pin 3): Input Pin for External Feedback Resistor.  
the feedback circuitry connected to the R pin. Locally  
FB  
FB  
Connect a resistor from this pin to the transformer pri-  
bypass this pin to ground with a capacitor.  
8300f  
6
LT8300  
block DiagraM  
T1  
:1  
D
OUT  
N
V
PS  
IN  
+
V
OUT  
C
IN  
L
L
SEC  
PRI  
C
OUT  
R
FB  
V
OUT  
5
3
4
V
R
FB  
SW  
IN  
BOUNDARY  
DETECTOR  
1:4  
M3  
M2  
OSCILLATOR  
+
+
g
m
S
R
REF  
25µA  
12.23kΩ  
A3  
R
Q
DRIVER  
1.223V  
M1  
R1  
R2  
EN/UVLO  
+
1
R
SENSE  
A2  
0.3Ω  
A1  
2.5µA  
+
V
1.223V  
IN  
GND  
2
REFERENCE  
REGULATORS  
M4  
8300 BD  
8300f  
7
LT8300  
operaTion  
The LT8300 is a current mode switching regulator IC de-  
signed specially for the isolated flyback topology. The key  
problem in isolated topologies is how to communicate the  
output voltage information from the isolated secondary  
side of the transformer to the primary side for regulation.  
Historically, opto-isolators or extra transformer windings  
communicatethisinformationacrosstheisolationbound-  
ary. Opto-isolator circuits waste output power, and the  
extra components increase the cost and physical size of  
the power supply. Opto-isolators can also cause system  
issuesduetolimiteddynamicresponse,nonlinearity,unit-  
to-unitvariationandagingoverlifetime.Circuitsemploying  
extra transformer windings also exhibit deficiencies, as  
using an extra winding adds to the transformer’s physical  
size and cost, and dynamic response is often mediocre.  
conduction mode is a variable frequency, variable peak-  
current switching scheme. The power switch turns on  
and the transformer primary current increases until an  
internally controlled peak current limit. After the power  
switch turns off, the voltage on the SW pin rises to the  
output voltage multiplied by the primary-to-secondary  
transformer turns ratio plus the input voltage. When the  
secondary current through the output diode falls to zero,  
. A  
the SW pin voltage collapses and rings around V  
IN  
boundary mode detector senses this event and turns the  
power switch back on.  
Boundaryconductionmodereturnsthesecondarycurrent  
to zero every cycle, so parasitic resistive voltage drops  
do not cause load regulation errors. Boundary conduc-  
tion mode also allows the use of smaller transformers  
compared to continuous conduction mode and does not  
exhibit sub-harmonic oscillation.  
The LT8300 samples the isolated output voltage through  
the primary-side flyback pulse waveform. In this manner,  
neither opto-isolator nor extra transformer winding is re-  
quired for regulation. Since the LT8300 operates in either  
boundary conduction mode or discontinuous conduction  
mode, the output voltage is always sampled on the SW  
pin when the secondary current is zero. This method im-  
proves load regulation without the need of external load  
compensation components.  
Discontinuous Conduction Mode Operation  
As the load gets lighter, boundary conduction mode in-  
creases the switching frequency and decreases the switch  
peakcurrentatthesameratio.Runningatahigherswitching  
frequency up to several MHz increases switching and gate  
charge losses. To avoid this scenario, the LT8300 has an  
additional internal oscillator, which clamps the maximum  
switching frequency to be less than 750kHz. Once the  
switching frequency hits the internal frequency clamp,  
the part starts to delay the switch turn-on and operates  
in discontinuous conduction mode.  
TheLT8300is asimple to use micropowerisolatedflyback  
converterhousedina5-leadTSOT-23package.Theoutput  
voltage is programmed with a single external resistor. By  
integratingtheloopcompensationandsoft-startinside,the  
part further reduces the number of external components.  
As shown in the Block Diagram, many of the blocks are  
similar to those found in traditional switching regulators  
including reference, regulators, oscillator, logic, current  
amplifier, current comparator, driver, and power switch.  
The novel sections include a flyback pulse sense circuit,  
a sample-and-hold error amplifier, and a boundary mode  
detector, as well as the additional logic for boundary  
conduction mode, discontinuous conduction mode, and  
low ripple Burst Mode operation.  
Low Ripple Burst Mode Operation  
Unlike traditional flyback converters, the LT8300 has to  
turn on and off at least for a minimum amount of time  
andwithaminimumfrequencytoallowaccuratesampling  
of the output voltage. The inherent minimum switch cur-  
rent limit and minimum switch-off time are necessary to  
guarantee the correct operation of specific applications.  
As the load gets very light, the LT8300 starts to fold back  
theswitchingfrequencywhilekeepingtheminimumswitch  
current limit. So the load current is able to decrease while  
still allowing minimum switch-off time for the sample-  
and-hold error amplifier. Meanwhile, the part switches  
betweensleepmodeandactivemode,therebyreducingthe  
8300f  
Boundary Conduction Mode Operation  
TheLT8300featuresboundaryconductionmodeoperation  
at heavy load, where the chip turns on the primary power  
switch when the secondary current is zero. Boundary  
8
LT8300  
operaTion  
effectivequiescentcurrenttoimprovelightloadefficiency.  
In this condition, the LT8300 operates in low ripple Burst  
Mode. The typical 7.5kHz minimum switching frequency  
determines how often the output voltage is sampled and  
also the minimum load requirement.  
applicaTions inForMaTion  
Output Voltage  
bandgap reference voltage V . The resulting relationship  
BG  
between V  
and V can be expressed as:  
FLBK  
BG  
The R resistor as depicted in the Block Diagram is the  
FB  
only external resistor used to program the output voltage.  
The LT8300 operates similar to traditional current mode  
switchers, except in the use of a unique flyback pulse  
sensecircuitandasample-and-holderroramplifier, which  
sample and therefore regulate the isolated output voltage  
from the flyback pulse.  
V
FLBK  
R  
= V  
BG  
REF  
R
FB  
or  
V
BG  
V
=
R = I  
R  
RFB FB  
FLBK  
FB  
R
REF  
Operation is as follows: when the power switch M1 turns  
V
= Bandgap reference voltage  
BG  
off, the SW pin voltage rises above the V supply. The  
IN  
amplitude of the flyback pulse, i.e., the difference between  
I
= R regulation current = 100µA  
FB  
RFB  
the SW pin voltage and V supply, is given as:  
IN  
Combination with the previous V  
equation yields an  
FLBK  
V
FLBK  
= (V  
+ V + I  
• ESR) • N  
SEC PS  
equationforV , intermsoftheR resistor, transformer  
OUT  
F
OUT  
FB  
turns ratio, and diode forward voltage:  
V = Output diode forward voltage  
F
RFB  
I
= Transformer secondary current  
SEC  
VOUT = 100µA •  
V  
F
N
PS   
ESR = Total impedance of secondary circuit  
N
= Transformer effective primary-to-secondary  
turns ratio  
Output Temperature Coefficient  
ThefirsttermintheV equationdoesnothavetempera-  
PS  
OUT  
The flyback voltage is then converted to a current I  
the flyback pulse sense circuit (M2 and M3). This cur-  
rent I  
REF  
resultingvoltagefeedstotheinvertinginputofthesample-  
and-hold error amplifier. Since the sample-and-hold error  
amplifier samples the voltage when the secondary current  
is zero, the (I • ESR) term in the V  
assumed to be zero.  
by  
ture dependence, but the output diode forward voltage V  
RFB  
F
hasasignificantnegativetemperaturecoefficient(–1mV/°C  
to2mV/°C). Suchanegativetemperaturecoefficientpro-  
duces approximately 200mV to 300mV voltage variation  
on the output voltage across temperature.  
also flows through the internal trimmed 12.23k  
RFB  
R
resistor to generate a ground-referred voltage. The  
Forhighervoltageoutputs,suchas12Vand24V,theoutput  
diodetemperaturecoefficienthasanegligibleeffectonthe  
output voltage regulation. For lower voltage outputs, such  
as 3.3V and 5V, however, the output diode temperature  
coefficientdoescountforanextra2%to5%outputvoltage  
regulation. For customers requiring tight output voltage  
regulation across temperature, please refer to other LTC  
parts with integratedtemperaturecompensation features.  
equation can be  
SEC  
FLBK  
The bandgap reference voltage V , 1.223V, feeds to the  
BG  
non-inverting input of the sample-and-hold error ampli-  
fier. The relatively high gain in the overall loop causes  
the voltage across R resistor to be nearly equal to the  
REF  
8300f  
9
LT8300  
applicaTions inForMaTion  
Selecting Actual R Resistor Value  
Output Power  
FB  
The LT8300 uses a unique sampling scheme to regulate  
the isolated output voltage. Due to the sampling nature,  
the scheme contains repeatable delays and error sources,  
whichwillaffecttheoutputvoltageandforceare-evaluation  
Aflybackconverterhasacomplicatedrelationshipbetween  
the input and output currents compared to a buck or a  
boostconverter.Aboostconverterhasarelativelyconstant  
maximum input current regardless of input voltage and a  
buck converter has a relatively constant maximum output  
current regardless of input voltage. This is due to the  
continuous non-switching behavior of the two currents. A  
flybackconverterhasbothdiscontinuousinputandoutput  
currentswhichmakeitsimilartoanon-isolatedbuck-boost  
converter. The duty cycle will affect the input and output  
currents, making it hard to predict output power. In ad-  
dition, the winding ratio can be changed to multiply the  
output current at the expense of a higher switch voltage.  
of the R resistor value. Therefore, a simple two-step  
FB  
process is required to choose feedback resistor R .  
FB  
Rearrangement of the expression for V  
in the Output  
FB  
OUT  
Voltage section yields the starting value for R :  
NPS V  
+ VF  
(
)
OUT  
RFB =  
100µA  
V
OUT  
= Output voltage  
V = Output diode forward voltage = ~0.3V  
F
The graphs in Figures 1 to 4 show the typical maximum  
output power possible for the output voltages 3.3V, 5V,  
12V, and 24V. The maximum output power curve is the  
calculated output power if the switch voltage is 120V dur-  
ing the switch-off time. 30V of margin is left for leakage  
inductance voltage spike. To achieve this power level at  
a given input, a winding ratio value must be calculated  
to stress the switch to 120V, resulting in some odd ratio  
values. The curves below the maximum output power  
curve are examples of common winding ratio values and  
the amount of output power at given input voltages.  
N
PS  
= Transformer effective primary-to-secondary  
turns ratio  
Power up the application with the starting R value and  
FB  
other components connected, and measure the regulated  
output voltage, V  
adjusted to:  
. The final R value can be  
OUT(MEAS)  
FB  
VOUT  
VOUT(MEAS)  
RFB(FINAL)  
=
RFB  
OncethefinalR valueisselected,theregulationaccuracy  
FB  
One design example would be a 5V output converter with  
a minimum input voltage of 36V and a maximum input  
voltage of 72V. A six-to-one winding ratio fits this design  
example perfectly and outputs equal to 2.44W at 72V but  
lowers to 1.87W at 36V.  
from board to board for a given application will be very  
consistent, typically under 5% when including device  
variation of all the components in the system (assuming  
resistor tolerances and transformer windings matching  
within 1%). However, if the transformer or the output  
diode is changed, or the layout is dramatically altered,  
The following equations calculate output power:  
there may be some change in V  
.
OUT  
POUT = η VIN DISW(MAX) 0.5  
η = Efficiency = 85%  
V
+ V N  
F
PS  
(
)
OUT  
D = DutyCycle =  
V
+ V N + V  
F IN  
PS  
(
)
OUT  
I
= Maximum switch current limit = 260mA  
SW(MAX)  
8300f  
10  
LT8300  
applicaTions inForMaTion  
3.5  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
MAXIMUM  
OUTPUT  
POWER  
MAXIMUM  
OUTPUT  
POWER  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
N = 12:1  
N = 8:1  
N = 6:1  
N = 4:1  
N = 8:1  
N = 6:1  
N = 4:1  
N = 2:1  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
8300 F01  
8300 F02  
Figure 1. Output Power for 3.3V Output  
Figure 2. Output Power for 5V Output  
3.5  
3.5  
N = 4:1  
MAXIMUM  
OUTPUT  
POWER  
N = 2:1  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
N = 3:1  
N = 3:2  
N = 1:1  
MAXIMUM  
OUTPUT  
POWER  
N = 2:1  
N = 1:1  
N = 1:2  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
8300 F03  
8300 F04  
Figure 3. Output Power for 12V Output  
Figure 4. Output Power for 24V Output  
Primary Inductance Requirement  
In addition to the primary inductance requirement for  
the minimum switch-off time, the LT8300 has minimum  
switch-on time that prevents the chip from turning on  
the power switch shorter than approximately 160ns. This  
minimumswitch-ontimeismainlyforleading-edgeblank-  
ing the initial switch turn-on current spike. If the inductor  
current exceeds the desired current limit during that time,  
oscillation may occur at the output as the current control  
loopwillloseitsabilitytoregulate.Therefore,thefollowing  
equation relating to maximum input voltage must also be  
followedinselectingprimary-sidemagnetizinginductance:  
The LT8300 obtains output voltage information from the  
reflected output voltage on the SW pin. The conduction  
of secondary current reflects the output voltage on the  
primarySWpin.Thesample-and-holderroramplifierneeds  
aminimum350nstosettleandsamplethereflectedoutput  
voltage. In order to ensure proper sampling, the second-  
ary winding needs to conduct current for a minimum of  
350ns. The following equation gives the minimum value  
for primary-side magnetizing inductance:  
tOFF(MIN) NPS V  
+ VF  
(
)
OUT  
tON(MIN) VIN(MAX)  
LPRI  
LPRI  
ISW(MIN)  
ISW(MIN)  
t
= Minimum switch-off time = 350ns  
OFF(MIN)  
t
= Minimum Switch-On Time = 160ns  
ON(MIN)  
I
= Minimum switch current limit = 52mA  
SW(MIN)  
8300f  
11  
LT8300  
applicaTions inForMaTion  
In general, choose a transformer with its primary mag-  
netizing inductance about 20% to 40% larger than the  
minimum values calculated above. A transformer with  
much larger inductance will have a bigger physical size  
and may cause instability at light load.  
Linear Technology has worked with several leading mag-  
netic component manufacturers to produce pre-designed  
flyback transformers for use with the LT8300. Table 1  
shows the details of these transformers.  
Turns Ratio  
Selecting a Transformer  
Note that when choosing the R resistor to set output  
FB  
Transformer specification and design is perhaps the most  
criticalpartofsuccessfullyapplyingtheLT8300.Inaddition  
to the usual list of guidelines dealing with high frequency  
isolated power supply transformer design, the following  
information should be carefully considered.  
voltage, the user has relative freedom in selecting a trans-  
former turns ratio to suit a given application. In contrast,  
the use of simple ratios of small integers, e.g., 4:1, 2:1,  
1:1, provides more freedom in settling total turns and  
mutual inductance.  
Table 1. Predesigned Transformers — Typical Specifications  
TRANSFORMER  
PART NUMBER  
L
L
LEAKAGE  
(µH)  
PRI  
(µH)  
400  
300  
NP:NS:NB  
8:1  
VENDOR  
TARGET APPLICATIONS  
750312367  
750312557  
4.5  
2.5  
Würth Elektronik  
Würth Elektronik  
48V to 3.3V/0.51A, 24V to 3.3V/0.37A, 12V to 3.3V/0.24A  
6:1  
48V to 3.3V/0.42A, 24V to 3.3V/0.32A, 12V to 3.3V/0.22A  
48V to 5V/0.38A, 24V to 5V/0.27A, 12V to 5V/0.17A  
750312365  
750312558  
300  
300  
1.8  
4:1  
Würth Elektronik  
Würth Elektronik  
48V to 5V/0.29A, 24V to 5V/0.22A, 12V to 5V/0.15A  
1.75  
2:1:1  
48V to 12V/67mA, 24V to 12V/50mA, 12V to 12V/33mA  
48V to 15V/62mA, 24V to 15V/44mA, 12V to 15V/28mA  
750312559  
750311019  
300  
400  
2
5
1:1  
Würth Elektronik  
Würth Elektronik  
48V to 24V/67mA, 24V to 24V/50mA, 12V to 24V/33mA  
6:1:2  
48V to 3.3V/0.42A, 24V to 3.3V/0.32A, 12V to 3.3V/0.22A  
48V to 5V/0.38A, 24V to 5V/0.27A, 12V to 5V/0.17A  
750311558  
750311660  
300  
350  
1.5  
3
4:1:1  
Würth Elektronik  
Würth Elektronik  
48V to 5V/0.29A, 24V to 5V/0.22A, 12V to 5V/0.15A  
2:1:0.33  
48V to 12V/0.134A, 24V to 12V/0.1A, 12V to 12V/0.066A  
48V to 15V/0.124A, 24V to 15V/0.088A, 12V to 15V/0.056A  
750311838  
350  
3
2:1:1  
Würth Elektronik  
48V to 12V/67mA, 24V to 12V/50mA, 12V to 12V/33mA  
48V to 15V/62mA, 24V to 15V/44mA, 12V to 15V/28mA  
750311659  
10396-T026  
300  
300  
2
1:1:0.2  
6:1:2  
Würth Elektronik  
Sumida  
48V to 24V/67mA, 24V to 24V/50mA, 12V to 24V/33mA  
2.5  
48V to 3.3V/0.42A, 24V to 3.3V/0.32A, 12V to 3.3V/0.22A  
48V to 5V/0.38A, 24V to 5V/0.27A, 12V to 5V/0.17A  
10396-T024  
10396-T022  
300  
300  
2
2
4:1:1  
Sumida  
Sumida  
48V to 5V/0.29A, 24V to 5V/0.22A, 12V to 5V/0.15A  
2:1:0.33  
48V to 12V/0.134A, 24V to 12V/0.1A, 12V to 12V/0.066A  
48V to 15V/0.124A, 24V to 15V/0.088A, 12V to 15V/0.056A  
10396-T028  
L10-0116  
300  
500  
2.5  
7.3  
2:1:1  
6:1  
Sumida  
48V to 12V/67mA, 24V to 12V/50mA, 12V to 12V/33mA  
48V to 15V/62mA, 24V to 15V/44mA, 12V to 15V/28mA  
BH Electronics  
48V to 3.3V/0.42A, 24V to 3.3V/0.32A, 12V to 3.3V/0.22A  
48V to 5V/0.38A, 24V to 5V/0.27A, 12V to 5V/0.17A  
L10-0112  
L11-0067  
230  
230  
3.38  
2.16  
4:1  
4:1  
BH Electronics  
BH Electronics  
48V to 5V/0.29A, 24V to 5V/0.22A, 12V to 5V/0.15A  
48V to 5V/0.29A, 24V to 5V/0.22A, 12V to 5V/0.15A  
* All the transformers are rated for 1.5kV Isolation.  
8300f  
12  
LT8300  
applicaTions inForMaTion  
Typically, choose the transformer turns ratio to maximize  
available output power. For low output voltages (3.3V or  
5V), a larger N:1 turns ratio can be used with multiple  
primarywindingsrelativetothesecondarytomaximizethe  
transformer’s current gain (and output power). However,  
remember that the SW pin sees a voltage that is equal  
to the maximum input supply voltage plus the output  
voltage multiplied by the turns ratio. In addition, leakage  
Saturation Current  
Thecurrentinthetransformerwindingsshouldnotexceed  
itsratedsaturationcurrent.Energyinjectedoncethecoreis  
saturated will not be transferred to the secondary and will  
instead be dissipated in the core. When designing custom  
transformers to be used with the LT8300, the saturation  
current should always be specified by the transformer  
manufacturers.  
inductance will cause a voltage spike (V  
) on top of  
LEAKAGE  
this reflected voltage. This total quantity needs to remain  
below the 150V absolute maximum rating of the SW pin  
to prevent breakdown of the internal power switch. To-  
gether these conditions place an upper limit on the turns  
Winding Resistance  
Resistance in either the primary or secondary windings  
will reduce overall power efficiency. Good output voltage  
regulation will be maintained independent of winding re-  
sistance due to the boundary/discontinuous conduction  
mode operation of the LT8300.  
ratio, N , for a given application. Choose a turns ratio  
PS  
low enough to ensure:  
150V VIN(MAX) VLEAKAGE  
NPS <  
Leakage Inductance and Snubbers  
VOUT + V  
F
Transformer leakage inductance on either the primary or  
secondarycausesavoltagespiketoappearontheprimary  
after the power switch turns off. This spike is increasingly  
prominent at higher load currents where more stored en-  
ergy must be dissipated. It is very important to minimize  
transformer leakage inductance.  
For lower output power levels, choose a smaller N:1 turns  
ratio to alleviate the SW pin voltage stress. Although a  
1:N turns ratio makes it possible to have very high output  
voltages without exceeding the breakdown voltage of the  
internalpowerswitch, themultipliedparasiticcapacitance  
through turns ratio coupled with the relatively resistive  
150V internal power switch may cause the switch turn-on  
currentspikeringingbeyond160nsleading-edgeblanking,  
thereby producing light load instability in certain applica-  
tions. So any 1:N turns ratio should be fully evaluated  
before its use with the LT8300.  
When designing an application, adequate margin should  
be kept for the worst-case leakage voltage spikes even  
under overload conditions. In most cases shown in Figure  
5, the reflected output voltage on the primary plus V  
IN  
shouldbekeptbelow120V. Thisleavesatleast30Vmargin  
for the leakage spike across line and load conditions. A  
larger voltage margin will be required for poorly wound  
transformers or for excessive leakage inductance.  
The turns ratio is an important element in the isolated  
feedback scheme, and directly affects the output voltage  
accuracy. Make sure the transformer manufacturer speci-  
fies turns ratio accuracy within 1%.  
In addition to the voltage spikes, the leakage inductance  
also causes the SW pin ringing for a while after the power  
switchturnsoff. Topreventthevoltageringingfalselytrig-  
ger boundary mode detector, the LT8300 internally blanks  
theboundarymodedetectorforapproximately250ns.Any  
remaining voltage ringing after 250ns may turn the power  
switch back on again before the secondary current falls  
to zero. So the leakage inductance spike ringing should  
be limited to less than 250ns.  
8300f  
13  
LT8300  
applicaTions inForMaTion  
V
SW  
V
V
SW  
SW  
<150V  
<120V  
<150V  
<120V  
<150V  
<120V  
V
V
V
LEAKAGE  
LEAKAGE  
LEAKAGE  
t
> 350ns  
t
> 350ns  
t
> 350ns  
OFF  
OFF  
OFF  
t
SP  
< 250ns  
t
SP  
< 250ns  
t
SP  
< 250ns  
TIME  
TIME  
TIME  
8300 F05  
No Snubber  
with DZ Snubber  
with RC Snubber  
Figure 5. Maximum Voltages for SW Pin Flyback Waveform  
L
L
Z
C
R
D
8300 F06a  
8300 F06b  
DZ Snubber  
RC Snubber  
Figure 6. Snubber Circuits  
A snubber circuit is recommended for most applications.  
Two types of snubber circuits shown in Figure 6 that can  
protect the internal power switch include the DZ (diode-  
Zener)snubberandtheRC(resistor-capacitor)snubber.The  
DZ snubber ensures well defined and consistent clamping  
voltage and has slightly higher power efficiency, while the  
RC snubber quickly damps the voltage spike ringing and  
provides better load regulation and EMI performance.  
Figure 5 shows the flyback waveforms with the DZ and  
RC snubbers.  
The Zener diode breakdown voltage should be chosen to  
balancepowerlossandswitchvoltageprotection.Thebest  
compromise is to choose the largest voltage breakdown.  
Use the following equation to make the proper choice:  
V
≤ 150V – V  
IN(MAX)  
ZENER(MAX)  
For an application with a maximum input voltage of 72V,  
choose a 68V Zener diode, the V of which is  
ZENER(MAX)  
around 72V and below the 78V maximum.  
The power loss in the clamp will determine the power rat-  
ing of the Zener diode. Power loss in the clamp is highest  
at maximum load and minimum input voltage. The switch  
currentishighestatthispointalongwiththeenergystored  
in the leakage inductance. A 0.5W Zener will satisfy most  
For the DZ snubber, proper care must be taken when  
choosing both the diode and the Zener diode. Schottky  
diodes are typically the best choice, but some PN diodes  
can be used if they turn on fast enough to limit the leak-  
age inductance spike. Choose a diode that has a reverse-  
voltage rating higher than the maximum SW pin voltage.  
applications when the highest V  
is chosen.  
ZENER  
8300f  
14  
LT8300  
applicaTions inForMaTion  
Tables 2 and 3 show some recommended diodes and  
Zener diodes.  
Note that energy absorbed by the RC snubber will be  
converted to heat and will not be delivered to the load.  
In high voltage or high current applications, the snubber  
may need to be sized for thermal dissipation.  
Table 2. Recommended Zener Diodes  
V
ZENER  
(V)  
POWER  
(W)  
PART  
CASE  
VENDOR  
Undervoltage Lockout (UVLO)  
MMSZ5266BT1G  
MMSZ5270BT1G  
CMHZ5266B  
CMHZ5267B  
BZX84J-68  
BZX100A  
68  
91  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
SOD-123 On Semi  
SOD-123  
A resistive divider from V to the EN/UVLO pin imple-  
IN  
ments undervoltage lockout (UVLO). The EN/UVLO pin  
falling threshold is set at 1.223V with 16mV hysteresis.  
In addition, the EN/UVLO pin sinks 2.5µA when the volt-  
age at the pin is below 1.223V. This current provides user  
programmable hysteresis based on the value of R1. The  
programmable UVLO thresholds are:  
68  
SOD-123 Central  
Semiconductor  
75  
SOD-123  
68  
SOD323F NXP  
SOD323F  
100  
Table 3. Recommended Diodes  
V
REVERSE  
1.239V (R1+ R2)  
PART  
I (A)  
0.625  
0.625  
(V)  
CASE  
VENDOR  
V
=
=
+ 2.5µA R1  
IN(UVLO+ )  
R2  
1.223V (R1+ R2)  
R2  
BAV21W  
BAV20W  
200  
150  
SOD-123 Diodes Inc.  
SOD-123  
V
IN(UVLO)  
The recommended approach for designing an RC snubber  
is to measure the period of the ringing on the SW pin when  
the power switch turns off without the snubber and then  
add capacitance (starting with 100pF) until the period of  
the ringing is 1.5 to 2 times longer. The change in period  
will determine the value of the parasitic capacitance, from  
which the parasitic inductance can be determined from  
the initial period, as well. Once the value of the SW node  
capacitanceandinductanceisknown,aseriesresistorcan  
be added to the snubber capacitance to dissipate power  
andcriticallydampentheringing.Theequationforderiving  
the optimal series resistance using the observed periods  
Figure 7 shows the implementation of external shutdown  
control while still using the UVLO function. The NMOS  
grounds the EN/UVLO pin when turned on, and puts the  
LT8300 in shutdown with quiescent current less than 2µA.  
V
IN  
R1  
R2  
EN/UVLO  
LT8300  
RUN/STOP  
CONTROL  
(OPTIONAL)  
GND  
( t  
and t  
) is:  
) and snubber capacitance  
PERIOD(SNUBBED)  
PERIOD  
(C  
8300 F07  
SNUBBER  
CSNUBBER  
Figure 7. Undervoltage Lockout (UVLO)  
CPAR  
=
2
t
PERIOD(SNUBBED)   
1  
tPERIOD  
2
tPERIOD  
LPAR  
=
CPAR 4π2  
LPAR  
CPAR  
RSNUBBER  
=
8300f  
15  
LT8300  
applicaTions inForMaTion  
Minimum Load Requirement  
Design Example  
The LT8300 samples the isolated output voltage from the  
primary-side flyback pulse waveform. The flyback pulse  
occursoncetheprimaryswitchturnsoffandthesecondary  
winding conducts current. In order to sample the output  
voltage, the LT8300 has to turn on and off at least for a  
minimum amount of time and with a minimum frequency.  
The LT8300 delivers a minimum amount of energy even  
duringlightloadconditionstoensureaccurateoutputvolt-  
age information. The minimum energy delivery creates a  
minimum load requirement, which can be approximately  
Use the following design example as a guide to design  
applications for the LT8300. The design example involves  
designing a 12V output with a 120mA load current and an  
input range from 36V to 72V.  
V
V
= 36V, V  
= 48V, V  
= 72V,  
IN(MIN)  
OUT  
IN(NOM)  
= 120mA  
IN(MAX)  
= 12V, I  
OUT  
Step 1: Select the Transformer Turns Ratio.  
150V VIN(MAX) VLEAKAGE  
NPS <  
VOUT + VF  
estimated as:  
2
L
I  
f  
PRI  
MIN  
SW(MIN)  
V
= Margin for transformer leakage spike = 30V  
I
=
LEAKAGE  
LOAD(MIN)  
2 V  
OUT  
V = Output diode forward voltage = ~0.3V  
F
L
PRI  
= Transformer primary inductance  
Example:  
I
f
= Minimum switch current limit = 52mA  
SW(MIN)  
150V 72V 30V  
12V + 0.3V  
NPS <  
= 3.9  
= Minimum switching frequency = 7.5kHz  
MIN  
The LT8300 typically needs less than 0.5% of its full output  
power as minimum load. Alternatively, a Zener diode with its  
breakdown of 20% higher than the output voltage can serve  
as a minimum load if pre-loading is not acceptable. For a 5V  
output,usea6VZenerwithcathodeconnectedtotheoutput.  
The choice of transformer turns ratio is critical in deter-  
mining output current capability of the converter. Table 4  
shows the switch voltage stress and output current capa-  
bility at different transformer turns ratio.  
Table 4. Switch Voltage Stress and Output Current Capability  
vs Turns Ratio  
Output Short Protection  
V
V
at  
(V)  
I
at  
OUT(MAX)  
SW(MAX)  
When the output is heavily overloaded or shorted, the  
reflected SW pin waveform rings longer than the internal  
blanking time. After the 350ns minimum switch-off time,  
the excessive ring falsely trigger the boundary mode  
detector and turn the power switch back on again before  
the secondary current falls to zero. Under this condition,  
the LT8300 runs into continuous conduction mode at  
750kHz maximum switching frequency. Depending on the  
N
V
(mA)  
DUTY CYCLE (%)  
15-25  
PS  
IN(MAX)  
IN(MIN)  
1:1  
2:1  
3:1  
84.3  
84  
96.6  
135  
168  
25-41  
108.9  
34-51  
SincebothN =2andN =3canmeetthe120mAoutput  
PS  
PS  
current requirement, N = 2 is chosen in this example  
PS  
to allow more margin for transformer leakage inductance  
V supply voltage, the switch current may run away and  
IN  
voltage spike.  
exceed 260mA maximum current limit. Once the switch  
current hits 520mA over current limit, a soft-start cycle  
initiates and throttles back both switch current limit and  
switchfrequency.Thisoutputshortprotectionpreventsthe  
switch current from running away and limits the average  
output diode current.  
8300f  
16  
LT8300  
applicaTions inForMaTion  
Step 2: Determine the Primary Inductance.  
Example:  
Primary inductance for the transformer must be set above  
a minimum value to satisfy the minimum switch-off and  
switch-on time requirements:  
(12V + 0.3V)2  
(12V + 0.3V)2+ 48V  
12V 0.12A 2  
D =  
= 0.34  
ISW  
=
= 0.21A  
0.85 48V 0.34  
fSW = 260kHz  
tOFF(MIN) NPS V  
+ VF  
(
)
OUT  
LPRI  
ISW(MIN)  
tON(MIN) VIN(MAX)  
The transformer also needs to be rated for the correct  
saturation current level across line and load conditions. A  
saturation current rating larger than 400mA is necessary  
to work with the LT8300. The 10396-T022 from Sumida  
is chosen as the flyback transformer.  
LPRI  
ISW(MIN)  
t
= 350ns  
= 160ns  
= 52mA  
OFF(MIN)  
ON(MIN)  
SW(MIN)  
t
I
Step 3: Choose the Output Diode.  
Two main criteria for choosing the output diode include  
forward current rating and reverse voltage rating. The  
maximum load requirement is a good first-order guess  
as the average current requirement for the output diode.  
Aconservativemetricisthemaximumswitchcurrentlimit  
multiplied by the turns ratio,  
Example:  
350ns 2 (12V + 0.3V)  
LPRI  
LPRI  
= 166µH  
52mA  
160ns 72V  
= 222µH  
52mA  
I
= I  
• N  
SW(MAX) PS  
DIODE(MAX)  
Mosttransformersspecifyprimaryinductancewithatoler-  
anceof 20%.Withothercomponenttoleranceconsidered,  
choose a transformer with its primary inductance 20% to  
40% larger than the minimum values calculated above.  
Example:  
I
= 0.52A  
DIODE(MAX)  
Next calculate reverse voltage requirement using maxi-  
mum V :  
L
PRI  
= 300µH is then chosen in this example.  
IN  
Once the primary inductance has been determined, the  
maximum load switching frequency can be calculated as:  
VIN(MAX)  
VREVERSE = VOUT  
Example:  
VREVERSE = 12V +  
+
NPS  
1
1
fSW  
=
=
LPRI ISW  
LPRI ISW  
tON + tOFF  
+
VIN  
NPS (VOUT + VF )  
72V  
2
= 48V  
VOUT IOUT 2  
η VIN D  
ISW  
=
The SBR0560S1 (0.5A, 60V diode) from Diodes Inc. is  
chosen.  
8300f  
17  
LT8300  
applicaTions inForMaTion  
Step 4: Choose the Output Capacitor.  
A 68V Zener with a maximum of 72V will provide optimal  
protection and minimize power loss. So a 68V, 0.5W Zener  
from On Semiconductor (MMSZ5266BT1G) is chosen.  
The output capacitor should be chosen to minimize the  
outputvoltageripplewhileconsideringtheincreaseinsize  
and cost of a larger capacitor. Use the equation below to  
calculate the output capacitance:  
Choose a diode that is fast and has sufficient reverse  
voltage breakdown:  
2
V
V
> V  
SW(MAX)  
REVERSE  
SW(MAX)  
L
I  
SW  
PRI  
C
=
OUT  
= V  
+ V  
ZENER(MAX)  
IN(MAX)  
2 V  
V  
OUT  
OUT  
Example:  
Example:  
V
> 144V  
REVERSE  
Design for output voltage ripple less than 1% of V  
i.e., 120mV.  
,
OUT  
A 150V, 0.6A diode from Diodes Inc. (BAV20W) is chosen.  
Step 6: Select the R Resistor.  
300µH(0.21A)2  
2 12V 0.12V  
FB  
COUT  
=
= 4.6µF  
Use the following equation to calculate the starting value  
for R :  
FB  
Remember ceramic capacitors lose capacitance with ap-  
plied voltage. The capacitance can drop to 40% of quoted  
capacitanceatthemaximumvoltagerating.Soa10uF,16V  
rating ceramic capacitor is chosen.  
NPS (VOUT + VF )  
RFB =  
100µA  
Example:  
Step 5: Design Snubber Circuit.  
2 (12V + 0.3V)  
RFB =  
= 246k  
Thesnubbercircuitprotectsthepowerswitchfromleakage  
inductance voltage spike. A DZ snubber is recommended  
for this application because of lower leakage inductance  
and larger voltage margin. The Zener and the diode need  
to be selected.  
100µA  
Depending on the tolerance of standard resistor values,  
the precise resistor value may not exist. For 1% standard  
values, a 243k resistor in series with a 3.01k resistor  
should be close enough. As discussed in the Application  
Informationsection, thefinalR valueshouldbeadjusted  
on the measured output voltage.  
The maximum Zener breakdown voltage is set according  
to the maximum V :  
FB  
IN  
V
≤ 150V – V  
IN(MAX)  
ZENER(MAX)  
Example:  
V
≤ 150V – 72V = 78V  
ZENER(MAX)  
8300f  
18  
LT8300  
applicaTions inForMaTion  
Step 7: Select the EN/UVLO Resistors.  
Step 8: Ensure minimum load.  
Determinetheamountofhysteresisrequiredandcalculate  
R1 resistor value:  
The theoretical minimum load can be approximately  
estimated as:  
300µH(52mA)2 7.5kHz  
V
= 2.5µA • R1  
IN(HYS)  
ILOAD(MIN)  
=
= 0.25mA  
Example:  
2 12V  
Choose 2.5V of hysteresis,  
R1 = 1M  
Remembertochecktheminimumloadrequirementinreal  
application. The minimum load occurs at the point where  
the output voltage begins to climb up as the converter  
delivers more energy than what is consumed at the out-  
put. The real minimum load for this application is about  
0.6mA, 0.5% of 120mA maximum load. In this example,  
a 20k resistor is selected as the minimum load.  
Determine the UVLO thresholds and calculate R2 resistor  
value:  
1.239V (R1+ R2)  
V
=
+ 2.5µA R1  
IN(UVLO+ )  
R2  
Example:  
Set V UVLO rising threshold to 34.5V,  
IN  
R2 = 40.2k  
V
V
= 34.1V  
= 31.6V  
IN(UVLO+)  
IN(UVLO–)  
8300f  
19  
LT8300  
Typical applicaTions  
5V Micropower Isolated Flyback Converter  
D1  
T1  
+
V
OUT  
V
IN  
5V  
1mA TO 330mA  
6:1  
36V TO 72V  
2.2µF  
300µH  
8µH  
V
IN  
47µF  
1M  
LT8300  
EN/UVLO  
SW  
V
OUT  
40.2k  
316k  
R
FB  
GND  
T1: WÜRTH 750312557  
D1: DIODES INC. SBR2A30P1  
8300 TA02  
12V Micropower Isolated Flyback Converter  
T1  
2:1  
D1  
+
V
OUT  
V
IN  
12V  
0.6mA TO 120mA  
36V TO 72V  
2.2µF  
300µH  
75µH  
V
IN  
10µF  
1M  
LT8300  
EN/UVLO  
SW  
V
OUT  
40.2k  
243k  
R
FB  
GND  
T1: SUMIDA 10396-TO22  
D1: DIODES INC. SBR0560S1  
8300 TA03  
8300f  
20  
LT8300  
Typical applicaTions  
24V Micropower Isolated Flyback Converter  
T1  
1:1  
D1  
+
V
OUT  
24V  
0.3mA TO 60mA  
V
IN  
36V TO 72V  
2.2µF  
300µH  
300µH  
V
IN  
LT8300  
EN/UVLO  
4.7µF  
1M  
SW  
V
OUT  
40.2k  
243k  
R
FB  
GND  
T1: WÜRTH 750311559  
D1: DIODES DFLS 1200-7  
8300 TA04  
3.3V Micropower Isolated Flyback Converter  
T1  
8:1  
D1  
+
V
OUT  
3.3V  
2mA TO 440mA  
V
IN  
36V TO 72V  
2.2µF  
400µH  
6µH  
V
IN  
LT8300  
EN/UVLO  
100µF  
1M  
SW  
V
OUT  
40.2k  
287k  
R
FB  
GND  
T1: WÜRTH 750312367  
D1: NXP PMEG2020EH  
8300 TA05  
8300f  
21  
LT8300  
Typical applicaTions  
VIN to (VIN + 10V) Micropower Converter  
+
V
OUT  
10V  
50mA  
4.7µF  
Z1  
V
OUT  
V
IN  
15V TO 80V  
1µF  
L1  
330µH  
V
IN  
1M  
LT8300  
EN/UVLO  
D1  
SW  
118k  
102k  
R
FB  
GND  
8300 TA06  
L1: COILTRONICS DR73-331-R  
D1: DIODES INC. SBR1U150SA  
Z1: CENTRAL CMDZ12L  
VIN to (VIN – 10V) Micropower Converter  
V
IN  
+
15V TO 80V  
V
OUT  
10V  
1µF  
4.7µF  
Z1  
100mA  
V
OUT  
L1  
330µH  
V
IN  
1M  
LT8300  
EN/UVLO  
D1  
SW  
118k  
102k  
R
FB  
GND  
8300 TA07  
L1: COILTRONICS DR73-331-R  
D1: DIODES INC. SBR1U150SA  
Z1: CENTRAL CMDZ12L  
8300f  
22  
LT8300  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
S5 Package  
5-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1635 Rev B)  
0.62  
MAX  
0.95  
REF  
2.90 BSC  
(NOTE 4)  
1.22 REF  
1.4 MIN  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
3.85 MAX 2.62 REF  
PIN ONE  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45 TYP  
5 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
NOTE:  
S5 TSOT-23 0302 REV B  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
8300f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LT8300  
Typical applicaTion  
3.3V Isolated Converter (Conforming to DEF-STAN61-5)  
L1  
1:1  
D1  
+
V
OUT  
V
IN  
IN  
OUT  
LT3009-3.3  
SHDN  
3.3V  
0mA TO 20mA  
18V TO 32V  
1µF  
150µH  
150µH  
V
IN  
Z1  
1µF  
1µF  
1M  
GND  
LT8300  
EN/UVLO  
SW  
V
OUT  
93.1k  
42.2k  
D1: DIODES INC. SBR0560S1-7  
L1: DRQ73-151-R  
Z1: CENTRAL CMDZ4L7  
R
FB  
GND  
8300 TA08a  
Input Current with No Load  
400  
300  
200  
100  
0
18  
20  
22  
24  
V
26  
(V)  
28  
30  
32  
IN  
8300 TA08b  
relaTeD parTs  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT3511/LT3512  
100V Isolated Flyback Converters  
Monolithic No-Opto Flybacks with Integrated 240mA/420mA Switch,  
MSOP-16(12)  
LT3748  
LT3798  
100V Isolated Flyback Controller  
5V ≤ V ≤ 100V, No Opto Flyback , MSOP-16 with High Voltage Spacing  
IN  
Off-Line Isolated No Opto-Coupler Flyback Controller  
with Active PFC  
V
IN  
and V  
Limited Only by External Components  
OUT  
LT3573/LT3574/LT3575 40V Isolated Flyback Converters  
LT3757/LT3759/LT3758 40V/100V Flyback/Boost Controllers  
Monolithic No-Opto Flybacks with Integrated 1.25A/0.65A/2.5A Switch  
Universal Controllers with Small Package and Powerful Gate Drive  
Monolithic with Integrated 5A/3.3A Switch  
LT3957/LT3958  
40V/100V Flyback/Boost Converters  
LTC3803/LTC3803-3/  
LTC3803-5  
200kHz/300kHz Flyback Controllers in SOT-23  
V
and V  
Limited by External Components  
IN  
OUT  
LTC3805/LTC3805-5  
Adjustable Frequency Flyback Controllers  
V
and V  
Limited by External Components  
IN  
OUT  
8300f  
LT 0812 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
LINEAR TECHNOLOGY CORPORATION 2012  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

BAV21W-13

Rectifier Diode, 1 Element, 0.2A, 200V V(RRM), Silicon, PLASTIC PACKAGE-2
DIODES

BAV21W-7

Rectifier Diode, 1 Element, 0.2A, 200V V(RRM), Silicon, PLASTIC PACKAGE-2
DIODES

BAV21W-7-F

SURFACE MOUNT SWITCHING DIODE
BL Galaxy Ele

BAV21W-7-F

SURFACE MOUNT SWITCHING DIODE
DIODES

BAV21W-AU

SURFACE MOUNT SWITCHING DIODES
PANJIT

BAV21W-E3-08

Rectifier Diode, 1 Element, 0.2A, 250V V(RRM), Silicon, ROHS COMPLIANT PACKAGE-2
VISHAY

BAV21W-E3-18

DIODE GEN PURP 200V 250MA SOD123
VISHAY

BAV21W-G

High Voltage Fast Switching Diode
TSC

BAV21W-G

Rectifier Diode, 1 Element, 0.2A, 200V V(RRM),
WEITRON

BAV21W-G3-08

Rectifier Diode, 1 Element, 0.2A, 250V V(RRM), Silicon, GREEN PACKAGE-2
VISHAY

BAV21W-GS08

Rectifier Diode, 1 Element, 0.2A, 250V V(RRM),
VISHAY

BAV21W-GS18

Rectifier Diode, 1 Element, 0.2A, 250V V(RRM),
VISHAY