LBPC [Linear]

Precision, 100uA Gain Selectable Amplifier; 精密, 100uA的可选增益放大器
LBPC
型号: LBPC
厂家: Linear    Linear
描述:

Precision, 100uA Gain Selectable Amplifier
精密, 100uA的可选增益放大器

放大器
文件: 总24页 (文件大小:341K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1996  
Precision, 100µA  
Gain Selectable Amplifier  
U
FEATURES  
DESCRIPTIO  
The LT®1996 combines a precision operational amplifier  
with eight precision resistors to form a one-chip solution  
for accurately amplifying voltages. Gains from –117 to  
118withagainaccuracyof0.05%canbeachievedwithout  
any external components. The device is particularly well  
suitedforuseasadifferenceamplifier, wheretheexcellent  
resistor matching results in a common mode rejection  
ratio of greater than 80dB.  
Pin Configurable as a Difference Amplifier,  
Inverting and Noninverting Amplifier  
Difference Amplifier  
Gain Range 9 to 117  
CMRR >80dB  
Noninverting Amplifier  
Gain Range 0.008 to 118  
Inverting Amplifier  
Gain Range –0.08 to –117  
The amplifier features a 50µV maximum input offset  
voltage and a gain bandwidth product of 560kHz. The  
device operates from any supply voltage from 2.7V to 36V  
and draws only 100µA supply current on a 5V supply. The  
output swings to within 40mV of either supply rail.  
Gain Error: <0.05%  
Gain Drift: < 3ppm/°C  
Wide Supply Range: Single 2.7V to Split ±18V  
Micropower Operation: 100µA Supply  
Input Offset Voltage: 50µV (Max)  
The internal resistors have excellent matching character-  
istics; variation is 0.05% over temperature with a guaran-  
teedmatchingtemperaturecoefficentoflessthan3ppm/°C.  
The resistors are also extremely stable over voltage,  
exhibiting a nonlinearity of less than 10ppm.  
Gain Bandwidth Product: 560kHz  
Rail-to-Rail Output  
Space Saving 10-Lead MSOP and DFN Packages  
U
APPLICATIO S  
The LT1996 is fully specified at 5V and ±15V supplies and  
from –40°C to 85°C. The device is available in space  
saving 10-lead MSOP and DFN packages. For an amplifier  
with selectable gains from –13 to 14, see the LT1991 data  
sheet.  
Handheld Instrumentation  
Medical Instrumentation  
Strain Gauge Amplifiers  
Differential to Single-Ended Conversion  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners. Patents Pending.  
U
TYPICAL APPLICATIO  
Rail-to-Rail Gain = 9 Difference Amplifier  
Distribution of Resistor Matching  
V
= V  
+ 9 • V  
OUT  
REF IN  
40  
35  
30  
25  
20  
15  
10  
5
15V  
LT1996A  
G = 81  
SWING 40mV TO  
EITHER RAIL  
450k/81  
450k/27  
450k  
4pF  
450k/9  
+
V
M(IN)  
+
V  
IN  
450k/9  
V
P(IN)  
LT1996  
450k  
450k/27  
INPUT RANGE  
±60V  
450k/81  
R
= 100kΩ  
4pF  
IN  
0
0
0.04  
0.02  
0.02  
0.04  
V
REF  
RESISTOR MATCHING (%)  
1996 TA01  
–15V  
1996 TA01b  
1996f  
1
LT1996  
W W U W  
ABSOLUTE AXI U RATI GS (Note 1)  
Total Supply Voltage (V+ to V) ............................... 40V  
Input Voltage (Pins P9/M9, Note 2) ....................... ±60V  
Input Current  
(Pins P27/M27/P81/M81, Note 2) .................. ±10mA  
Output Short-Circuit Duration (Note 3)............ Indefinite  
Operating Temperature Range (Note 4) ...–40°C to 85°C  
Specified Temperature Range (Note 5)....–40°C to 85°C  
Maximum Junction Temperature  
DD Package ...................................................... 125°C  
MS Package ..................................................... 150°C  
Storage Temperature Range  
DD Package .......................................–65°C to 125°C  
MS Package ......................................–65°C to 150°C  
MSOP–Lead Temperature (Soldering, 10 sec)...... 300°C  
U
W
U
PACKAGE/ORDER I FOR ATIO  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
TOP VIEW  
P9  
P27  
P81  
1
2
3
4
5
10 M9  
TOP VIEW  
9
8
7
6
M27  
M81  
LT1996CDD  
LT1996IDD  
LT1996ACDD  
LT1996AIDD  
LT1996CMS  
P9  
P27  
P81  
EE  
REF  
1
2
3
4
5
10 M9  
9
8
7
6
M27  
M81  
CC  
OUT  
LT1996IMS  
V
EE  
V
CC  
V
V
LT1996ACMS  
LT1996AIMS  
REF  
OUT  
MS PACKAGE  
10-LEAD PLASTIC MSOP  
TJMAX = 150°C, θJA = 230°C/W  
DD PACKAGE  
10-LEAD (3mm × 3mm) PLASTIC DFN  
DD PART MARKING*  
LBPC  
MS PART MARKING*  
LTBPB  
TJMAX = 125°C, θJA = 160°C/W  
UNDERSIDE METAL CONNECTED TO VEE  
(PCB CONNECTION OPTIONAL)  
*Temperature and electrical grades are identified by a label on the shipping container. Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
VCM = VREF = half supply, unless otherwise noted.  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. Difference amplifier configuration, VS = 5V, 0V or ±15V;  
SYMBOL  
PARAMETER  
CONDITIONS  
V = ±15V, V  
MIN  
TYP  
MAX  
UNITS  
G  
Gain Error  
= ±10V; R = 10k  
OUT L  
S
G = 81; LT1996AMS  
G = 27; LT1996AMS  
G = 9; LT1996AMS  
±0.02  
±0.03  
±0.03  
±0.05  
±0.06  
±0.07  
%
%
%
G = 81; LT1996ADD  
G = 27; LT1996ADD  
G = 9; LT1996ADD  
±0.02  
±0.02  
±0.03  
±0.05  
±0.07  
±0.08  
%
%
%
G = 81; LT1996  
G = 27; LT1996  
G = 9; LT1996  
±0.04  
±0.04  
±0.04  
±0.12  
±0.12  
±0.12  
%
%
%
GNL  
Gain Nonlinearity  
V = ±15V; V  
= ±10V; R = 10k; G = 9  
1
10  
3
ppm  
S
OUT  
OUT  
L
G/T  
CMRR  
Gain Drift vs Temperature (Note 6)  
V = ±15V; V  
S
= ±10V; R = 10k  
0.3  
ppm/°C  
L
Common Mode Rejection Ratio,  
Referred to Inputs (RTI)  
V = ±15V; G = 9; V = ±15.3V  
S
CM  
LT1996AMS  
LT1996ADD  
LT1996  
80  
80  
70  
100  
100  
100  
dB  
dB  
dB  
V = ±15V; G = 27; V = –14.5V to 14.3V  
LT1996AMS  
LT1996ADD  
LT1996  
S
CM  
95  
90  
75  
105  
105  
105  
dB  
dB  
dB  
1996f  
2
LT1996  
The denotes the specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
VCM = VREF = half supply, unless otherwise noted.  
temperature range, otherwise specifications are at TA = 25°C. Difference amplifier configuration, VS = 5V, 0V or ±15V;  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CMRR  
Common Mode Rejection Ratio (RTI)  
V = ±15V; G = 81; V = –14.1V to 13.9V  
LT1996AMS  
LT1996ADD  
LT1996  
S
CM  
105  
100  
85  
120  
120  
120  
dB  
dB  
dB  
V
Input Voltage Range (Note 7)  
P9/M9 Inputs  
CM  
V = ±15V; V = 0V  
–15.5  
0.84  
0.98  
15.3  
3.94  
1.86  
V
V
V
S
REF  
V = 5V, 0V; V = 2.5V  
S
REF  
V = 3V, 0V; V = 1.25V  
S
REF  
P9/M9 Inputs, P81/M81 Connected to REF  
V = ±15V; V = 0V  
–60  
–12.6  
–1.25  
60  
15.6  
6.8  
V
V
V
S
REF  
V = 5V, 0V; V = 2.5V  
S
REF  
V = 3V, 0V; V = 1.25V  
S
REF  
P27/M27 Inputs  
V = ±15V; V = 0V  
–14.5  
0.95  
1
14.3  
3.84  
1.82  
V
V
V
S
REF  
V = 5V, 0V; V = 2.5V  
S
REF  
V = 3V, 0V; V = 1.25V  
S
REF  
P81/M81 Inputs  
V = ±15V; V = 0V  
–14.1  
0.99  
1
13.9  
3.81  
1.8  
V
V
V
S
REF  
V = 5V, 0V; V = 2.5V  
S
REF  
V = 3V, 0V; V = 1.25V  
S
REF  
V
Op Amp Offset Voltage (Note 8)  
LT1996AMS, V = 5V, 0V  
15  
15  
25  
25  
50  
135  
µV  
µV  
OS  
S
LT1996AMS, V = ±15V  
80  
160  
µV  
µV  
S
LT1996MS  
LT1996DD  
100  
200  
µV  
µV  
150  
250  
µV  
µV  
V /T  
Op Amp Offset Voltage Drift (Note 6)  
Op Amp Input Bias Current  
0.3  
2.5  
1
µV/°C  
OS  
I
5
7.5  
nA  
nA  
B
I
Op Amp Input Offset Current  
LT1996A  
LT1996  
50  
50  
500  
750  
pA  
pA  
OS  
1000  
1500  
pA  
pA  
Op Amp Input Noise Voltage  
0.01Hz to 1Hz  
0.01Hz to 1Hz  
0.1Hz to 10Hz  
0.1Hz to 10Hz  
0.35  
0.07  
0.25  
0.05  
µV  
P-P  
µV  
RMS  
µV  
P-P  
µV  
RMS  
e
Input Noise Voltage Density  
(Includes Resistor Noise)  
G = 9; f = 1kHz  
G = 117; f = 1kHz  
46  
18  
nV/Hz  
nV/Hz  
n
R
IN  
Input Impedance (Note 10)  
P9 (M9 = Ground)  
P27 (M27 = Ground)  
P81 (M81 = Ground)  
350  
326.9  
319.2  
500  
467  
456  
650  
607.1  
592.8  
kΩ  
kΩ  
kΩ  
M9 (P9 = Ground)  
M27 (P27 = Ground)  
M81 (P81 = Ground)  
35  
11.69  
3.85  
50  
16.7  
5.5  
65  
21.71  
7.15  
kΩ  
kΩ  
kΩ  
1996f  
3
LT1996  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. Difference amplifier configuration, VS = 5V, 0V or ±15V;  
VCM = VREF = half supply, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
R  
Resistor Matching (Note 9)  
G = 81; LT1996AMS  
G = 27; LT1996AMS  
G = 9; LT1996AMS  
±0.02  
±0.03  
±0.03  
±0.05  
±0.06  
±0.07  
%
%
%
G = 81; LT1996ADD  
G = 27; LT1996ADD  
G = 9; LT1996ADD  
±0.02  
±0.02  
±0.03  
±0.05  
±0.07  
±0.08  
%
%
%
G = 81; LT1996  
G = 27; LT1996  
G = 9; LT1996  
±0.04  
±0.04  
±0.04  
±0.12  
±0.12  
±0.12  
%
%
%
R/T  
Resistor Temperature Coefficient (Note 6) Resistor Matching  
Absolute Value  
0.3  
–30  
3
ppm/°C  
ppm/°C  
PSRR  
Power Supply Rejection Ratio  
Minimum Supply Voltage  
V = ±1.35V to ±18V (Note 8)  
S
105  
135  
2.4  
dB  
V
2.7  
V
Output Voltage Swing (to Either Rail)  
No Load  
OUT  
V = 5V, 0V  
40  
55  
65  
110  
mV  
mV  
mV  
S
V = 5V, 0V  
S
V = ±15V  
S
1mA Load  
V = 5V, 0V  
150  
225  
275  
300  
mV  
mV  
mV  
S
V = 5V, 0V  
S
V = ±15V  
S
I
Output Short-Circuit Current (Sourcing)  
Output Short-Circuit Current (Sinking)  
–3dB Bandwidth  
Drive Output Positive;  
Short Output to Ground  
8
4
12  
21  
mA  
mA  
SC  
Drive Output Negative;  
8
4
mA  
mA  
Short Output to V or Midsupply  
S
BW  
G = 9  
G = 27  
G = 81  
38  
17  
7
kHz  
kHz  
kHz  
GBWP  
Op Amp Gain Bandwidth Product  
Rise Time, Fall Time  
f = 10kHz  
560  
kHz  
t , t  
G = 9; 0.1V Step; 10% to 90%  
G = 81; 0.1V Step; 10% to 90%  
8
40  
µs  
µs  
r
f
t
Settling Time to 0.01%  
G = 9; V = 5V, 0V; 2V Step  
85  
85  
110  
110  
µs  
µs  
µs  
µs  
S
S
G = 9; V = 5V, 0V; –2V Step  
S
G = 9; V = ±15V; 10V Step  
S
G = 9; V = ±15V; –10V Step  
S
SR  
Slew Rate  
V = 5V, 0V; V = 1V to 4V  
0.06  
0.08  
0.12  
0.12  
V/µs  
V/µs  
S
OUT  
V = ±15V; V = ±10V  
S
OUT  
I
Supply Current  
V = 5V, 0V  
100  
110  
150  
µA  
µA  
S
S
V = ±15V  
S
130  
160  
210  
µA  
µA  
Note 1: Absolute Maximum Ratings are those beyond which the life of the  
device may be impaired.  
withstand ±60V if P81/M81 are grounded and V = ±15V (see Applications  
Information section about “High Voltage CM Difference Amplifiers”).  
S
Note 2: The P27/M27 and P81/M81 inputs are protected by ESD diodes to  
the supply rails. If one of these four inputs goes outside the rails, the input  
current should be limited to less than 10mA. The P9/M9 inputs can  
Note 3: A heat sink may be required to keep the junction temperature  
below absolute maximum ratings.  
1996f  
4
LT1996  
ELECTRICAL CHARACTERISTICS  
Note 4: Both the LT1996C and LT1996I are guaranteed functional over the  
–40°C to 85°C temperature range.  
determine the valid input voltage range under various operating  
conditions.  
Note 5: The LT1996C is guaranteed to meet the specified performance  
from 0°C to 70°C and is designed, characterized and expected to meet  
specified performance from –40°C to 85°C but is not tested or QA  
sampled at these temperatures. The LT1996I is guaranteed to meet  
specified performance from –40°C to 85°C.  
Note 8: Offset voltage, offset voltage drift and PSRR are defined as  
referred to the internal op amp. You can calculate output offset as follows.  
In the case of balanced source resistance, V  
= V • Noise Gain +  
OS, OUT  
OS  
I
• 450k + I • 450k • (1 – R /R ) where R and R are the total  
OS  
B P N P N  
resistance at the op amp positive and negative terminal respectively.  
Note 6: This parameter is not 100% tested.  
Note 7: Input voltage range is guaranteed by the CMRR test at V = ±15V.  
Note 9: Resistors connected to the minus inputs. Resistor matching is not  
tested directly, but is guaranteed by the gain error test.  
S
For the other voltages, this parameter is guaranteed by design and through  
correlation with the ±15V test. See the Applications Information section to  
Note 10: Input impedance is tested by a combination of direct  
measurements and correlation to the CMRR and gain error tests.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS (Difference Amplifier Configuration)  
Output Voltage Swing vs  
Temperature  
Output Voltage Swing vs Load  
Current (Output Low)  
Supply Current vs Supply Voltage  
200  
175  
150  
125  
100  
75  
V
CC  
1400  
1200  
1000  
800  
V
= 5V, 0V  
V
= 5V, 0V  
S
S
NO LOAD  
–20  
–40  
–60  
T
= 85°C  
OUTPUT HIGH  
(RIGHT AXIS)  
A
T
= 85°C  
A
T
= 25°C  
A
T
= –40°C  
A
T
= 25°C  
A
600  
60  
40  
20  
T
= –40°C  
A
400  
50  
OUTPUT LOW  
(LEFT AXIS)  
200  
25  
0
V
EE  
V
EE  
0
2
4
6
8
10 12 14 16 18 20  
–25  
0
25  
50  
75  
125  
–50  
100  
0
3
4
5
6
7
8
9
10  
1
2
SUPPLY VOLTAGE (±V)  
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
1996 G01  
1996 G02  
1996 G03  
Output Voltage Swing vs Load  
Current (Output High)  
Output Short-Circuit Current vs  
Temperature  
Input Offset Voltage vs  
Difference Gain  
150  
100  
50  
V
25  
20  
15  
10  
5
CC  
V
S
= 5V, 0V  
V
S
= 5V, 0V  
V
= 5V, 0V  
S
REPRESENTATIVE PARTS  
–100  
–200  
–300  
–400  
–500  
–600  
–700  
–800  
–900  
–1000  
SINKING  
T
A
= –40°C  
T
A
= 85°C  
T
A
= 25°C  
0
SOURCING  
–50  
–100  
–150  
0
4
0
1
2
3
5
6
7
8
9
10  
9
18 27 36 45 54 63 72 81 90 99 108 117  
–50  
0
25  
50  
75 100 125  
–25  
LOAD CURRENT (mA)  
GAIN (V/V)  
1996 G06  
1996 G04  
TEMPERATURE (°C)  
1996 G05  
1996f  
5
LT1996  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS (Difference Amplifier Configuration)  
Output Offset Voltage vs  
Difference Gain  
Gain Error vs Load Current  
Slew Rate vs Temperature  
10.0  
7.5  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.04  
0.03  
0.02  
0.01  
0
V
= 5V, 0V  
GAIN = 9  
GAIN = 81  
S
REPRESENTATIVE PARTS  
V
V
= ±15V  
V
V
A
= ±15V  
S
OUT  
S
OUT  
= ±10V  
= ±10V  
T
= 25°C  
5.0  
2.5  
SR (FALLING EDGE)  
0
+
SR (RISING EDGE)  
–2.5  
–5.0  
–7.5  
–10.0  
–0.01  
–0.02  
–0.03  
–0.04  
REPRESENTATIVE UNITS  
9
18 27 36 45 54 63 72 81 90 99 108 117  
GAIN (V/V)  
50  
0
TEMPERATURE (°C)  
100 125  
–50 –25  
25  
75  
1
2
4
3
LOAD CURRENT (mA)  
0
5
1996 G07  
1996 G09  
1996 G08  
Bandwidth vs Gain  
CMRR vs Frequency  
PSRR vs Frequency  
40  
35  
30  
25  
20  
15  
10  
5
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
130  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
V
T
= 5V, 0V  
V
T
= 5V, 0V  
V
T
= 5V, 0V  
S
A
S
A
S
A
= 25°C  
= 25°C  
GAIN = 81  
= 25°C  
GAIN = 27  
GAIN = 9  
GAIN = 81  
GAIN = 9  
GAIN = 27  
10k  
0
0
10  
100  
1k  
100k  
9
18 27 36 45 54 63 72 81 90 99 108 117  
GAIN (V/V)  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1996 G12  
1996 G11  
1996 G10  
Output Impedance vs Frequency  
CMRR vs Temperature  
Gain Error vs Temperature  
120  
100  
80  
60  
40  
20  
0
1000  
100  
10  
0.030  
0.025  
0.020  
0.015  
0.010  
0.005  
0
V
T
= 5V, 0V  
GAIN = 9  
S
GAIN = 9  
S
S
A
= 25°C  
V = ±15V  
V
= ±15V  
GAIN = 81  
GAIN = 27  
GAIN = 9  
1
0.1  
0.01  
REPRESENTATIVE UNITS  
REPRESENTATIVE UNITS  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
1996 G13  
1996 G14  
1996 G15  
1996f  
6
LT1996  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS (Difference Amplifier Configuration)  
Gain vs Frequency  
Gain and Phase vs Frequency  
0.01Hz to 1Hz Voltage Noise  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
0
V
A
= 5V, 0V  
V
= 5V, 0V  
S
S
PHASE  
(RIGHT AXIS)  
V
= ±15V  
= 25°C  
S
A
–20  
T
= 25°C  
T
= 25°C  
A
T
GAIN = 9  
MEASURED IN G =117  
–40  
GAIN = 81  
GAIN = 27  
GAIN = 9  
REFERRED TO OP AMP INPUTS  
–60  
–80  
GAIN  
(LEFT AXIS)  
–100  
–120  
–140  
–160  
–180  
–200  
–10  
0.5  
1
10  
100  
500  
0.1  
1
10  
100  
400  
0
10 20 30 40 50 60 70 80 90 100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
TIME (s)  
1996 G16  
1996 G17  
1996 G21  
Small Signal Transient Response,  
Gain = 9  
Small Signal Transient Response,  
Gain = 27  
Small Signal Transient Response,  
Gain = 81  
50mV/DIV  
50mV/DIV  
50mV/DIV  
1996 G18  
1996 G20  
1996 G19  
10µs/DIV  
50µs/DIV  
20µs/DIV  
U
U
U
(Difference Amplifier Configuration)  
PI FU CTIO S  
resistor to the op amp’s noninverting input.  
P9 (Pin 1): Noninverting Gain-of-9 input. Connects a 50k  
internal resistor to the op amp’s noninverting input.  
OUT (Pin 6): Output. VOUT = VREF + 9 • (VP1 – VM1) + 27 •  
(VP3 – VM3) + 81 • (VP9 – VM9).  
P27 (Pin 2): Noninverting Gain-of-27 input. Connects a  
(50k/3)internalresistortotheopamp’snoninvertinginput.  
VCC (Pin 7): Positive Power Supply. Can be anything from  
2.7V to 36V above the VEE voltage.  
P81 (Pin 3): Noninverting Gain-of-81 input. Connects a  
(50k/9)internalresistortotheopamp’snoninvertinginput.  
M81 (Pin 8): Inverting Gain-of-81 input. Connects a  
(50k/9) internal resistor to the op amp’s inverting input.  
VEE (Pin 4): Negative Power Supply. Can be either ground  
(in single supply applications), or a negative voltage (in  
split supply applications).  
M27 (Pin 9): Inverting Gain-of-27 input. Connects a  
(50k/3) internal resistor to the op amp’s inverting input.  
REF (Pin 5): Reference Input. Sets the output level when  
differencebetweeninputsiszero. Connectsa450kinternal  
M9 (Pin 10): Inverting Gain-of-9 input. Connects a 50k  
internal resistor to the op amp’s inverting input.  
1996f  
7
LT1996  
W
BLOCK DIAGRA  
10  
9
8
7
6
M9  
M27  
M81  
V
CC  
OUT  
450k/81  
450k  
4pF  
450k/27  
450k/9  
450k/9  
+
OUT  
LT1996  
450k/27  
4pF  
450k  
450k/81  
P9  
P27  
P81  
V
EE  
REF  
1996 BD  
1
2
3
4
5
U
W U U  
APPLICATIO S I FOR ATIO  
Introduction  
of VEE. For many configurations though, the chip inputs  
will function rail-to-rail because of effective attenuation to  
the +input. The output is truly rail-to-rail, getting to within  
40mV of the supply rails. The gain bandwidth product of  
the op amp is about 560kHz. In noise gains of 2 or more,  
itisstableintocapacitiveloadsupto500pF. Innoisegains  
below 2, it is stable into capacitive loads up to 100pF.  
TheLT1996maybethelastopampyoueverhavetostock.  
Because it provides you with several precision matched  
resistors, you can easily configure it into several different  
classical gain circuits without adding external compo-  
nents. The several pages of simple circuits in this data  
sheet demonstrate just how easy the LT1996 is to use. It  
canbeconfiguredintodifferenceamplifiers,aswellasinto  
inverting and noninverting single ended amplifiers. The  
fact that the resistors and op amp are provided together in  
such a small package will often save you board space and  
reduce complexity for easy probing.  
The Resistors  
The resistors internal to the LT1996 are very well matched  
SiChrome based elements protected with barrier metal.  
Although their absolute tolerance is fairly poor (±30%),  
their matching is to within 0.05%. This allows the chip to  
achieve a CMRR of 80dB, and gain errors within 0.05%.  
The resistor values are (450k/9), (450k/27), (450k/81)  
and 450k, connected to each of the inputs. The resistors  
havepowerlimitationsof1wattforthe450kand(450k/81)  
resistors, 0.3watt for the (450k/27) resistors and 0.5watt  
for the (450k/9) resistors; however, in practice, power  
dissipation will be limited well below these values by the  
The Op Amp  
The op amp internal to the LT1996 is a precision device  
with 15µV typical offset voltage and 3nA input bias cur-  
rent. The input offset current is extremely low, so match-  
ing the source resistance seen by the op amp inputs will  
provide for the best output accuracy. The op amp inputs  
are not rail-to-rail, but extend to within 1.2V of VCC and 1V  
1996f  
8
LT1996  
U
W U U  
APPLICATIO S I FOR ATIO  
maximum voltage allowed on the input and REF pins. The  
50k resistors connected to the M9 and P9 inputs are  
isolated from the substrate, and can therefore be taken  
beyond the supply voltages. The naming of the pins “P9,”  
“P27,” “P81,” etc., is based on their admittances relative  
to the feedback and REF admittances. Because it has 9  
times the admittance, the voltage applied to the P9 input  
has 9 times the effect of the voltage applied to the REF  
input.  
classical noninverting op amp configuration, the LT1996  
presents the high input impedance of the op amp, as is  
usual for the noninverting case.  
Common Mode Input Voltage Range  
The LT1996 valid common mode input range is limited by  
three factors:  
1. Maximum allowed voltage on the pins  
2. The input voltage range of the internal op amp  
3. Valid output voltage  
Bandwidth  
The bandwidth of the LT1996 will depend on the gain you  
select (or more accurately the noise gain resulting from  
the gain you select). In the lowest configurable gain of 1,  
the –3dB bandwidth is limited to 450kHz, with peaking of  
about 2dB at 280kHz. In the highest configurable gains,  
bandwidth is limited to 5kHz.  
The maximum voltage allowed on the P27, M27, P81 and  
M81 inputs includes the positive and negative supply plus  
a diode drop. These pins should not be driven more than  
a diode drop outside of the supply rails. This is because  
theyareconnectedthroughdiodestointernalmanufactur-  
ing post-package trim circuitry, and through a substrate  
diode to VEE. If more than 10mA is allowed to flow through  
thesepins,thereisariskthattheLT1996willbedetrimmed  
or damaged. The P9 and M9 inputs do not have clamp  
diodes or substrate diodes or trim circuitry and can be  
taken well outside the supply rails. The maximum allowed  
voltage on the P9 and M9 pins is ±60V.  
Input Noise  
TheLT1996inputnoiseiscomprisedoftheJohnsonnoise  
of the internal resistors (4kTR), and the input voltage  
noise of the op amp. Paralleling all four resistors to the  
+input gives a 3.8kresistance, for 8nV/Hz of voltage  
noise. The equivalent network on the –input gives another  
8nV/Hz, and the op amp 14nV/Hz. Taking their RMS  
sum gives a total 18nV/Hz input referred noise floor.  
Output noise depends on configuration and noise gain.  
The input voltage range of the internal op amp extends to  
within 1.2V of VCC and 1V of VEE. The voltage at which the  
op amp inputs common mode is determined by the  
voltage at the op amp’s +input, and this is determined by  
the voltages on pins P9, P27, P81 and REF. (See “Calcu-  
lating Input Voltage Range” section.) This is true provided  
thattheopampisfunctioningandfeedbackismaintaining  
the inputs at the same voltage, which brings us to the third  
requirement.  
Input Resistance  
The LT1996 input resistances vary with configuration, but  
once configured are apparent on inspection. Note that  
resistors connected to the op amp’s –input are looking  
intoavirtualground, sotheysimplyparallel. Anyfeedback  
resistance around the op amp does not contribute to input  
resistance. Resistors connected to the op amp’s +input  
are looking into a high impedance, so they add as parallel  
or series depending on how they are connected, and  
whether or not some of them are grounded. The op amp  
+input itself presents a very high Gimpedance. In the  
For valid circuit function, the op amp output must not be  
clipped.Theoutputwillclipiftheinputsignalsareattempt-  
ing to force it to within 40mV of its supply voltages. This  
usually happens due to too large a signal level, but it can  
also occur with zero input differential and must therefore  
be included as an example of a common mode problem.  
1996f  
9
LT1996  
U
W
U U  
APPLICATIO S I FOR ATIO  
R
F
Consider Figure 1. This shows the LT1996 configured as  
a gain of 117 difference amplifier on a single supply with  
V
CC  
R
R
G
G
5V  
7
+
V
EXT  
V
INT  
450k/81  
450k  
4pF  
8
V
EE  
V
450k/27  
450k/9  
REF  
9
R
F
1996 F02  
10  
+
Figure 2. Calculating CM Input Voltage Range  
6
5
V
DM  
0V  
V
= 117 • V  
DM  
OUT  
450k/9  
450k/27  
450k/81  
+
1
2
3
These two voltages represent the high and low extremes  
of the common mode input range, if the other limits have  
notalreadybeenexceeded(1and3,above).Inmostcases,  
the inverting inputs M9 through M81 can be taken further  
than these two extremes because doing this does not  
move the op amp input common mode. To calculate the  
limit on this additional range, see Figure 3. Note that, with  
V
CM  
2.5V  
4pF  
450k  
REF  
LT1996  
1996 F01  
4
Figure 1. Difference Amplifier Cannot Produce 0V on a Single  
Supply. Provide a Negative Supply, or Raise Pin 5, or Provide  
400µV of VDM  
R
F
theoutputREFconnectedtoground. Thisisagreatcircuit,  
but it does not support VDM = 0V at any common mode  
because the output clips into ground while trying to  
produce 0VOUT. It can be fixed simply by declaring the  
valid input differential range not to extend below +0.4mV,  
or by elevating the REF pin above 40mV, or by providing  
a negative supply.  
V
CC  
R
G
G
V
+
MORE  
V
INT  
V
EXT  
MAX OR MIN  
R
V
EE  
V
REF  
R
F
1996 F03  
Figure 3. Calculating Additional Voltage Range of  
Inverting Inputs  
Calculating Input Voltage Range  
Figure 2 shows the LT1996 in the generalized case of a  
difference amplifier, with the inputs shorted for the com-  
mon mode calculation. The values of RF and RG are  
dictated by how the P inputs and REF pin are connected.  
By superposition we can write:  
VMORE = 0, the op amp output is at VREF. From the max  
VEXT (the high cm limit), as VMORE goes positive, the op  
ampoutputwillgomorenegativefromVREF bytheamount  
VMORE • RF/RG, so:  
VOUT = VREF – VMORE • RF/RG  
Or:  
V
INT = VEXT • (RF/(RF + RG)) + VREF • (RG/(RF + RG))  
Or, solving for VEXT  
:
VMORE = (VREF – VOUT) • RG/RF  
The most negative that VOUT can go is VEE + 0.04V, so:  
VEXT = VINT • (1 + RG/RF) – VREF • RG/RF  
But valid VINT voltages are limited to VCC – 1.2V and VEE +  
1V, so:  
Max VMORE = (VREF – VEE – 0.04V) • RG/RF  
(should be positive)  
MAX VEXT = (VCC – 1.2) • (1 + RG/RF) – VREF • RG/RF  
and:  
Thesituationwherethisfunctionisnegative,andtherefore  
problematic, when VREF = 0 and VEE = 0, has already been  
dealt with in Figure 1. The strength of the equation is  
MIN VEXT = (VEE + 1) • (1 + RG/RF) – VREF • RG/RF  
demonstrated in that it provides the three solutions  
1996f  
10  
LT1996  
U
W
U U  
APPLICATIO S I FOR ATIO  
suggested in Figure 1: raise VREF, lower VEE, or provide  
some negative VMORE  
representation of the circuit on the top. The LT1996 is  
shown on the bottom configured in a precision gain of 9.1.  
One of the benefits of the noninverting op amp configura-  
tion is that the input impedance is extremely high. The  
LT1996 maintains this benefit. Given the finite number of  
available feedback resistors in the LT1996, the number of  
gain configurations is also finite. The complete list of such  
Hi-Z input noninverting gain configurations is shown in  
Table 1. Many of these are also represented in Figure 5 in  
schematic form. Note that the P-side resistor inputs have  
been connected so as to match the source impedance  
seen by the internal op amp inputs. Note also that gain and  
noise gain are identical, for optimal precision.  
.
Likewise, from the lower common mode extreme, making  
the negative input more negative will raise the output  
voltage, limited by VCC – 0.04V.  
MIN VMORE = (VREF – VCC + 0.04V) • RG/RF  
(should be negative)  
Again, the additional input range calculated here is only  
available provided the other remaining constraint is not  
violated, the maximum voltage allowed on the pin.  
The Classical Noninverting Amplifier: High Input Z  
Table 1. Configuring the M Pins for Simple Noninverting Gains.  
The P Inputs are driven as shown in the examples on the next  
page  
Perhaps the most common op amp configuration is the  
noninverting amplifier. Figure 4 shows the textbook  
M81, M27, M9 Connection  
R
F
Gain  
1
M81  
Output  
M27  
M9  
Output  
Output  
R
G
1.08  
1.11  
1.30  
1.32  
1.33  
1.44  
3.19  
3.7  
Output  
Output  
Grounded  
Grounded  
Output  
+
Output  
Float  
V
OUT  
Output  
Grounded  
Output  
V
IN  
V
= GAIN • V  
GAIN = 1 + R /R  
OUT  
IN  
G
Float  
Grounded  
Float  
F
Output  
Grounded  
Grounded  
Output  
CLASSICAL NONINVERTING OP AMP CONFIGURATION.  
YOU PROVIDE THE RESISTORS.  
Output  
Grounded  
Output  
Grounded  
Float  
Grounded  
Output  
Output  
3.89  
4.21  
9.1  
Grounded  
Grounded  
Grounded  
Float  
Float  
450k/81  
450k  
4pF  
8
Output  
Grounded  
Output  
450k/27  
450k/9  
9
Float  
10  
Float  
Grounded  
Output  
10  
+
11.8  
28  
Grounded  
Float  
Grounded  
Grounded  
Grounded  
Float  
6
V
OUT  
Float  
450k/9  
450k/27  
450k/81  
1
2
3
37  
Float  
Grounded  
Float  
4pF  
82  
Grounded  
Grounded  
Grounded  
Grounded  
91  
Float  
Grounded  
Float  
450k  
109  
118  
Grounded  
Grounded  
LT1996  
5
Grounded  
V
IN  
CLASSICAL NONINVERTING OP AMP CONFIGURATION  
IMPLEMENTED WITH LT1991. R = 45k, R = 5.6k, GAIN = 9.1.  
F
G
GAIN IS ACHIEVED BY GROUNDING, FLOATING OR FEEDING BACK  
THE AVAILABLE RESISTORS TO ARRIVE AT DESIRED R AND R .  
F
G
1996 F04  
WE PROVIDE YOU WITH <0.1% RESISTORS.  
Figure 4. The LT1996 as a Classical Noninverting Op Amp  
1996f  
11  
LT1996  
U
W
U U  
APPLICATIO S I FOR ATIO  
+
+
7
+
V
S
V
V
S
S
8
9
10  
8
9
10  
8
9
10  
M81  
M27  
M9  
M81  
M27  
M9  
M81  
M27  
M9  
7
7
V
V
V
CC  
CC  
CC  
6
6
6
6
6
6
6
6
6
LT1996  
V
V
V
LT1996  
V
V
V
LT1996  
V
V
V
OUT  
REF  
5
OUT  
OUT  
OUT  
OUT  
REF  
5
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
1
2
3
1
2
3
1
2
3
REF  
5
V
P9  
P27  
P81  
P9  
P27  
P81  
P9  
P27  
P81  
IN  
V
V
V
EE  
EE  
EE  
V
V
IN  
IN  
4
4
4
V
S
V
S
V
S
GAIN = 1  
GAIN = 10  
GAIN = 3.893  
+
V
+
+
7
S
V
V
S
S
8
9
10  
8
9
10  
8
9
10  
M81  
M27  
M9  
M81  
M27  
M9  
M81  
M27  
M9  
7
7
V
V
V
CC  
CC  
CC  
LT1996  
LT1996  
LT1996  
OUT  
REF  
5
OUT  
REF  
5
1
2
3
1
2
3
1
2
3
REF  
5
P9  
P27  
P81  
P9  
P27  
P81  
P9  
P27  
P81  
V
V
V
EE  
EE  
EE  
4
4
4
V
S
V
V
S
S
V
V
V
IN  
IN  
IN  
GAIN = 28  
GAIN = 37  
GAIN = 9.1  
+
7
+
7
+
V
S
V
V
S
S
8
9
10  
8
9
10  
8
9
10  
M81  
M27  
M9  
M81  
M27  
M9  
M81  
M27  
M9  
7
V
V
V
CC  
CC  
CC  
LT1996  
LT1996  
LT1996  
OUT  
REF  
5
OUT  
REF  
5
1
2
3
1
2
3
1
2
3
REF  
P9  
P27  
P81  
P9  
P27  
P81  
P9  
P27  
P81  
5
V
V
V
EE  
EE  
EE  
V
V
IN  
IN  
4
4
4
V
S
V
V
S
S
V
IN  
GAIN = 11.8  
GAIN = 82  
GAIN = 91  
+
+
V
S
V
S
8
9
10  
8
9
10  
M81  
M27  
M9  
M81  
M27  
M9  
7
7
V
V
CC  
CC  
6
6
LT1996  
V
LT1996  
V
OUT  
OUT  
OUT  
OUT  
1
2
3
1
2
3
REF  
REF  
5
P9  
P27  
P81  
P9  
P27  
P81  
5
V
V
EE  
EE  
V
IN  
4
4
V
S
V
S
V
IN  
1996 F05  
GAIN = 109  
GAIN = 118  
Figure 5. Some Implementations of Classical Noninverting  
Gains Using the LT1996. High Input Z Is Maintained  
1996f  
12  
LT1996  
U
W
U U  
APPLICATIO S I FOR ATIO  
Table 2. Configuring the P Pins for Various Attenuations. Those  
Shown in Bold Are Functional Even When the Input Drive  
Exceeds the Supplies  
Attenuation Using the P Input Resistors  
Attenuation happens as a matter of fact in difference  
amplifier configurations, but it is also used for reducing  
peak signal level or improving input common mode range  
even in single ended systems. When signal conditioning  
indicates a need for attenuation, the LT1996 resistors are  
ready at hand. The four precision resistors can provide  
several attenuation levels, and these are tabulated in  
Table 2 as a design reference.  
P81, P27, P9, REF Connection  
A
P81  
Grounded  
Grounded  
Grounded  
Grounded  
Float  
P27  
Grounded  
Grounded  
Float  
P9  
REF  
Driven  
Driven  
Driven  
Driven  
0.0085  
0.0092  
0.0110  
0.0122  
0.0270  
0.0357  
0.0763  
0.0769  
0.0847  
0.0989  
0.1  
0.110  
0.229  
0.231  
0.237  
0.243  
0.248  
0.25  
Grounded  
Float  
Grounded  
Float  
Float  
Grounded  
Grounded  
Grounded  
Grounded  
Grounded  
Float  
Grounded  
Float  
Driven  
Driven  
Driven  
Driven  
Driven  
Driven  
Driven  
Driven  
Float  
Grounded  
Grounded  
Grounded  
Grounded  
Grounded  
Grounded  
Grounded  
Grounded  
Grounded  
Float  
Grounded  
Float  
Grounded  
Grounded  
Float  
Grounded  
Grounded  
Grounded  
Driven  
Driven  
Driven  
Float  
Driven  
Float  
Driven  
Float  
Driven  
Driven  
Driven  
Driven  
Float  
Driven  
Driven  
Driven  
Driven  
Float  
Float  
Driven  
Driven  
Driven  
Driven  
Grounded  
Float  
Driven  
V
IN  
Grounded  
Float  
V
V
INT  
450k/9  
450k/27  
450k/81  
IN  
1
2
3
Float  
Float  
R
R
OKAY UP  
+
A
TO ±60V  
Driven  
V
INT  
Driven  
Driven  
Driven  
Grounded  
Driven  
Grounded  
Grounded  
Grounded  
Driven  
Float  
Grounded  
Float  
G
V
= A • V  
IN  
INT  
A = R /(R + R )  
450k  
G
A
G
LT1996  
Driven  
5
Grounded  
Grounded  
Float  
CLASSICAL ATTENUATOR  
LT1991 ATTENUATING TO THE +INPUT BY  
DRIVING AND GROUNDING AND FLOATING  
Grounded  
Driven  
Driven  
Float  
INPUTS R = 50k, R = 50k/9, SO A = 0.1.  
A
G
1996 F06  
0.25  
Float  
Driven  
Driven  
0.257  
0.270  
0.305  
0.308  
0.314  
0.686  
0.692  
0.695  
0.730  
0.743  
0.75  
0.752  
0.757  
0.763  
0.769  
0.771  
0.890  
0.9  
0.901  
0.915  
0.923  
0.924  
0.964  
0.973  
0.988  
0.989  
0.991  
0.992  
Driven  
Float  
Figure 6. LT1996 Provides for Easy Attenuation to the Op Amp’s  
+Input. The P9 Input Can Be Taken Well Outside of the Supplies  
Grounded  
Driven  
Driven  
Driven  
Driven  
Driven  
Grounded  
Float  
Because the attenuations and the noninverting gains are  
set independently, they can be combined. This provides  
high gain resolution, about 700 unique gains between  
0.0085 and 118, as plotted in Figure 7. This is too large a  
number to tabulate, but the designer can calculate achiev-  
able gain by taking the vector product of the gains and  
attenuationsinTables1and2,andseekingthebestmatch.  
Average gain resolution is 1.5%, with worst case steps of  
about 50% as seen in Figure 7.  
Driven  
Driven  
Driven  
Grounded  
Grounded  
Grounded  
Driven  
Grounded  
Driven  
Grounded  
Driven  
Grounded  
Grounded  
Grounded  
Float  
Float  
Float  
Driven  
Driven  
Driven  
Driven  
Driven  
Float  
Grounded  
Grounded  
Grounded  
Grounded  
Float  
Grounded  
Float  
Grounded  
Driven  
Grounded  
Float  
Driven  
Grounded  
Grounded  
Float  
Driven  
Driven  
Grounded  
Float  
Driven  
Driven  
1000  
100  
10  
Driven  
Grounded  
Driven  
Grounded  
Grounded  
Grounded  
Grounded  
Float  
Driven  
Float  
Driven  
Float  
Grounded  
Grounded  
Driven  
Grounded  
Float  
1
0.1  
Driven  
0.01  
0.001  
Grounded  
Grounded  
Grounded  
Grounded  
Grounded  
Grounded  
0
100 200 300 400 500 600 700  
COUNT  
1996 F07  
Float  
Driven  
Driven  
Figure 7. Over 600 Unique Gain Settings Achievable with the  
LT1996 by Combining Attenuation with Noninverting Gain  
Driven  
1996f  
13  
LT1996  
U
W
U U  
APPLICATIO S I FOR ATIO  
Table 3. Configuring the M Pins for Simple Inverting Gains  
M81, M27, M9 Connection  
Inverting Configuration  
The inverting amplifier, shown in Figure 8, is another  
classical op amp configuration. The circuit is actually  
identical to the noninverting amplifier of Figure 4, except  
that VIN and GND have been swapped. The list of available  
gains is shown in Table 3, and some of the circuits are  
shown in Figure 9. Noise gain is 1+|Gain|, as is the usual  
caseforinvertingamplifiers. Again, forthebestDCperfor-  
mance, match the source impedance seen by the op amp  
inputs.  
Gain  
–0.083  
–0.110  
–0.297  
–0.321  
–0.329  
–0.439  
–2.19  
–2.7  
M81  
Output  
Output  
Output  
Float  
M27  
Output  
Float  
M9  
Drive  
Drive  
Output  
Drive  
Float  
Drive  
Output  
Drive  
Drive  
Output  
Drive  
Output  
Output  
Float  
Output  
Output  
Drive  
Float  
Drive  
Output  
Output  
Float  
R
F
–2.89  
–3.21  
–8.1  
Drive  
Drive  
Drive  
Float  
Drive  
Output  
Drive  
Output  
Float  
R
G
V
+
IN  
–9  
Float  
V
OUT  
–10.8  
–27  
Drive  
Float  
Drive  
Drive  
Drive  
Float  
V
= GAIN • V  
IN  
OUT  
GAIN = – R /R  
F
G
–36  
Float  
Drive  
Float  
CLASSICAL INVERTING OP AMP CONFIGURATION.  
YOU PROVIDE THE RESISTORS.  
–81  
Drive  
Drive  
Drive  
Drive  
–90  
Float  
Drive  
Float  
–108  
–117  
Drive  
Drive  
450k/81  
450k  
4pF  
Drive  
8
9
V
IN  
(DRIVE)  
450k/27  
450k/9  
10  
+
6
V
OUT  
450k/9  
450k/27  
450k/81  
1
2
3
4pF  
450k  
LT1996  
5
CLASSICAL INVERTING OP AMP CONFIGURATION IMPLEMENTED  
WITH LT1991. R = 45k, R = 5.55k, GAIN = –8.1.  
F
G
GAIN IS ACHIEVED BY GROUNDING, FLOATING OR FEEDING BACK  
THE AVAILABLE RESISTORS TO ARRIVE AT DESIRED R AND R .  
F
G
1996 F08  
WE PROVIDE YOU WITH <0.1% RESISTORS.  
Figure 8. The LT1996 as a Classical Inverting Op Amp. Note the  
Circuit Is Identical to the Noninverting Amplifier, Except that VIN  
and Ground Have Been Swapped  
1996f  
14  
LT1996  
U
W
U U  
APPLICATIO S I FOR ATIO  
+
+
+
V
S
V
V
S
S
8
9
10  
8
9
10  
8
9
10  
V
M81  
M27  
M9  
M81  
M27  
M9  
M81  
M27  
M9  
IN  
7
7
7
V
V
V
CC  
CC  
CC  
V
V
IN  
IN  
6
6
6
6
6
6
6
LT1996  
V
V
V
LT1996  
V
V
V
LT1996  
V
OUT  
REF  
5
OUT  
REF  
5
OUT  
REF  
5
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
1
2
3
1
2
3
1
2
3
P9  
P27  
P81  
P9  
P27  
P81  
P9  
P27  
P81  
V
V
V
EE  
EE  
EE  
4
4
4
V
S
V
S
V
S
GAIN = –0.321  
GAIN = –9  
GAIN = –2.89  
+
V
+
+
7
S
V
V
S
S
8
9
10  
8
9
10  
8
9
10  
M81  
M27  
M9  
M81  
M27  
M9  
M81  
M27  
M9  
V
IN  
7
7
V
IN  
V
CC  
V
CC  
V
CC  
V
IN  
6
LT1996  
LT1996  
LT1996  
V
OUT  
REF  
5
OUT  
REF  
5
OUT  
REF  
5
OUT  
1
2
3
1
2
3
1
2
3
P9  
P27  
P81  
P9  
P27  
P81  
P9  
P27  
P81  
V
V
V
EE  
EE  
EE  
4
4
4
V
S
V
S
V
S
GAIN = –27  
GAIN = –36  
GAIN = –8.1  
+
7
+
7
+
V
S
V
V
S
S
8
9
10  
8
9
10  
8
9
10  
V
V
M81  
M27  
M9  
M81  
M27  
M9  
M81  
M27  
M9  
V
IN  
IN  
IN  
7
V
CC  
V
CC  
V
CC  
6
LT1996  
LT1996  
LT1996  
V
OUT  
REF  
5
OUT  
REF  
5
OUT  
REF  
5
OUT  
1
2
3
1
2
3
1
2
3
P9  
P27  
P81  
P9  
P27  
P81  
P9  
P27  
P81  
V
V
V
EE  
EE  
EE  
4
4
4
V
S
V
V
S
S
GAIN = –10.8  
GAIN = –81  
GAIN = –90  
+
+
V
S
V
S
8
9
10  
8
9
10  
V
M81  
M27  
M9  
M81  
M27  
M9  
IN  
7
7
V
V
CC  
CC  
V
IN  
6
6
LT1996  
V
LT1996  
V
OUT  
OUT  
REF  
OUT  
OUT  
1
2
3
1
2
3
REF  
5
P9  
P27  
P81  
P9  
P27  
P81  
5
V
V
EE  
EE  
4
4
V
S
V
S
1996 F09  
GAIN = –108  
GAIN = –117  
Figure 9. It Is Simple to Get Precision Inverting Gains with the LT1996.  
Input Impedance Varies from 3.8k(Gain = –117) to 50k(Gain = –9)  
1996f  
15  
LT1996  
U
W
U U  
APPLICATIO S I FOR ATIO  
R
F
Difference Amplifiers  
The resistors in the LT1996 allow it to easily make differ-  
ence amplifiers also. Figure 10 shows the basic 4-resistor  
difference amplifier and the LT1996. A difference gain of  
27 is shown, but notice the effect of the additional dashed  
connections. By connecting the 50k resistors in parallel,  
the gain is reduced by a factor of 10. Of course, with so  
many resistors, there are many possible gains. Table 4  
shows the difference gains and how they are achieved.  
Note that, as for inverting amplifiers, the noise gain is 1  
more than the signal gain.  
R
R
G
G
+
V
V
+
IN  
IN  
V
OUT  
V
= GAIN • (V + – V  
IN  
)
IN  
OUT  
GAIN = R /R  
R
F
G
F
CLASSICAL DIFFERENCE AMPLIFIER USING THE LT1991  
450k/81  
450k  
4pF  
8
Table 4. Connections Giving Difference Gains for the LT1996  
450k/27  
450k/9  
9
+
V
Gain  
0.083  
0.110  
0.297  
0.321  
0.329  
0.439  
2.189  
2.700  
2.893  
3.214  
8.1  
V
V
Output  
M27, M81  
M81  
GND (REF)  
P27, P81  
P81  
IN  
IN  
IN  
P9  
P9  
M9  
M9  
10  
+
PARALLEL  
TO CHANGE  
R , R  
G
6
5
V
OUT  
450k/9  
450k/27  
450k/81  
1
2
3
P27  
M27  
M9, M81  
M27  
P9, P81  
P27  
F
P9  
M9  
4pF  
+
V
IN  
P27  
M27  
M81  
P81  
P9, P27  
P81  
M9, M27  
M81  
M81  
P81  
450k  
M9, M27  
M9  
P9, P27  
P9  
LT1996  
P27  
M27  
P81  
M81  
M27  
P27  
CLASSICAL DIFFERENCE AMPLIFIER IMPLEMENTED  
WITH LT1991. R = 450k, R = 16.7k, GAIN = 3.  
F
G
P9, P81  
P81  
M9, M81  
M81  
M27  
P27  
ADDING THE DASHED CONNECTIONS CONNECTS THE  
M9  
P9  
TWO 450k RESISTOR IN PARALLEL, SO R IS REDUCED  
F
TO 45k. GAIN BECOMES 45k/16.7k = 2.7.  
1996 F10  
9
P9  
M9  
10.8  
27  
P27, P81  
P27  
M27, M81  
M27  
M9  
P9  
Figure 10. Difference Amplifier Using the LT1996. Gain Is Set  
Simply by Connecting the Correct Resistors or Combinations of  
Resistors. Gain of 27 Is Shown, with Dashed Lines Modifying It  
to Gain of 2.7. Noise Gain Is Optimal  
36  
P9, P27  
P81  
M9, M27  
M81  
81  
90  
P9, P81  
P27, P81  
M9, M81  
M27, M81  
108  
117  
P9, P27, P81 M9, M27, M81  
1996f  
16  
LT1996  
U
W
U U  
APPLICATIO S I FOR ATIO  
+
+
7
+
V
S
V
V
S
S
8
9
10  
8
8
9
10  
V
V
M81  
M27  
M9  
M81  
9
M81  
M27  
M9  
IN  
IN  
7
7
M27  
V
V
V
CC  
CC  
CC  
10  
+
+
V
V
V
V
M9  
IN  
IN  
IN  
6
6
6
6
6
6
6
LT1996  
V
V
V
LT1996  
V
V
V
LT1996  
V
OUT  
REF  
5
OUT  
REF  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
1
2
3
1
2
3
1
2
3
REF  
P9  
P27  
P81  
P9  
P27  
P81  
P9  
P27  
P81  
IN  
5
5
V
V
V
EE  
EE  
EE  
+
4
4
4
V
V
S
S
V
S
GAIN = 0.321  
GAIN = 9  
GAIN = 2.89  
+
V
+
+
7
S
V
V
S
S
8
9
10  
8
9
10  
8
9
10  
V
M81  
M27  
M9  
M81  
M27  
M9  
M81  
M27  
M9  
IN  
7
7
+
+
V
V
V
V
IN  
IN  
IN  
IN  
V
V
V
CC  
CC  
CC  
6
LT1996  
LT1996  
LT1996  
V
OUT  
REF  
5
OUT  
OUT  
1
2
3
1
2
3
1
2
3
REF  
REF  
P9  
P27  
P81  
P9  
P27  
P81  
P9  
P27  
P81  
5
5
V
V
V
EE  
EE  
EE  
+
V
IN  
4
4
4
V
V
S
S
V
S
GAIN = 27  
GAIN = 36  
GAIN = 8.1  
+
7
+
7
+
V
S
V
V
S
S
8
9
10  
8
9
10  
8
9
10  
V
V
V
V
V
V
IN  
IN  
IN  
IN  
IN  
IN  
M81  
M27  
M9  
M81  
M27  
M9  
M81  
M27  
M9  
7
V
V
V
CC  
CC  
CC  
6
LT1996  
LT1996  
LT1996  
V
OUT  
REF  
5
OUT  
OUT  
1
2
3
1
2
3
1
2
3
REF  
REF  
P9  
P27  
P81  
P9  
P27  
P81  
P9  
P27  
P81  
5
5
V
V
V
EE  
EE  
EE  
+
+
+
4
4
4
V
V
V
S
S
S
GAIN = 10.8  
GAIN = 81  
GAIN = 90  
+
+
V
V
S
S
8
9
10  
8
9
10  
V
V
IN  
M81  
M27  
M9  
IN  
M81  
M27  
M9  
7
7
V
V
CC  
CC  
6
6
LT1996  
V
LT1996  
V
OUT  
OUT  
REF  
OUT  
REF  
OUT  
1
2
3
1
2
3
P9  
P27  
P81  
P9  
P27  
P81  
5
5
V
V
EE  
EE  
+
+
V
V
IN  
IN  
4
4
V
S
V
S
1996 F11  
GAIN = 108  
GAIN = 117  
Figure 11. Many Difference Gains Are Achievable Just by Strapping the Pins  
1996f  
17  
LT1996  
U
W U U  
APPLICATIO S I FOR ATIO  
450k/81  
450k  
4pF  
8
450k/27  
450k/9  
9
V
IN  
R
F
10  
+
CROSS-  
6
5
V
OUT  
COUPLING  
R
R
450k/9  
450k/27  
450k/81  
G
1
2
3
+
V
V
+
IN  
4pF  
V
OUT  
+
G
V
IN  
IN  
V
= GAIN • (V + – V  
)
OUT  
GAIN = R /R  
IN IN  
450k  
R
F
F
G
LT1996  
CLASSICAL DIFFERENCE AMPLIFIER IMPLEMENTED  
WITH LT1991. R = 450k, R = 16.7k, GAIN = 27.  
CLASSICAL DIFFERENCE AMPLIFIER  
F
G
GAIN CAN BE ADJUSTED BY "CROSS COUPLING." MAKING THE  
DASHED CONNECTIONS REDUCE THE GAIN FROM 3 T0 2.  
WHEN CROSS COUPLING, SEE WHAT IS CONNECTED TO THE  
V
IN  
+ VOLTAGE. CONNECTING P27 AND M9 GIVES 27 – 9 = 18.  
CONNECTIONS TO V ARE SYMMETRIC: M27 AND P9.  
1996 F10  
IN  
Figure 12. Another Method of Selecting Difference Gain Is “Cross-Coupling.”  
The Additional Method Means the LT1996 Provides Extra Integer Gains  
+
7
V
+
V
S
S
Difference Amplifier: Additional Integer Gains Using  
Cross-Coupling  
8
9
10  
8
9
10  
M81  
M27  
M9  
V
M81  
M27  
M9  
IN  
7
V
V
IN  
V
V
CC  
CC  
6
6
Figure 12 shows the basic difference amplifier as well as  
the LT1996 in a difference gain of 27. But notice the effect  
oftheadditionaldashedconnections. Thisisreferredtoas  
“cross-coupling” and has the effect of reducing the differ-  
ential gain from 27 to 18. Using this method, additional  
integer gains are achievable, as shown in Table 5 below.  
Note that the equations can be written by inspection from  
the VIN+ connections, and that the VINconnections are  
simply the opposite (swap P for M and M for P). The  
method is the same as for the LT1991, except that the  
LT1996 applies a multiplier of 9. Noise gain, bandwidth,  
and input impedance specifications for the various cases  
are also tabulated, as these are not obvious. Schematics  
are provided in Figure 13.  
LT1996  
V
OUT  
LT1996  
V
OUT  
OUT  
REF  
OUT  
REF  
1
2
3
1
2
3
P9  
P27  
P81  
P9  
P27  
P81  
+
5
5
IN  
V
V
V
EE  
EE  
+
V
IN  
4
4
V
S
S
GAIN = 18  
GAIN = 54  
+
V
+
V
S
S
8
9
10  
8
9
10  
V
IN  
V
IN  
M81  
M27  
M9  
M81  
M27  
M9  
7
7
V
V
CC  
CC  
6
6
LT1996  
V
OUT  
LT1996  
OUT  
REF  
OUT  
REF  
1
2
3
1
2
3
P9  
P27  
P81  
P9  
P27  
P81  
5
5
V
EE  
V
V
EE  
+
V
IN  
+
4
V
IN  
4
V
S
S
GAIN = 45  
GAIN = 63  
+
7
+
V
S
V
S
8
9
10  
8
9
10  
V
V
IN  
IN  
M81  
M27  
M9  
M81  
M27  
M9  
7
V
CC  
V
CC  
Table 5. Connections Using Cross-Coupling. Note That Equations  
6
6
Can Be Written by Inspection of the VIN+ Column  
LT1996  
V
LT1996  
V
OUT  
OUT  
OUT  
OUT  
1
2
3
1
2
3
REF  
REF  
P9  
P27  
P81  
P9  
P27  
P81  
+
5
5
V
EE  
V
EE  
Gain Noise –3dB BW  
Equation Gain kHz Typ kTyp kΩ  
27 – 9 39  
R
R
IN  
IN  
+
+
V
V
IN  
IN  
+
4
4
Gain  
V
V
IN  
IN  
V
V
S
S
18  
P27, M9  
M27, P9  
14  
5
46  
12  
16  
16  
45  
45  
16  
6
1996 F13  
GAIN = 99  
GAIN = 72  
45 P81, M27, M9 M81, P27, P9 81 – 27 – 9 117  
54 P81, M27 M81, P27 81 – 27 108  
63 P81, P9, M27 M81, M9, P27 81 + 9 – 27 117  
72 P81, M9 M81, P9 81 – 9 90  
5
6
Figure 13. Integer Gain Difference  
Amplifiers Using Cross-Coupling  
5
5
6
6
99 P81, P27, M9 M81, M27, P9 81 + 27 – 9 117  
5
4
1996f  
18  
LT1996  
U
W U U  
APPLICATIO S I FOR ATIO  
Table 6. HighV CM Connections Giving Difference Gains  
for the LT1996  
High Voltage CM Difference Amplifiers  
This class of difference amplifier remains to be discussed.  
Figure 14 shows the basic circuit on the top. The effective  
input voltage range of the circuit is extended by the fact  
that resistors RT attenuate the common mode voltage  
seen by the op amp inputs. For the LT1996, the most  
useful resistors for RG are the M9 and P9 50kresistors,  
becausetheydonothavediodeclampstothesuppliesand  
therefore can be taken outside the supplies. As before, the  
input CM of the op amp is the limiting factor and is set by  
the voltage at the op amp +input, VINT. By superposition  
we can write:  
Max, Min V  
EXT  
Noise  
Gain  
(Substitute V – 1.2,  
CC  
+
Gain  
V
IN  
V
R
V
EE  
+ 1 for V  
)
IN  
T
LIM  
9
9
9
9
P9  
P9  
P9  
P9  
M9  
10  
10/9 • V - V /9  
LIM REF  
M9 P27, M27 37  
M9 P81, M81 91  
37/9 • V – V /9 – 3 • V  
LIM REF  
TERM  
91/9 • V – V /9 – 9 • V  
LIM  
REF  
TERM  
M9  
P27||P81 118 118/9 • V – V /9 – 12 • V  
LIM REF TERM  
M27||M81  
R
F
V
CC  
R
G
VINT = VEXT • (RF||RT)/(RG + RF||RT) + VREF • (RG||RT)/  
(RF + RG||RT) + VTERM • (RF||RG)/(RT + RF||RG)  
+
V
+
IN  
V
OUT  
R
G
V
EXT  
IN  
Solving for VEXT  
:
(= V  
)
V
= GAIN • (V + – V  
)
OUT  
GAIN = R /R  
IN IN  
F
G
V
EE  
R
T
R
T
VEXT = (1 + RG/(RF||RT)) • (VINT – VREF • (RG||RT)/  
(RF + RG||RT) – VTERM • (RF||RG)/(RT + RF||RG))  
R
F
V
REF  
V
TERM  
Given the values of the resistors in the LT1996, this  
equation has been simplified and evaluated, and the re-  
sulting equations provided in Table 6. As before, substi-  
tuting VCC – 1.2 and VEE + 1 for VLIM will give the valid  
upper and lower common mode extremes respectively.  
Following are sample calculations for the case shown in  
Figure 14, right-hand side. Note that P81 and M81 are  
terminated so row 3 of Table 6 provides the equation:  
HIGH CM VOLTAGE DIFFERENCE AMPLIFIER  
INPUT CM TO OP AMP IS ATTENUATED BY  
RESISTORS R CONNECTED TO V  
T
TERM.  
12V  
7
10V  
450k/81  
450k  
8
4pF  
450k/27  
450k/9  
9
10  
MAX VEXT = 91/9 • (VCC – 1.2V) – VREF/9 – 9 • VTERM  
+
6
5
V
OUT  
= (10.11) • (10.8) – 0.11(2.5) – 9(10) =  
18.9V  
450k/9  
450k/27  
450k/81  
1
2
3
+
4pF  
V
IN  
V
IN  
and:  
INPUT CM RANGE  
= –60V TO 18.9V  
450k  
REF  
MIN VEXT = 91/9 • (VEE + 1V) – VREF/9 – 9 • VTERM  
= (10.11)(1) – 0.11(2.5) – 9(10) = –80.2V  
2.5V  
LT1996  
4
but this exceeds the 60V absolute maximum rating of the  
P9, M9 pins, so –60V becomes the de facto negative  
common mode limit. Several more examples of high CM  
circuits are shown in Figures 15, 16, 17 for various  
supplies.  
HIGH NEGATIVE CM VOLTAGE DIFFERENCE AMPLIFIER  
IMPLEMENTED WITH LT1996.  
R
= 450k, R = 50k, R 5.55k, GAIN = 9  
F
G T  
1996 F14  
V
TERM  
= 10V = V = 12V, V  
CC REF  
= 2.5V, V = 0V.  
EE  
Figure 14. Extending CM Input Range  
1996f  
19  
LT1996  
U
W U U  
APPLICATIO S I FOR ATIO  
3V  
3V  
3V  
8
9
10  
8
9
10  
8
9
10  
M81  
M27  
M9  
M81  
M27  
M9  
M81  
M27  
M9  
7
7
7
V
V
V
CC  
CC  
CC  
+
+
+
V
V
V
V
V
V
IN  
IN  
IN  
IN  
IN  
IN  
6
6
6
LT1996  
V
LT1996  
V
LT1996  
V
OUT  
OUT  
REF  
OUT  
REF  
OUT  
REF  
OUT  
OUT  
1
2
3
1
2
3
1
2
3
P9  
P27  
P81  
P9  
P27  
P81  
P9  
P27  
P81  
5
5
5
V
V
V
EE  
EE  
EE  
1.25V  
4
4
4
3V  
V
= 0.97V TO 1.86V  
V
= 1.11V TO 2V  
DM  
V
= –.78V TO 1.67V  
CM  
CM  
CM  
V
> 45mV  
V
<–45mV  
DM  
3V  
3V  
7
3V  
7
3V  
7
8
9
8
9
10  
8
9
10  
M81  
M27  
M9  
M81  
M27  
M9  
M81  
M27  
M9  
V
CC  
V
V
CC  
CC  
10  
V
V
V
V
V
V
IN  
IN  
IN  
IN  
IN  
IN  
6
6
6
LT1996  
V
LT1996  
V
OUT  
V
OUT  
V
OUT  
LT1996  
V
OUT  
OUT  
REF  
OUT  
REF  
OUT  
REF  
OUT  
OUT  
OUT  
1
2
3
1
2
3
1
2
3
+
+
+
P9  
P27  
P81  
P9  
P27  
P81  
P9  
P27  
P81  
5
5
5
V
V
V
EE  
EE  
EE  
1.25V  
1.25V  
1.25V  
4
4
4
1.25V  
V
= 0.22V TO 3.5V  
V
= 4V TO 7.26V  
V = –5V TO –1.74V  
CM  
CM  
CM  
3V  
3V  
7
3V  
7
3V  
7
8
9
8
9
10  
8
9
10  
M81  
M27  
M9  
M81  
M27  
M9  
M81  
M27  
M9  
V
V
CC  
V
CC  
CC  
10  
+
+
+
V
V
V
V
V
V
IN  
IN  
IN  
IN  
IN  
IN  
6
6
6
LT1996  
V
LT1996  
LT1996  
V
OUT  
OUT  
REF  
OUT  
REF  
OUT  
REF  
1
2
3
1
2
3
1
2
3
P9  
P27  
P81  
P9  
P27  
P81  
P9  
P27  
P81  
5
5
5
V
V
V
EE  
EE  
EE  
1.25V  
1.25V  
1.25V  
4
4
4
1.25V  
V
= –1.28V TO 6.8V  
V
= 9.97V TO 18V  
V = –17V TO –8.9V  
CM  
CM  
CM  
3V  
3V  
7
3V  
7
3V  
7
8
9
8
9
10  
8
9
10  
M81  
M27  
M9  
M81  
M27  
M9  
M81  
M27  
M9  
V
V
CC  
V
CC  
CC  
10  
+
V
V
V
IN  
IN  
IN  
IN  
IN  
6
6
6
LT1996  
V
LT1996  
LT1996  
V
OUT  
OUT  
REF  
OUT  
REF  
OUT  
REF  
1
2
3
1
2
3
1
2
3
+
+
V
V
V
IN  
P9  
P27  
P81  
P9  
P27  
P81  
P9  
P27  
P81  
5
5
5
V
V
V
EE  
EE  
EE  
1.25V  
1.25V  
1.25V  
4
4
4
1.25V  
V
= –2V TO 8.46V  
V
= 12.9V TO 23.4V  
V
= –23V TO –12.5V  
CM  
CM  
CM  
1996 F15  
Figure 15. Common Mode Ranges for Various LT1996 Difference Amp Configurations on VS = 3V, 0V, with Gain = 9  
1996f  
20  
LT1996  
U
W U U  
APPLICATIO S I FOR ATIO  
5V  
5V  
5V  
8
9
10  
8
9
10  
8
9
10  
M81  
M27  
M9  
M81  
M27  
M9  
M81  
M27  
M9  
7
7
7
V
V
V
CC  
CC  
CC  
+
+
+
V
V
V
V
V
V
IN  
IN  
IN  
IN  
IN  
IN  
6
6
6
6
6
6
6
6
6
LT1996  
V
LT1996  
V
LT1996  
V
OUT  
OUT  
REF  
OUT  
REF  
OUT  
REF  
OUT  
OUT  
1
2
3
1
2
3
1
2
3
P9  
P27  
P81  
P9  
P27  
P81  
P9  
P27  
P81  
5
5
5
V
V
V
EE  
EE  
EE  
2.5V  
4
4
4
5V  
V
= –0.83V TO 3.9V  
V
= 1.1V TO 4.2V  
V
= –0.56V TO 3.7V  
CM  
CM  
CM  
V
> 5mV  
V
<–5mV  
DM  
DM  
5V  
5V  
7
5V  
5V  
7
8
9
10  
8
9
10  
8
9
10  
M81  
M27  
M9  
M81  
M27  
M9  
M81  
M27  
M9  
7
V
V
V
CC  
CC  
CC  
V
V
V
V
V
V
IN  
IN  
IN  
IN  
IN  
IN  
6
6
6
LT1996  
V
LT1996  
V
OUT  
V
OUT  
V
OUT  
LT1996  
V
OUT  
OUT  
REF  
OUT  
REF  
OUT  
REF  
OUT  
OUT  
OUT  
1
2
3
1
2
3
1
2
3
+
+
+
P9  
P27  
P81  
P9  
P27  
P81  
P9  
P27  
P81  
5
5
5
V
V
V
EE  
EE  
EE  
2.5V  
2.5V  
2.5V  
4
4
4
2.5V  
V
= –3.7V TO 7.8V  
V
= 3.8V TO 15.3V  
V = –11.7V TO 0.3V  
CM  
CM  
CM  
5V  
5V  
7
5V  
7
5V  
7
8
9
10  
8
9
10  
8
9
10  
M81  
M27  
M9  
M81  
M27  
M9  
M81  
M27  
M9  
V
V
V
CC  
CC  
CC  
+
+
+
V
V
V
V
V
V
IN  
IN  
IN  
IN  
IN  
IN  
LT1996  
V
LT1996  
LT1996  
V
OUT  
OUT  
REF  
OUT  
REF  
OUT  
REF  
1
2
3
1
2
3
1
2
3
P9  
P27  
P81  
P9  
P27  
P81  
P9  
P27  
P81  
5
5
5
V
V
V
EE  
EE  
EE  
2.5V  
2.5V  
2.5V  
4
4
4
2.5V  
V
= –12.6V TO 15.6V  
V
= 9.8V TO 38.1V  
V = –35.1V TO –6.8V  
CM  
CM  
CM  
5V  
5V  
7
5V  
7
5V  
7
8
9
10  
8
9
10  
8
9
10  
M81  
M27  
M9  
M81  
M27  
M9  
M81  
M27  
M9  
V
V
V
CC  
CC  
CC  
+
+
V
V
V
IN  
IN  
IN  
IN  
IN  
IN  
LT1996  
V
LT1996  
LT1996  
V
OUT  
OUT  
REF  
OUT  
REF  
OUT  
REF  
1
2
3
1
2
3
1
2
3
+
V
V
V
P9  
P27  
P81  
P9  
P27  
P81  
P9  
P27  
P81  
5
5
5
V
V
V
EE  
EE  
EE  
2.5V  
2.5V  
2.5V  
4
4
4
2.5V  
V
= –17.1V TO 19.5V  
V
= 12.8V TO 49.5V  
V
= –47.2V TO –10.5V  
CM  
CM  
CM  
1996 F16  
Figure 16. Common Mode Ranges for Various LT1996 Difference Amp Configurations on VS = 5V, 0V, with Gain = 9  
1996f  
21  
LT1996  
U
W U U  
APPLICATIO S I FOR ATIO  
5V  
5V  
5V  
8
9
10  
8
9
10  
8
9
10  
M81  
M27  
M9  
M81  
M27  
M9  
M81  
M27  
M9  
7
7
7
V
V
V
CC  
CC  
CC  
+
+
+
V
V
V
V
V
V
IN  
IN  
IN  
IN  
IN  
IN  
6
6
6
6
6
6
6
6
6
6
6
6
LT1996  
V
LT1996  
V
LT1996  
V
OUT  
OUT  
REF  
OUT  
REF  
OUT  
REF  
OUT  
OUT  
1
2
3
1
2
3
1
2
3
P9  
P27  
P81  
P9  
P27  
P81  
P9  
P27  
P81  
5
5
5
V
V
V
EE  
EE  
EE  
4
4
4
5V  
–5V  
–5V  
–5V  
= –5V TO 3.7V  
–5V  
V
= –4.4V TO 4.2V  
V
V
= –3.9V TO 4.8V  
<–5mV  
DM  
CM  
CM  
CM  
V
> 5mV  
V
DM  
5V  
5V  
7
5V  
5V  
7
8
9
10  
8
9
10  
8
9
10  
M81  
M27  
M9  
M81  
M27  
M9  
M81  
M27  
M9  
7
V
V
V
CC  
CC  
CC  
+
V
V
V
V
V
V
IN  
IN  
IN  
IN  
IN  
IN  
LT1996  
V
LT1996  
V
OUT  
V
OUT  
V
OUT  
LT1996  
V
OUT  
OUT  
REF  
OUT  
REF  
OUT  
REF  
OUT  
OUT  
OUT  
1
2
3
1
2
3
1
2
3
+
+
P9  
P27  
P81  
P9  
P27  
P81  
P9  
P27  
P81  
5
5
5
V
V
V
EE  
EE  
EE  
4
4
4
2.5V  
–5V  
–5V  
–5V  
V
= –23.9V TO 8.1V  
V
= –16.4V TO 15.6V  
V = –31.4V TO 0.6V  
CM  
CM  
CM  
5V  
5V  
7
5V  
7
5V  
7
8
9
10  
8
9
10  
8
9
10  
M81  
M27  
M9  
M81  
M27  
M9  
M81  
M27  
M9  
V
V
V
CC  
CC  
CC  
+
+
+
V
V
V
V
V
V
IN  
IN  
IN  
IN  
IN  
IN  
LT1996  
V
LT1996  
LT1996  
V
OUT  
OUT  
REF  
OUT  
REF  
OUT  
REF  
1
2
3
1
2
3
1
2
3
P9  
P27  
P81  
P9  
P27  
P81  
P9  
P27  
P81  
5
5
5
V
V
V
EE  
EE  
EE  
4
4
4
–5V  
–5V  
–5V  
–5V  
V
= –40.4V TO 38.4V  
V
= 4.6V TO 60V  
V = –60V TO –10.2V  
CM  
CM  
CM  
5V  
5V  
7
5V  
7
5V  
7
8
9
10  
8
9
10  
8
9
10  
M81  
M27  
M9  
M81  
M27  
M9  
M81  
M27  
M9  
V
V
V
CC  
CC  
CC  
+
+
V
V
V
IN  
IN  
IN  
IN  
IN  
IN  
LT1996  
V
LT1996  
LT1996  
V
OUT  
OUT  
REF  
OUT  
REF  
OUT  
REF  
1
2
3
1
2
3
1
2
3
+
V
V
V
P9  
P27  
P81  
P9  
P27  
P81  
P9  
P27  
P81  
5
5
5
V
V
V
EE  
EE  
EE  
4
4
4
–5V  
–5V  
= 7.6V TO 60V  
–5V  
= –52.4V TO 49.8V  
–5V  
= –60V TO –10.2V  
V
V
V
CM  
CM  
CM  
1996 F17  
Figure 17. Common Mode Ranges for Various LT1996 Difference Amp Configurations on VS = ±5V, with Gain = 9  
1996f  
22  
LT1996  
U
PACKAGE DESCRIPTIO  
DD Package  
10-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1699)  
R = 0.115  
TYP  
6
0.38 ± 0.10  
10  
0.675 ±0.05  
3.50 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
PACKAGE  
OUTLINE  
(DD10) DFN 1103  
5
1
0.25 ± 0.05  
0.50 BSC  
0.75 ±0.05  
0.200 REF  
0.25 ± 0.05  
0.50  
BSC  
2.38 ±0.10  
(2 SIDES)  
2.38 ±0.05  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-2).  
CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.889 ± 0.127  
(.035 ± .005)  
0.497 ± 0.076  
(.0196 ± .003)  
10 9  
8
7 6  
REF  
5.23  
(.206)  
MIN  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 4)  
3.20 – 3.45  
(.126 – .136)  
4.90 ± 0.152  
(.193 ± .006)  
DETAIL “A”  
0° – 6° TYP  
0.254  
(.010)  
GAUGE PLANE  
0.50  
(.0197)  
BSC  
0.305 ± 0.038  
(.0120 ± .0015)  
TYP  
1
2
3
4 5  
0.53 ± 0.152  
(.021 ± .006)  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
RECOMMENDED SOLDER PAD LAYOUT  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
NOTE:  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.127 ± 0.076  
(.005 ± .003)  
MSOP (MS) 0603  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
0.50  
(.0197)  
BSC  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
1996f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
23  
LT1996  
U
TYPICAL APPLICATIO  
Micropower AV = 90 Instrumentation Amplifier  
V
OUT  
10  
9
8
7
6
450k  
450k/81  
+
V
M
4pF  
450k/27  
450k/9  
1/2 LT6011  
+
450k/9  
+
LT1996  
450k  
V
P
450k/27  
1/2 LT6011  
450k/81  
4pF  
1
2
3
4
5
1996 TA02  
Bidirectional Controlled Current Source  
AC Coupled Amplifier  
Differential Input/Output G = 9 Amplifier  
+
V
+
V
+
V
S
S
S
8
9
10  
8
9
10  
8
9
10  
M81  
M27  
M9  
M81  
M27  
M9  
M81  
M27  
M9  
7
7
7
+
V
V
V
IN  
IN  
IN  
6
6
6
+
LT1996  
LT1996  
V
LT1996  
V
OUT  
OUT  
1
2
3
1
2
3
1
2
3
+
V
R1  
IN  
P9  
P27  
P81  
P9  
P27  
P81  
5
5
P9  
P27  
P81  
5
V
OCM  
0.1µF  
10k  
10k  
10k  
V
IN  
4
4
4
LT6010  
+ –  
)
9(V  
V
IN  
10k  
IN  
I
=
LOAD  
V
V
V
S
S
S
GAIN = 117  
BW = 4Hz TO 5kHz  
USE V  
TO SET THE DESIRED  
OCM  
OUTPUT COMMON MODE LEVEL  
V
OUT  
1996 TA03  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1990  
High Voltage Difference Amplifier  
±250V Input Common Mode, Micropower, Pin Selectable Gain = 1, 10  
Gain Resistors of 450k, 150k, 50k  
LT1991  
Precision, 100µA Gain Selectable Amplifier  
30MHz, 1000V/µs Gain Selectable Amplifier  
Single/Dual/Quad Precision Op Amp  
LT1995  
High Speed, Pin Selectable Gain = –7 to 8  
LT6010/LT6011/LT6012  
Similar Performance as LT1996 Diff Amp, 135µA, 14nVHz,  
Rail-to-Rail Out  
LT6013/LT6014  
LTC6910-X  
Single/Dual Precision Op Amp  
Programmable Gain Amplifiers  
Lower Noise A 5 Version of LT1991, 145µA, 8nV/Hz,  
Rail-to-Rail Out  
V
3 Gain Configurations, Rail-to-Rail Input and Output  
1996f  
LT/TP 0205 1K • PRINTED IN USA  
24 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
©LINEAR TECHNOLOGY CORPORATION 2005  

相关型号:

LBPP0.1160J10

CAPACITORS BOX POLYPROPYLENE LBPP
DUBILIER

LBPP0.1160J15

CAPACITORS BOX POLYPROPYLENE LBPP
DUBILIER

LBPP0.1160J22.5

CAPACITORS BOX POLYPROPYLENE LBPP
DUBILIER

LBPP0.1160J27.5

CAPACITORS BOX POLYPROPYLENE LBPP
DUBILIER

LBPP0.1160J37.5

CAPACITORS BOX POLYPROPYLENE LBPP
DUBILIER

LBPP0.1160J7.5

CAPACITORS BOX POLYPROPYLENE LBPP
DUBILIER

LBPP0.1160K10

CAPACITORS BOX POLYPROPYLENE LBPP
DUBILIER

LBPP0.1160K15

CAPACITORS BOX POLYPROPYLENE LBPP
DUBILIER

LBPP0.1160K22.5

CAPACITORS BOX POLYPROPYLENE LBPP
DUBILIER

LBPP0.1160K27.5

CAPACITORS BOX POLYPROPYLENE LBPP
DUBILIER

LBPP0.1160K37.5

CAPACITORS BOX POLYPROPYLENE LBPP
DUBILIER

LBPP0.1160K7.5

CAPACITORS BOX POLYPROPYLENE LBPP
DUBILIER