LCLK [Linear]

Photofl ash Chargers with Adjustable Input Current and IGBT Drivers; Photofl灰充电器,可调节输入电流和IGBT驱动器
LCLK
型号: LCLK
厂家: Linear    Linear
描述:

Photofl ash Chargers with Adjustable Input Current and IGBT Drivers
Photofl灰充电器,可调节输入电流和IGBT驱动器

驱动器 双极性晶体管
文件: 总20页 (文件大小:416K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3585-0/LT3585-1  
LT3585-2/LT3585-3  
Photoflash Chargers with  
Adjustable Input Current  
and IGBT Drivers  
U
DESCRIPTIO  
FEATURES  
The LT®3585 series are highly integrated ICs designed to  
charge photoflash capacitors in digital and film cameras.  
A new control technique allows for the use of extremely  
small transformers. Each part contains an on-chip high  
voltage NPN power switch. Output voltage detection is  
completely contained within the part, eliminating the need  
for any discrete zener diodes or resistors. The output volt-  
age can be adjusted by simply changing the turns ratio  
of the transformer.  
Adjustable Input Current  
Integrated IGBT Driver  
No Output Voltage Divider Needed  
Uses Small Transformers: 5.8mm × 5.8mm × 3mm  
Fast Photoflash Charge Times  
Charges Any Size Photoflash Capacitor  
Supports Operation from Single Li-Ion Cell, Two AA  
Cells or any Supply from 1.5V Up to 16V  
Small 10-Lead (3mm × 2mm) DFN Package  
Fast Charge Time  
The CHRG/IADJ pin gives full control of the part to the  
user. Driving CHRG/IADJ low puts the part in low power  
shutdown. The CHRG/IADJ pin can also be used to reduce  
theinputcurrentofthecharger,usefulinextendingbattery  
life. The DONE pin indicates when the part has completed  
charging.  
NORMAL MODE REDUCED MODE  
INPUT  
CHARGE TIME  
(Sec)  
CHARGE TIME  
(Sec)  
VERSION  
LT3585-3  
LT3585-0  
LT3585-2  
LT3585-1*  
CURRENT (mA)  
800/400  
550/275  
400/200  
250/115  
3.3  
4.6  
5.8  
5.0  
6.6  
9.2  
12.6  
14.6  
The LT3585 series of parts are housed in tiny 3mm ×  
2mm DFN packages.  
100µF capacitor, 320V, V = V = 3.6V  
IN  
BAT  
*50µF capacitor, 320V, V = V = 3.6V  
IN  
BAT  
U
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
APPLICATIO S  
Digital/Film Camera Flash  
PDA/Cell Phone Flash  
Emergency Strobe  
U
TYPICAL APPLICATIO  
LT3585-1 Photoflash Charger Uses High Efficiency  
2mm Tall Transformers with Tunable IGBT Gate Drive  
LT3585-1 Charging Waveform  
Normal Input Current Mode  
DANGER HIGH VOLTAGE! OPERATION BY HIGH VOLTAGE TRAINED PERSONNEL ONLY  
V
BAT  
1:10:2  
320V  
2 AA OR  
1
2
4
5
1 TO 2 Li-Ion  
4.7µF  
1M  
+
50µF  
PHOTOFLASH  
CAPACITOR  
2.2µF  
600V  
A
V
OUT  
V
SW  
GND  
50V/DIV  
BAT  
TRIGGER T  
FLASHLAMP  
C
DONE  
1
3
2
CHRG/IADJ  
LT3585-1  
V
IN  
5V  
V
IN  
0.22µF  
I
IGBTPWR  
IGBTIN  
IN  
500mA/DIV  
IGBTPU  
IGBTPD  
3585 TA01b  
TO GATE OF IGBT  
V
C
= 3.6V  
= 50µF  
1sec/DIV  
BAT  
OUT  
20TO  
160Ω  
3585 TA01a  
3585f  
1
LT3585-0/LT3585-1  
LT3585-2/LT3585-3  
W W U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
TOP VIEW  
V Voltage................................................................16V  
BATT  
IN  
V
Voltage............................................................16V  
1
2
3
4
5
10  
9
IGBTIN  
IGBTPWR  
GND  
IGBTPU  
IGBTPD  
SW  
SW Voltage ...............................................................60V  
SW Pin Negative Current...........................................–1A  
CHRG/IADJ Voltage...................................................10V  
IGBTPWR Voltage.....................................................10V  
IGBTIN Voltage .........................................................10V  
IGBTPU Voltage ........................................................10V  
IGBTPD Voltage ........................................................10V  
DONE Voltage ...........................................................10V  
Current Into DONE Pin............................... 0.2mA/–1mA  
Maximum Junction Temperature .......................... 125°C  
Operating Temperature Range (Note 2) ... –40°C to 85°C  
Storage Temperature Range................... –65°C to 125°C  
11  
8
7
V
CHRG/IADJ  
DONE  
IN  
6
V
BAT  
DDB PACKAGE  
10-LEAD (3mm × 2mm) PLASTIC DFN  
= 125°C, θ = 76°C/W  
T
JMAX  
JA  
EXPOSED PAD (PIN 11) IS GND, MUST BE SOLDERED TO PCB  
ORDER PART NUMBER  
LT3585EDDB-0  
DDB PART MARKING  
LCLK  
LT3585EDDB-1  
LT3585EDDB-2  
LT3585EDDB-3  
LCLJ  
LCLH  
LCFX  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS The  
denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. V = V = V = 3V unless otherwise noted (Note 2). Specifications  
CHRG  
A
IN  
BAT  
are for the LT3585-0, LT3585-1, LT3585-2, LT3585-3 unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Quiescent Current  
V
CHRG  
V
CHRG  
= 3V, Not Switching  
= 0V, In Shutdown  
5
0
8
1
mA  
µA  
V
V
Voltage Range  
2.5  
1.5  
16  
16  
V
V
IN  
Voltage Range  
BAT  
Switch Current Limit  
LT3585-3 (Note 3)  
LT3585-0 (Note 3)  
LT3585-2 (Note 3)  
LT3585-1 (Note 3)  
1.55  
1.1  
0.75  
0.45  
1.7  
1.2  
0.85  
0.55  
1.85  
1.3  
0.95  
0.65  
A
A
A
A
Switch V  
LT3585-3, I = 1.4A  
485  
330  
230  
140  
mV  
mV  
mV  
mV  
CESAT  
SW  
LT3585-0, I = 1A  
SW  
LT3585-2, I = 700mA  
SW  
LT3585-1, I = 400mA  
SW  
V
V
Comparator Trip Voltage  
Comparator Overdrive  
Measured as V – V  
31  
31.5  
31.5  
32  
V
V
OUT  
OUT  
SW  
BAT  
30.5  
32.5  
300ns Pulse Width  
200  
130  
400  
180  
mV  
mV  
DCM Comparator Trip Voltage  
CHRG/IADJ Pin Current  
Measured as V – V  
80  
SW  
BAT  
V
CHRG  
V
CHRG  
= 3V  
= 0V  
45  
0
70  
0.1  
µA  
µA  
Switch Leakage Current  
V
BAT  
= V = 5V, In Shutdown  
0.01  
1
µA  
V
SW  
CHRG/IADJ Minimum Enable Voltage  
1.1  
3585f  
2
LT3585-0/LT3585-1  
LT3585-2/LT3585-3  
ELECTRICAL CHARACTERISTICS The  
denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. V = V = V = 3V unless otherwise noted (Note 2). Specifications  
CHRG  
A
IN  
BAT  
are for the LT3585-0, LT3585-1, LT3585-2, LT3585-3 unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CHRG/IADJ Three-State Voltage for Reduced Input  
Current  
CHRG/IADJ > 1.1V then Float  
1.1  
1.28  
1.4  
V
CHRG/IADJ Voltage Range for Normal Input Current  
CHRG/IADJ Low Voltage  
1.6  
10  
V
V
0.3  
Delay Time for Reduced Input Current Mode  
CHRG/IADJ Pin Three Stated:  
V
BAT  
V
BAT  
V
BAT  
V
BAT  
= 4.2V, Fresh Li-Ion Cell  
= 2.8V, Dead Li-Ion Cell  
= 3V, Fresh 2 AA Cells  
= 2V, Dead 2 AA Cells  
5.2  
7.2  
6.8  
9.5  
µs  
µs  
µs  
µs  
Minimum CHRG/IADJ Pin Low Time  
DONE Output Signal High  
DONE Output Signal Low  
DONE Leakage Current  
IGBTPWR Voltage Range  
IGBT Input High Level  
HighLowHigh  
20  
3
µs  
V
100kΩ from V to DONE  
IN  
33µA into DONE Pin  
120  
1
200  
100  
10  
mV  
nA  
V
V
= 3V, DONE NPN Off  
DONE  
2.5  
1.5  
V
IGBT Input Low Level  
0.5  
V
IGBT Output Rise Time  
IGBTPU Pin, C  
= 4000pF,  
0.4  
µs  
OUT  
IGBTPWR = 5V, IGBTIN = 0V1.5V, 10%90%  
IGBT Output Fall Time  
IGBTPD Pin, C = 4000pF,  
0.13  
µs  
OUT  
IGBTPWR = 5V, IGBTIN = 1.5V0V, 90%10%  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime. Ratings are for DC levels only.  
Note 2: The LT3585 series is guaranteed to meet performance  
specifications from 0°C to 85°C. Specifications over the 40°C to 85°C  
operating temperature range are assured by design, characterization and  
correlation with statistical process controls.  
Note 3: Current limit is guaranteed by design and/or correlation to static  
test.  
3585f  
3
LT3585-0/LT3585-1  
LT3585-2/LT3585-3  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LT3585-0 curves use Figure 11, LT3585-1 curves  
use Figure 12, LT3585-2 curves use Figure 13 and LT3585-3 curves use Figure 14 unless otherwise noted.  
LT3585-0 Charging Waveform  
Normal Input Current Mode  
LT3585-1 Charging Waveform  
Normal Input Current Mode  
LT3585-2 Charging Waveform  
Normal Input Current Mode  
V
V
V
OUT  
OUT  
OUT  
50V/DIV  
50V/DIV  
50V/DIV  
AVERAGE  
INPUT  
AVERAGE  
INPUT  
AVERAGE  
INPUT  
CURRENT  
CURRENT  
CURRENT  
3585 G01  
3585 G03  
3585 G02  
1A/DIV V  
= 3.6V  
= 50µF  
0.5s/DIV  
1A/DIV V  
= 3.6V  
= 50µF  
1s/DIV  
500mA/DIV V  
C
= 3.6V  
= 50µF  
2s/DIV  
BAT  
OUT  
BAT  
OUT  
BAT  
OUT  
C
C
LT3585-3 Charging Waveform  
Normal Input Current Mode  
LT3585-0 Charging Waveform  
Reduced Input Current Mode  
LT3585-1 Charging Waveform  
Reduced Input Current Mode  
V
V
V
OUT  
50V/DIV  
OUT  
OUT  
50V/DIV  
50V/DIV  
AVERAGE  
INPUT  
AVERAGE  
INPUT  
AVERAGE  
INPUT  
CURRENT  
CURRENT  
CURRENT  
3585 G04  
3585 G05  
3585 G06  
1A/DIV V  
= 3.6V  
= 50µF  
0.5s/DIV  
1A/DIV V  
= 3.6V  
= 50µF  
0.5s/DIV  
500mA/DIV V  
C
= 3.6V  
= 50µF  
2s/DIV  
BAT  
OUT  
BAT  
OUT  
BAT  
OUT  
C
C
LT3585-2 Charging Waveform  
Reduced Input Current Mode  
LT3585-3 Charging Waveform  
Reduced Input Current Mode  
Charge Time*  
Normal Input Current Mode  
8
7
6
5
4
3
2
1
0
LT3585-0  
LT3585-1  
LT3585-2  
LT3585-3  
V
V
OUT  
OUT  
50V/DIV  
50V/DIV  
AVERAGE  
INPUT  
CURRENT  
1A/DIV V  
AVERAGE  
INPUT  
CURRENT  
1A/DIV V  
3585 G07  
3585 G08  
= 3.6V  
= 50 F  
1s/DIV  
= 3.6V  
= 50µF  
0.5s/DIV  
BAT  
OUT  
BAT  
OUT  
C
C
6
7
2
3
4
5
8
9
10  
3585 G09  
V
(V)  
BAT  
*USING RUBYCON 330V, 50µF PHOTOFLASH  
OUTPUT CAPACITOR (FW SERIES)  
3585f  
4
LT3585-0/LT3585-1  
LT3585-2/LT3585-3  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LT3585-0 curves use Figure 11, LT3585-1 curves  
use Figure 12, LT3585-2 curves use Figure 13 and LT3585-3 curves use Figure 14 unless otherwise noted.  
Charge Time*  
Reduced Input Current Mode  
LT3585-0 Input Current  
Normal Input Current Mode  
LT3585-1 Input Current  
Normal Input Current Mode  
700  
600  
500  
300  
250  
200  
150  
100  
50  
25  
LT3585-0  
LT3585-1  
LT3585-2  
LT3585-3  
20  
15  
400  
300  
200  
100  
0
10  
5
V
V
V
= 4.2V  
= 3.6V  
= 2.5V  
V
V
V
= 4.2V  
= 3.6V  
= 2.5V  
BAT  
BAT  
BAT  
BAT  
BAT  
BAT  
0
0
100  
200  
300  
100  
200  
300  
0
0
6
2
3
4
5
7
8
9
10  
V
(V)  
V
(V)  
OUT  
3585 G10  
V
(V)  
OUT  
BAT  
3585 G11  
3585 G12  
*USING RUBYCON 330V, 50µF PHOTOFLASH  
OUTPUT CAPACITOR (FW SERIES)  
LT3585-2 Input Current  
Normal Input Current Mode  
LT3585-3 Input Current  
Normal Input Current Mode  
LT3585-0 Input Current  
Reduced Input Current Mode  
450  
400  
350  
300  
250  
200  
150  
100  
50  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
350  
300  
250  
200  
150  
100  
50  
V
V
V
= 4.2V  
= 3.6V  
= 2.5V  
V
V
V
= 4.2V  
= 3.6V  
= 2.5V  
V
V
V
= 4.2V  
= 3.6V  
= 2.5V  
BAT  
BAT  
BAT  
BAT  
BAT  
BAT  
BAT  
BAT  
BAT  
0
0
100  
200  
300  
0
100  
200  
300  
0
100  
200  
300  
0
V
(V)  
V
(V)  
V
(V)  
OUT  
OUT  
OUT  
3585 G13  
3585 G14  
3585 G15  
LT3585-1 Input Current  
Reduced Input Current Mode  
LT3585-2 Input Current  
Reduced Input Current Mode  
LT3585-3 Input Current  
Reduced Input Current Mode  
120  
100  
80  
60  
40  
20  
0
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
V
= 4.2V  
= 3.6V  
= 2.5V  
V
= 4.2V  
= 3.6V  
= 2.5V  
V
V
V
= 4.2V  
= 3.6V  
= 2.5V  
BAT  
BAT  
BAT  
BAT  
BAT  
BAT  
BAT  
BAT  
BAT  
V
V
V
V
0
0
100  
200  
300  
100  
200  
300  
0
0
100  
200  
300  
0
V
(V)  
V
(V)  
OUT  
V
(V)  
OUT  
OUT  
3585 G16  
3585 G17  
3585 G18  
3585f  
5
LT3585-0/LT3585-1  
LT3585-2/LT3585-3  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LT3585-0 curves use Figure 11, LT3585-1 curves  
use Figure 12, LT3585-2 curves use Figure 13 and LT3585-3 curves use Figure 14 unless otherwise noted.  
LT3585-0 Efficiency  
Normal Input Current Mode  
LT3585-1 Efficiency  
Normal Input Current Mode  
LT3585-2 Efficiency  
Normal Input Current Mode  
90  
80  
70  
60  
90  
80  
70  
60  
90  
80  
70  
60  
USING KIJIMA SBL-5.6-1 TRANSFORMER  
USING KIJIMA SBL-5.6S-1 TRANSFORMER  
USING KIJIMA SBL-5.6-1 TRANSFORMER  
V
V
V
= 4.2V  
= 3.6V  
= 2.5V  
V
V
V
= 4.2V  
= 3.6V  
= 2.5V  
V
V
V
= 4.2V  
= 3.6V  
= 2.5V  
BAT  
BAT  
BAT  
BAT  
BAT  
BAT  
BAT  
BAT  
BAT  
50  
50  
50  
50  
100  
150  
V
200  
(V)  
250  
300  
50  
100  
150  
V
200  
(V)  
250  
300  
50  
100  
150  
V
200  
(V)  
250  
300  
OUT  
OUT  
OUT  
3585 G19  
3585 G19  
3585 G21  
LT3585-3 Efficiency  
Normal Input Current Mode  
LT3585-0 Efficiency  
Reduced Input Current Mode  
LT3585-1 Efficiency  
Reduced Input Current Mode  
90  
80  
70  
60  
90  
80  
70  
60  
90  
80  
70  
60  
USING KIJIMA SBL-5.6S-1 TRANSFORMER  
USING KIJIMA SBL-5.6-1 TRANSFORMER  
USING TDK LDT565630T-041  
TRANSFORMER  
V
V
V
= 4.2V  
= 3.6V  
= 2.5V  
V
V
V
= 4.2V  
= 3.6V  
= 2.5V  
V
V
V
= 4.2V  
= 3.6V  
= 2.5V  
BAT  
BAT  
BAT  
BAT  
BAT  
BAT  
BAT  
BAT  
BAT  
50  
50  
50  
50  
100  
150  
V
200  
(V)  
250  
300  
50  
100  
150  
V
200  
(V)  
250  
300  
50  
100  
150  
V
200  
(V)  
250  
300  
OUT  
OUT  
OUT  
3585 G24  
3585 G23  
3585 G22  
LT3585-2 Efficiency  
Reduced Input Current Mode  
LT3585-3 Efficiency  
Reduced Input Current Mode  
LT3585-0 Output Voltage  
90  
80  
70  
60  
330  
328  
326  
324  
90  
80  
70  
60  
USING KIJIMA SBL-5.6-1 TRANSFORMER  
USING TDK LDT565630T-041  
TRANSFORMER  
V
V
V
= 4.2V  
= 3.6V  
= 2.5V  
V
V
V
= 4.2V  
= 3.6V  
= 2.5V  
T
T
T
= –40°C  
= 25°C  
= 85°C  
BAT  
BAT  
BAT  
BAT  
BAT  
BAT  
A
A
A
50  
322  
50  
50  
100  
150  
V
200  
(V)  
250  
300  
2
3
4
5
6
7
8
50  
100  
150  
V
200  
(V)  
250  
300  
V
(V)  
OUT  
BAT  
OUT  
3585 G25  
3585 G27  
3585 G26  
3585f  
6
LT3585-0/LT3585-1  
LT3585-2/LT3585-3  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LT3585-0 curves use Figure 11, LT3585-1 curves  
use Figure 12, LT3585-2 curves use Figure 13 and LT3585-3 curves use Figure 14 unless otherwise noted.  
LT3585-1 Output Voltage  
LT3585-2 Output Voltage  
LT3585-3 Output Voltage  
322  
320  
318  
316  
314  
312  
310  
326  
324  
322  
330  
318  
316  
314  
330  
328  
326  
324  
322  
320  
T
T
T
= –40°C  
= 25°C  
= 85°C  
A
A
A
T
T
T
= –40°C  
= 25°C  
= 85°C  
T
T
T
= –40°C  
= 25°C  
= 85°C  
A
A
A
A
A
A
2
4
5
6
7
8
3
2
4
5
6
7
8
2
4
5
6
7
8
3
3
V
(V)  
3585 G28  
V
(V)  
V
(V)  
BAT  
BAT  
BAT  
3585 G29  
3585 G30  
LT3585-0 Switch Waveform  
Normal Input Current Mode  
LT3585-0 Switch Waveform  
Reduced Input Current Mode  
LT3585-0 Switch Waveform  
Normal Input Current Mode  
V
SW  
10V/DIV  
V
V
SW  
10V/DIV  
SW  
10V/DIV  
I
I
PRI  
1A/DIV  
PRI  
I
PRI  
1A/DIV  
1A/DIV  
3585 G31  
3585 G32  
3585 G33  
V
V
= 3.6V  
= 100V  
2µs/DIV  
V
V
= 3.6V  
= 100V  
2µs/DIV  
V
V
= 3.6V  
= 300V  
2µs/DIV  
BAT  
OUT  
BAT  
OUT  
BAT  
OUT  
LT3585-0/LT3585-1/LT3585-2/  
LT3585-3 Switch Breakdown  
Voltage  
LT3585-0 Switch Waveform  
Reduced Input Current Mode  
Switch DC Current Limit*  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
10  
9
8
7
6
5
4
3
2
1
0
SW PIN IS RESISTIVE UNTIL BREAKDOWN  
VOLTAGE DUE TO INTEGRATED RESISTORS.  
THIS DOES NOT INCREASE QUIESCENT  
CURRENT OF THE PART  
LT3585-3  
LT3585-0  
V
SW  
10V/DIV  
T
T
T
= –40°C  
= 25°C  
= 85°C  
A
A
A
LT3585-2  
LT3585-1  
I
PRI  
1A/DIV  
3585 G34  
V
V
= 3.6V  
= 300V  
2µs/DIV  
BAT  
OUT  
30 40 60  
–50 –30 –10 10 20  
TEMPERATURE (°C)  
80  
3585 G35  
0
10 20 30 40 50 60 70 80 90 100  
SWITCH VOLTAGE (V)  
*DYNAMIC CURRENT LIMIT IS HIGHER  
THAN DC CURRENT LIMIT  
3585 G36  
3585f  
7
LT3585-0/LT3585-1  
LT3585-2/LT3585-3  
U
U
U
PI FU CTIO S  
IGBTIN (Pin 1): Logic Input for the IGBT Driver. When this  
pin is driven higher than 1.5V, the output goes high. When  
the pin is below 0.5V, the output will go low.  
voltage on this pin should be driven high ( >1.1V ) and  
then floated. (For more information refer to the Operation  
section of this data sheet.) To enter normal mode, the  
voltage should be driven higher than 1.6V.  
IGBTPWR (Pin 2): Supply Pin for the IGBT Driver. Must be  
locallybypassedwithagoodqualityceramiccapacitor.The  
minimum operating voltage for the IGBT driver is 2.5V.  
SW (Pin 8): Switch Pin. This is the collector of the internal  
NPNPowerswitch.Minimizethemetaltraceareaconnected  
to this pin to minimize EMI. Tie one side of the primary  
of the transformer to this pin. The target output voltage  
is set by the turns ratio of the transformer.  
GND (Pin 3): Ground. Tie directly to local ground plane.  
V
(Pin 4): Input Supply Pin. Must be locally bypassed  
IN  
with a good quality ceramic capacitor. The minimum  
Choose turns ratio N by the following equation:  
operating voltage for V is 2.5V.  
IN  
VOUT +2  
N=  
V
(Pin5):BatterySupplyPin. Mustbelocallybypassed  
BAT  
31.5  
with a good quality ceramic capacitor. The minimum  
operating voltage for V is 1.5V.  
BAT  
where V  
is the desired output voltage.  
OUT  
DONE (Pin 6): Open NPN Collector Indication Pin. When  
target output voltage is reached, NPN turns on. This pin  
needs a proper pull-up resistor or current source.  
IGBTPD (Pin 9): Pull-down Output for IGBT Gate. Connect  
this pin to the IGBT Gate. Add a series resistor to increase  
the turn-off time to protect the IGBT.  
CHRG/IADJ (Pin 7): Charge and Input Current Adjust Pin.  
A low (<0.3V) to high (>1.1V) transition on this pin puts  
the part into power delivery mode. Once the target output  
voltage is reached, the part will stop charging the output.  
Toggle this pin to start charging again. Ground to shut  
down. To enter into the input current reduction mode, the  
IGBTPU (Pin 10): Pull-up Output for IGBT Gate. Connect  
this pin to the gate of the IGBT.  
ExposedPad(Pin11):Ground.Tiedirectlytolocalground  
plane.  
3585f  
8
LT3585-0/LT3585-1  
LT3585-2/LT3585-3  
W
W
SI PLIFIED BLOCK DIAGRA  
D1  
T1  
V
OUT  
TO BATTERY  
C1  
V
IN  
C2  
6
4
5
8
SW  
V
V
BAT  
DONE  
IN  
CHIP  
POWER  
R2  
60k  
2.5V  
MAX  
1.5V  
MAX  
DCM  
COMPARATOR  
+
+
+
A5  
A4  
UVLO  
+
A3  
C
OUT  
+
130mV  
Q3  
Q2  
Q1  
ENABLE  
MASTER  
LATCH  
R1  
2.5k  
UVLO  
Q
S
Q
R
VARIABLE  
DELAY  
+
DRIVER  
A2  
S
1.25V  
REFERENCE  
R SWITCH Q  
LATCH  
Q1  
V
OUT  
COMPARATOR  
CHRG/IADJ  
IGBTPWR  
IGBTIN  
RESET  
DOMINANT  
+
7
2
1
ONE SHOT  
R
A1  
20mV  
M
+
GND  
3
IGBTPU  
IGBTPD  
10  
9
IGBT DRIVE  
CIRCUITRY  
3585 F01  
LT3585-3, R = 12m  
M
LT3585-0, R = 17mΩ  
M
LT3585-2, R = 24mΩ  
M
LT3585-1, R = 36mΩ  
M
Figure 1  
3585f  
9
LT3585-0/LT3585-1  
LT3585-2/LT3585-3  
U
OPERATIO  
The LT3585 series of parts operate on the edge of dis-  
continuous conduction mode. When CHRG/IADJ is driven  
higher than 1.1V, the master latch is set. This enables the  
part to deliver power to the photoflash capacitor. When  
the power switch, Q1, is turned on, current builds up in  
the primary of the transformer. When the desired current  
level is reached, the output of comparator A1 goes high,  
resetting the switch latch that controls the state of Q1, and  
the output of the DCM comparator goes low. Q1 now turns  
off and the flyback waveform on the SW node quickly rises  
added between when A3 goes high and the switch latch  
is set, see Figure 2. If the part is enabled, and the CHRG/  
IADJ pin is floated, internal circuitry drives the voltage on  
the pin to 1.28V. This allows a single I/O port pin, which  
can be three-stated, to enable or disable the part as well  
as place the part into the input current reduction mode.  
This feature effectively reduces the average input current  
into the flyback transformer. The magnitude of the delay  
decreases with increasing V . This causes the reduced  
BAT  
averageinputcurrenttoremainrelativelyatwithchanges  
toalevelproportionaltoV .Thesecondarycurrentows  
in V . When CHRG/IADJ is brought higher than 1.6V,  
OUT  
BAT  
through high voltage diode(s), D1, and into the photoflash  
capacitor. When the secondary current decays to zero,  
the voltage on the SW node collapses. When this voltage  
no delay is added. The CHRG/IADJ pin functionality is  
shown in Figure 3.  
BothV andV haveundervoltagelockout(UVLO).When  
BAT  
IN  
reaches 130mV higher than V , the output of A3 goes  
BAT  
one of these pins goes below its UVLO voltage, the DONE  
high. This sets the switch latch and the power switch, Q1,  
pingoeslow.WithaninsufficientbypasscapacitoronV  
BAT  
turnsbackon. ThiscyclerepeatsuntilthetargetV  
level  
OUT  
or V , the ripple on the pin is likely to activate UVLO and  
IN  
is reached. When the target V  
is reached, the master  
OUT  
terminate the charge. The applications circuits in the data  
sheet suggest values adequate for most applications.  
latch resets and the DONE pin goes low.  
The input current of an LT3585 series circuit can be  
reduced by changing the voltage of the CHRG/IADJ pin.  
When this pin is between 1.1V and 1.4V, a time delay is  
The LT3585 series also includes an integrated IGBT driver.  
There are two output pins, IGBTPU and IGBTPD. The  
IGBTPU pin is used to pull the gate of the IGBT up. This  
should be done quickly to guarantee proper Xenon lamp  
ignition. Tie this pin directly to the gate of the IGBT. The  
IGBTPD pin is pinned out separately to allow for greater  
flexibilityinchoosingaseriesresistorbetweenthepinand  
the gate of the IGBT. This resistor can be used to slow  
down the turn off of the IGBT.  
Normal Operation  
CHRG/IADJ 1.6V  
I
PRI  
TIME  
V
SW  
V
OUT  
100V/DIV  
TIME  
Reduced Input Current  
DONE  
2V/DIV  
CHRG/IADJ Three Stated  
I
PRI  
CHRG/IADJ  
2V/DIV  
TIME  
LT3585-1  
1sec/DIV  
Extra Delay Added  
V
C
= 3.6V  
BAT  
OUT  
(~5.2µs at V  
= 4.2V)  
BAT  
= 50µF  
V
CHRG/IADJ PIN STATE  
SW  
THREE  
STATE*  
<0.3V  
3V  
<0.3V  
3V  
<0.3V  
3585 F02  
TIME  
3585 F03  
*MUST TAKE CHRG/IADJ PIN ABOVE 1.1V, THEN FLOAT  
Figure 3. Basic Operation  
Figure 2. Normal and Reduced Input Current Waveforms  
3585f  
10  
LT3585-0/LT3585-1  
LT3585-2/LT3585-3  
W U U  
APPLICATIO S I FOR ATIO  
U
Choosing the Right Device  
drop across the output diode(s). Thus, for a 320V output,  
N should be 322/31.5 or 10.2. For a 300V output, choose  
N equal to 302/31.5 or 9.6. The next parameter that needs  
(LT3585-0/LT3585-1/LT3585-2/LT3585-3)  
The only difference between the four versions of the  
LT3585 series is the peak current level. For the fastest  
possible charge time, use the LT3585-3. The LT3585-1  
has the lowest peak current capability, and is designed  
for applications that need a more limited drain on the  
batteries. Due to the lower peak current, the LT3585-1  
can use a physically smaller transformer. The LT3585-0  
and LT3585-2 have a current limit in between that of the  
LT3585-1 and the LT3585-3.  
to be set is the primary inductance, L . Choose L  
PRI  
PRI  
according to the following formula:  
VOUT 20010–9  
LPRI  
N•IPK  
where V  
is the desired output voltage. N is the trans-  
OUT  
former turns ratio. I is 1.4 (LT3585-0), 0.7 (LT3585-1),  
PK  
1 (LT3585-2) and 2 (LT3585-3). L needs to be equal  
PRI  
or larger than this value to ensure that the LT3585 series  
has adequate time to respond to the flyback waveform.  
All other parameters need to meet or exceed the recom-  
mendedlimitsasshowninTable1.Aparticularlyimportant  
Transformer Design  
TheybacktransformerisakeyelementforanyLT3585-0/  
LT3585-1/LT3585-2/LT3585-3design.Itmustbedesigned  
carefullyandcheckedthatitdoesnotcauseexcessivecur-  
rentorvoltageonanypinofthepart. Themainparameters  
that need to be designed are shown in Table 1. The first  
transformer parameter that needs to be set is the turns  
ratio, N. The LT3585-0/LT3585-1/LT3585-2/LT3585-3  
accomplish output voltage detection by monitoring the  
flyback waveform on the SW pin. When the SW voltage  
parameter is the leakage inductance, L  
. When the  
LEAK  
power switch of the LT3585 series turns off, the leakage  
inductance on the primary of the transformer causes a  
voltage spike to occur on the SW pin. The height of this  
spike must not exceed 50V, even though the absolute  
maximum rating of the SW pin is 60V. The 60V absolute  
maximum rating is a DC blocking voltage specification,  
which assumes that the current in the power NPN is zero.  
Figure 4 shows the SW voltage waveform for the circuit  
of Figure 8 (LT3585-0). Note that the absolute maximum  
rating of the SW pin is not exceeded. Make sure to check  
reaches 31.5V higher than the V voltage, the part halts  
BAT  
powerdelivery.Thus,thechoiceofNsetsthetargetoutput  
voltage and changes the amplitude gain of the reflected  
voltagefromtheoutputtotheSWpin.ChooseNaccording  
to the following equation:  
the SW voltage waveform with V  
near the target output  
OUT  
voltage, as this is the worst-case condition for SW volt-  
age. Figure 5 shows the various limits on the SW voltage  
during switch turn off.  
VOUT +2  
N=  
31.5  
where V  
is the desired output voltage. The number 2  
OUT  
in the numerator is used to include the forward voltage  
Table 1. Recommended Transformer Parameters  
TYPICAL RANGE  
TYPICAL RANGE  
LT3585-1  
TYPICAL RANGE  
LT3585-2  
TYPICAL RANGE  
LT3585-3  
PARAMETER  
NAME  
LT3585-0  
UNITS  
µH  
L
L
Primary Inductance  
Primary Leakage Inductance  
Secondary/Primary Turns Ratio  
>5  
>10  
200 to 500  
8 to 12  
>500  
>7  
>3.5  
100 to 300  
8 to 12  
>500  
PRI  
100 to 300  
8 to 12  
>500  
200 to 500  
8 to 12  
>500  
nH  
LEAK  
N
V
Secondary to Primary Isolation  
Voltage  
V
ISO  
I
Primary Saturation Current  
Primary Winding Resistance  
Secondary Winding Resistance  
>1.6  
<300  
<40  
>0.8  
<500  
<80  
>1.0  
<400  
<60  
>2  
A
mΩ  
Ω
SAT  
R
R
<200  
<30  
PRI  
SEC  
3585f  
11  
LT3585-0/LT3585-1  
LT3585-2/LT3585-3  
W U U  
U
APPLICATIO S I FOR ATIO  
Output Diode Selection  
The rectifying diode(s) should be low capacitance type  
with sufficient reverse voltage and forward current rat-  
ings. The peak reverse voltage that the diode(s) will see  
is approximately:  
V
SW  
10V/DIV  
V
= V  
+ (N • V  
)
PK(R)  
OUT  
BAT  
The peak current of the diode is simply:  
3585 F04  
2
N
V
V
= 3.6V  
= 320V  
100ns/DIV  
BAT  
OUT  
IPK(SEC)  
IPK(SEC)  
IPK(SEC)  
IPK(SEC)  
=
=
=
=
LT3585-3  
(
)
Figure 4. LT3585 SW Voltage Waveform  
1.4  
N
LT3585-0  
(
)
B
MUST BE  
LESS THAN 60V  
MUST BE  
1
N
A
LT3585-2  
(
)
LESS THAN 50V  
V
SW  
0.7  
N
LT3585-1  
(
)
0V  
For the circuit of Figure 8 with V of 5V, V  
is 371V  
BAT  
PK(R)  
3585 F05  
and I  
is 137mA. The GSD2004S dual silicon diode  
PK(SEC)  
Figure 5. New Transformer Design Check  
is recommended for most applications. Table 3 shows  
the various diodes and relevant specifications. Use the  
appropriate number of diodes to achieve the necessary  
reverse breakdown voltage.  
It is important not to minimize the leakage inductance to  
a very low level. Although this would result in a very low  
leakagespikeontheSWpin,theparasiticcapacitanceofthe  
transformerwouldbecomelarge.Thiswilladverselyaffect  
thechargetimeofthephotoflashcircuit.LinearTechnology  
hasworkedwithseveralleadingmagneticcomponentman-  
ufacturers to produce predesigned flyback transformers  
forusewiththeLT3585-0/LT3585-1/LT3585-2/LT3585-3.  
Table2showsthedetailsofseveralofthesetransformers.  
Capacitor Selection  
For the input bypass capacitors, high quality X5R or X7R  
types should be used. Make sure the voltage capability of  
the part is adequate.  
Table 2. Predesigned Transformers—Typical Specifications Unless Otherwise Noted  
FOR USE  
WITH  
TRANSFORMER  
DESIGNATION  
SIZE  
(W × L × H) (mm)  
LPRI  
(µH)  
LPRI LEAKAGE  
(nH )  
R
R
SEC  
(Ω)  
PRI  
N
(mΩ)  
VENDOR  
LT3585-1  
LT3585-0/  
LT3585-2  
SBL-5.6S-1  
SBL-5.6-1  
5.6 × 8.5 × 3.0  
5.6 × 8.5 × 4.0  
24  
10  
400 Max  
200 Max  
10.2  
10.2  
305  
103  
55  
26  
Kijima Musen  
Hong Kong Office  
852-2489-8266  
LT3585-1  
LT3585-0  
LT3585-1  
LT3585-2  
LT3585-3  
LDT565620ST-203  
LDT565630T-001  
LDT565630T-002  
LDT565630T-003  
LDT565630T-041  
5.8 × 5.8 × 2.0  
5.8 × 5.8 × 3.0  
5.8 × 5.8 × 3.0  
5.8 × 5.8 × 3.0  
5.8 × 5.8 × 3.0  
8.2  
6
14.5  
10.5  
4.7  
390 Max  
200 Max  
500 Max  
550 Max  
150 Max  
10.2  
10.4  
10.2  
10.2  
10.4  
370 Max  
100 Max  
240 Max  
210 Max  
90 Max  
11.2 Max TDK  
10 Max  
Chicago Sales Office  
16.5 Max (847) 803-6100  
14 Max  
6.4 Max  
www.components.tdk.com  
LT3585-0  
LT3585-1  
LT3585-2  
LT3585-3  
TTRN-0530-000-T  
TTRN-0530-012-T  
TTRN-0530-021-T  
TTRN-0530-022-T  
5.0 × 5.0 × 3.0  
5.0 × 5.0 × 3.0  
5.0 × 5.0 × 3.0  
5.0 × 5.0 × 3.0  
6.6  
16.0  
11.8  
4.0  
200 Max  
400 Max  
300 Max  
300 Max  
10.3  
10.3  
10.3  
10.3  
128 Max  
515 Max  
256 Max  
102 Max  
28 Max  
32 Max  
37 Max  
16 Max  
Tokyo Coil Engineering  
Japan Office  
0426-56-6262  
3585f  
12  
LT3585-0/LT3585-1  
LT3585-2/LT3585-3  
W U U  
APPLICATIO S I FOR ATIO  
U
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
IGBTIN  
1V/DIV  
IGBTOUT  
2V/DIV  
3585 F06  
I
C
R
= 5V  
500ns/DIV  
GBTPWR  
OUT  
PD  
0
50  
100  
()  
150  
200  
= 4000pF  
= 50Ω  
R
PD  
3585 F07  
Figure 6. IGBT Driver Output with 4000pF Load  
Figure 7. IGBT Turn-Off Delay vs R  
PD  
Table 3. Recommended Output Diodes  
MAX REVERSE  
MAX CONTINUOUS  
FORWARD CURRENT (mA)  
PART  
VOLTAGE (V)  
CAPACITANCE (pF)  
VENDOR  
GSD2004S  
2 × 300  
225  
225  
225  
5
Vishay  
(DUAL DIODE)  
(402) 563-6866  
www.vishay.com  
CMSD2004S  
(DUAL DIODE)  
2 × 300  
2 × 350  
5
5
Central Semiconductor  
(631) 435-1110  
www.centralsemi.con  
MMBD3004S  
(DUAL DIODE)  
Diodes, Inc  
(816) 251-8800  
www.diodes.com  
IGBT Drive  
safe operation of the IGBT. The IGBT gate is a network of  
resistors and capacitors, as shown in Figure 9. When the  
gate terminal is pulled low, the capacitance closest to the  
terminal goes low but the capacitance further from the  
terminal remains high. This causes a smaller portion of  
the device to handle a larger portion of the current, which  
can damage the device. The pull-down circuitry needs to  
pull down slower than the internal RC time constant in  
the gate of the IGBT. This is easily accomplished with a  
resistor placed in series with the IGBTPD pin.  
The IGBT is a high current switch for the 100A+ current  
through the photoflash lamp. To create a redeye effect or  
to adjust the light output, the lamp current needs to be  
stopped or quenched with an IGBT before discharging  
the photoflash capacitor fully. The IGBT device also con-  
trols the 4kV trigger pulse required to ionize the Xenon  
gas in the photoflash lamp. Figure 8 is a schematic of a  
fully functional photoflash application with the LT3585-0  
serving as the IGBT driver. An IGBT driver charges the  
gate capacitance to start the flash. The IGBT driver does  
not need to pull up the gate significantly fast because of  
the inherently slow nature of the IGBT. A rise time of 2µs  
is sufficient to charge the gate of the IGBT and create a  
trigger pulse. With slower rise times, the trigger circuitry  
will not have a fast enough edge to create the required  
4kV pulse. The fall time of the IGBT driver is critical to the  
TheLT3585seriesintegratedIGBTdrivecircuitisindepen-  
dent of the charging function and draws its power from  
the IGBTPWR pin. The drive pulls high to within 200mV  
of IGBTPWR and pulls down to 100mV. The circuit’s  
switching waveform is shown in Figure 6. The rise and fall  
times are measured using a 4000pF output capacitor. The  
typical 10% to 90% rise time is 320ns when IGBTPWR  
3585f  
13  
LT3585-0/LT3585-1  
LT3585-2/LT3585-3  
W U U  
U
APPLICATIO S I FOR ATIO  
to drop to approximately 0.1µA during idle conditions.  
The pull-down circuit will clamp the output below 0.8V for  
currents not exceeding 10mA in its idle state. The pull-up  
network is always active when the IGBTIN is greater than  
1.5V. Table 4 is a list of recommended IGBT devices for  
strobe applications. These devices are all packaged in  
8-lead TSSOP packages unless otherwise noted.  
is 5V and IGBTIN is driven by a 5V signal. The typical  
90% to 10% fall time is 125ns but varies with R given  
PD  
by Figure 7. The IGBT driver pulls a peak of 50mA when  
driving an IGBT with minimal quiescent current. In the  
low state, an active pull-down network is used during the  
initial transition but is deactivated after an internal time  
constant. This allows the IGBT driver’s quiescent current  
Table 4. Recommended IGBTs  
COLLECTOR CURRENT  
PART  
DRIVE VOLTAGE (V)  
BREAKDOWN VOLTAGE (V)  
(PULSED) (A)  
VENDOR  
CY25CAH-8F*  
CY25CAJ-8F*  
CY25BAH-8F  
CY25BAJ-8F  
2.5  
4
2.5  
4
400  
400  
400  
400  
150  
150  
150  
150  
Renesas  
(408) 382-7500  
www.renesas.com  
GT8G133  
4
400  
150  
Toshiba Semiconductor  
(949) 623-2900  
www.semicon.toshiba.co.jp/eng  
*Packaged in 8-lead VSON-8 pacakge.  
DANGER HIGH VOLTAGE! OPERATION BY HIGH VOLTAGE TRAINED PERSONNEL ONLY  
T1  
D1  
V
BAT  
1:10:2  
320V  
2 AA OR  
1
2
4
5
C1  
4.7 F  
R1  
1M  
1 TO 2 Li-Ion  
C2  
50 F  
+
C4  
2.2 F  
600V  
A
PHOTOFLASH  
CAPACITOR  
V
SW  
GND  
BAT  
TRIGGER T  
FLASHLAMP  
C
DONE  
1
3
2
CHRG/IADJ  
LT3585-0  
V
IN  
V
IN  
5V  
C3  
0.22 F  
IGBTPWR  
IGBTIN  
IGBTPU  
IGBTPD  
TO GATE OF IGBT  
R
PD  
20 TO 160  
3585 F08  
Figure 8. Complete Xenon Circuit  
GATE  
3585 F09  
EMITTER  
Figure 9. IGBT Gate  
3585f  
14  
LT3585-0/LT3585-1  
LT3585-2/LT3585-3  
W U U  
APPLICATIO S I FOR ATIO  
U
Board Layout  
it will effectively increase the leakage inductance of T1,  
which may result in an overvoltage condition on the SW  
pin. The CHRG/IADJ pin trace should be kept as short as  
possible while minimizing the adjacent edge with the SW  
pintrace.ThiswilleliminatefalsetogglingoftheCHRG/IADJ  
pin during sharp transitions on the SW pin. Thermal vias  
should be added underneath the Exposed Pad, Pin 11, to  
enhance the LT3585’s thermal performance. These vias  
should go directly to a large area of ground plane. Acting  
as a heat sink, the thermal vias/ground plane will lower  
the device’s operating temperature.  
The high voltage operation of these parts demand care-  
ful attention to board layout. You will not get advertised  
performance with careless layout. Figure 10 shows the  
recommendedcomponentplacement.Keeptheareaforthe  
highvoltageendofthesecondaryassmallaspossible.Also  
note the larger than minimum spacing for all high voltage  
nodesinordertomeetbreakdownvoltagerequirementsfor  
the circuit board. It is imperative to keep the electrical path  
formed by C1, the primary of T1, and the LT3585 series IC  
as short as possible. If this path is haphazardly made long,  
THERMAL  
VIAS  
TO GATE OF IGBT  
V
BAT  
C1  
IGBTIN  
D1 (DUAL DIODE)  
1
2
3
4
5
10  
9
T1  
R2  
IGBTPWR  
GND  
8
11  
V
OUT  
7
V
IN  
PHOTOFLASH  
CAPACITOR  
6
V
BAT  
R1  
C2  
3585 F10  
GND  
DONE CHRG  
Figure 10. LT3585 Suggested Layout  
3585f  
15  
LT3585-0/LT3585-1  
LT3585-2/LT3585-3  
U
TYPICAL APPLICATIO S  
T1  
1:10.4  
D1  
V
BAT  
320V  
1.5V TO 8V  
C1  
4.7µF  
+
C
OUT  
PHOTOFLASH  
CAPACITOR  
R1  
100k  
V
SW  
GND  
BAT  
DONE  
DONE  
CHARGE  
CHRG/IADJ  
LT3585-0  
V
IN  
V
IN  
2.5V TO 8V  
C2  
0.22µF  
IGBTPWR  
IGBTIN  
IGBTPU  
IGBTPD  
TO GATE OF IGBT  
3585 F11  
R2  
20TO 160Ω  
C1: 4.7µF, 10V, X5R OR X7R  
C2: 0.22µF, 10V, X5R OR X7R  
OUT  
C
: RUBYCON 330V, 50µF PHOTOFLASH OUTPUT CAPACITOR (FW SERIES)  
D1: VISHAY GSD2004S DUAL DIODE CONNECTED IN SERIES  
R1: PULL-UP RESISTOR NEEDED IF DONE PIN USED  
T1: TDK LDT565630T-001, L = 6µH, N = 10.4  
PRI  
Figure 11. LT3585-0 Photoflash Charger Uses High Efficiency 3mm Tall Transformer  
T1  
1:10.2  
D1  
V
BAT  
320V  
1.5V TO 8V  
C1  
4.7µF  
C
+
OUT  
PHOTOFLASH  
CAPACITOR  
R1  
100k  
V
SW  
GND  
BAT  
DONE  
DONE  
CHARGE  
CHRG/IADJ  
LT3585-1  
V
IN  
V
IN  
2.5V TO 8V  
C2  
0.22µF  
IGBTPWR  
IGBTIN  
IGBTPU  
IGBTPD  
TO GATE OF IGBT  
3585 F12  
R2  
20TO 160Ω  
C1: 4.7µF, 10V, X5R OR X7R  
C2: 0.22µF, 10V, X5R OR X7R  
OUT  
C
: RUBYCON 330V, 50µF PHOTOFLASH OUTPUT CAPACITOR (FW SERIES)  
D1: VISHAY GSD2004S DUAL DIODE CONNECTED IN SERIES  
R1: PULL-UP RESISTOR NEEDED IF DONE PIN USED  
T1: LTD565620ST-203, L = 8.2µH, N = 10.2  
PRI  
Figure 12. LT3585-1 Photoflash Charger Uses High Efficiency 2mm Tall Transformer  
3585f  
16  
LT3585-0/LT3585-1  
LT3585-2/LT3585-3  
U
TYPICAL APPLICATIO S  
T1  
D1  
1:10.2  
V
BAT  
320V  
1.5V TO 8V  
C1  
4.7µF  
+
C
OUT  
PHOTOFLASH  
CAPACITOR  
R1  
100k  
V
SW  
GND  
BAT  
DONE  
DONE  
CHARGE  
CHRG/IADJ  
LT3585-2  
V
IN  
V
IN  
2.5V TO 8V  
C2  
0.22µF  
IGBTPWR  
IGBTIN  
IGBTPU  
IGBTPD  
TO GATE OF IGBT  
3585 F13  
R2  
20TO 160Ω  
C1: 4.7µF, 10V, X5R OR X7R  
C2: 0.22µF, 10V, X5R OR X7R  
RUBYCON 330V, 50µF PHOTOFLASH OUTPUT CAPACITOR (FW SERIES)  
D1: VISHAY GSD2004S DUAL DIODE CONNECTED IN SERIES  
R1: PULL-UP RESISTOR NEEDED IF DONE PIN USED  
T1: TDK LDT565630T-003, L = 10.5µH, N = 10.2  
PRI  
Figure 13. LT3585-2 Uses High Efficiency 3mm Tall Transformers  
T1  
1:10.4  
D1  
V
BAT  
320V  
1.5V TO 8V  
C1  
4.7µF  
C
+
OUT  
PHOTOFLASH  
CAPACITOR  
R1  
100k  
V
SW  
GND  
BAT  
DONE  
DONE  
CHARGE  
CHRG/IADJ  
LT3585-3  
V
IN  
V
IN  
2.5V TO 8V  
C2  
0.22µF  
IGBTPWR  
IGBTIN  
IGBTPU  
IGBTPD  
TO GATE OF IGBT  
3585 F14  
R2  
20TO 160Ω  
C1: 4.7µF, 10V, X5R OR X7R  
C2: 0.22µF, 10V, X5R OR X7R  
RUBYCON 330V, 50µF PHOTOFLASH OUTPUT CAPACITOR (FW SERIES)  
D1: VISHAY GSD2004S DUAL DIODE CONNECTED IN SERIES  
R1: PULL-UP RESISTOR NEEDED IF DONE PIN USED  
T1: TDK LDT565630T-041, L = 4.7µH, N = 10.4  
PRI  
Figure 14. LT3585-3 Uses High Efficiency 3mm Tall Transformers  
3585f  
17  
LT3585-0/LT3585-1  
LT3585-2/LT3585-3  
U
TYPICAL APPLICATIO S  
The LT3585 series can be auto-refreshed using the addi-  
tional circuitry shown in Figure 15 with its basic operation  
shown in Figure 16. The ENABLE pin is used to enable  
or disable the auto-refresh charging mode. Without an  
auto-refresh circuit, the output voltage will droop due to  
output capacitor and output diode leakage currents. The  
circuit in Figure 15 uses the DONE and CHRG/IADJ pins  
to form an open-loop control scheme. The output voltage  
target is sensed through the DONE pin with the PFET of  
U1, Panasonic UP04979 composite transistor. When the  
DONE pin goes low during the V  
trip condition, the  
OUT  
PFET charges the auto-refresh timing node comprised  
of R and C , and in turn, pulls the CHRG/IADJ pin low  
T
T
through a NFET and disables the LT3585 series part. The  
DONE pin immediately goes high in shutdown, releasing  
the timing node and allowing the voltage at Pins 2 and 3  
to decay. After approximately a R C time constant, the  
T T  
CHRG/IADJ pin is released and the LT3585 series part is  
enabled. This cycle is repeated to maintain a constant DC  
output voltage. The open-loop control method places a  
constraint on the control loop dominant time constant,  
R • C , given by:  
R1  
ENABLE  
T
T
5k  
1/10W  
0402  
TO  
2 IPK2 LPRI  
ILK VBAT  
V
IN  
CHRG/IADJ  
RTCT >  
R3  
6
1
4
3
100k  
1/10W  
0402  
U1  
TO  
DONE  
where I is the known leakage current, I is the trans-  
former peak primary current, and L is the transformer  
primary inductance. If this condition is not met, a runaway  
condition could occur. The LT3585 series part would  
continue to charge the output voltage past the internal  
output trip voltage. Figure 17 shows the AC ripple of a  
typical auto-refresh circuit with the proper selection of  
5
LK  
PK  
PRI  
2
R
T
C
T
0.1 F  
100k  
3585 F15  
U1: PANASONIC UP04979 COMPOSITE TRANSISTORS  
R and C .  
T
T
Figure 15. Auto Refresh Application  
V
OUT  
V
OUT  
100V/DIV  
2V/DIV  
AC RIPPLE  
CHRG/IADJ  
2V/DIV  
CHRG/IADJ  
2V/DIV  
ENABLE  
2V/DIV  
3585 F17  
LT3585-1  
= 50µF  
2sec/DIV  
LT3585-1  
C = 50µF  
OUT  
200ms/DIV  
C
OUT  
ENABLE > 1.1V AUTO ENABLE ENABLE  
NORMAL OP. REFRESH <0.3V >1.1V  
Figure 17. V  
AC Ripple in Auto Refresh Mode  
OUT  
ENABLE < 0.3V  
ENABLE < 0.3V  
3585 F16  
AUTO  
REFRESH  
Figure 16. Auto Refresh Basic Operation  
3585f  
18  
LT3585-0/LT3585-1  
LT3585-2/LT3585-3  
U
PACKAGE DESCRIPTIO  
DDB Package  
10-Lead Plastic DFN (3mm × 2mm)  
(Reference LTC DWG # 05-08-1722 Rev Ø)  
0.64 0.05  
(2 SIDES)  
0.70 0.05  
2.55 0.05  
1.15 0.05  
PACKAGE  
OUTLINE  
0.25 0.05  
0.50 BSC  
2.39 0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.115  
0.40 0.10  
10  
3.00 0.10  
(2 SIDES)  
TYP  
6
R = 0.05  
TYP  
2.00 0.10  
(2 SIDES)  
PIN 1 BAR  
TOP MARK  
PIN 1  
R = 0.20 OR  
0.25 × 45°  
CHAMFER  
(SEE NOTE 6)  
0.64 0.05  
(2 SIDES)  
5
1
(DDB10) DFN 0905 REV Ø  
0.25 0.05  
0.75 0.05  
0.200 REF  
0.50 BSC  
2.39 0.05  
(2 SIDES)  
0 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING CONFORMS TO VERSION (WECD-1) IN JEDEC PACKAGE OUTLINE M0-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
3585f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
19  
LT3585-0/LT3585-1  
LT3585-2/LT3585-3  
U
TYPICAL APPLICATIO  
T1  
1:10.3  
D1  
V
BAT  
320V  
1.5V TO 8V  
C1  
4.7µF  
C
+
OUT  
PHOTOFLASH  
CAPACITOR  
R1  
100k  
V
SW  
GND  
BAT  
DONE  
DONE  
CHARGE  
CHRG/IADJ  
LT3585-3  
V
IN  
V
IN  
2.5V TO 8V  
C2  
0.22µF  
IGBTPWR  
IGBTIN  
IGBTPU  
IGBTPD  
TO GATE OF IGBT  
3585 F18  
R2  
20TO 160Ω  
C1: 4.7µF, 10V, X5R OR X7R  
C2: 0.22µF, 10V, X5R OR X7R  
OUT  
C
: RUBYCON 330V, 50µF PHOTOFLASH OUTPUT CAPACITOR (FW SERIES)  
D1: VISHAY GSD2004S DUAL DIODE CONNECTED IN SERIES  
R1: PULL-UP RESISTOR NEEDED IF DONE PIN USED  
T1: TOKYO COIL TTRN-0530-022-T, L = 4µH, N = 10.3  
PRI  
Figure 18. LT3585-3 Typical Application  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC®3407  
Dual 600mA (I ), 1.5MHz, Synchronous Step-Down  
96% Efficiency, V : 2.5V to 5.5V, V : 0.6V to 5V, I = 40µA,  
IN OUT Q  
OUT  
DC/DC Converter  
Converter I <1µA, 10-Lead MSE/10-Lead DFN Packages  
SD  
LT3420/LT3420-1  
1.4A/1A, Photoflash Capacitor Chargers with Charges  
Automatic Top-Off  
Charges 220µF to 320V in 3.7 Seconds from 5V, Automatic Top-Off  
V : 2.2V to 16V, I = 90µA, I < 1µA, 10-Lead MS/10-Lead DFN  
IN  
Q
SD  
Packages  
LTC3425  
3A (I ), 8MHz, 4-Phase Synchronous Step-Up  
95% Efficiency, V : 0.5V to 4.5V, V : 2.4V to 5.25V, I = 12µA,  
IN OUT Q  
SD  
OUT  
DC/DC Converter  
I
< 1µA, 32-Lead 5mm × 5mm QFN Package  
LTC3440  
600mA (I ), Synchronous Buck-Boost DC/DC  
95% Efficiency, V : 2.5V to 5.5V, V : 2.5V to 5.5V,  
IN OUT  
Converter I = 25µA, I < 1µA, 10-Lead MS/10-Lead DFN Packages  
Q SD  
OUT  
Converter  
LT3463/LT3463A  
LT3468  
Dual Boost (250mA)/Inverting (250mA/400mA) DC/DC Integrated Schottkys, V : 2.4V to 15V, V  
=
40V, DC/DC  
IN  
OUT(MAX)  
Converter for CCD Bias  
Converter for CCD Bias, I = 40µA, I < 1µA, 10-LeadDFN Package  
Q
SD  
Photoflash Capacitor Charger in ThinSOTTM Package  
Charges 100µF to 320V in 4.6 Seconds from 3.6V, V : 2.5V to 16V,  
IN  
I = 5mA, I < 1µA, 5-Lead TSOT-23 Package  
Q
SD  
LT3472  
Dual 34V, 1.2MHz Boost (350mA)/Inverting (400mA)  
DC/DC Converter for CCD Bias  
Integrated Schottkys, V : 2.2V to 16V, V  
=
34V, DC/DC  
IN  
OUT(MAX)  
Converter for CCD Bias I = 2.8mA, I < 1µA, 10-Lead DFN Package  
Q
SD  
LT3484-0/LT3484-1  
LT3484-2  
Photoflash Capacitor Chargers  
Charges 100µF to 320V in 4.6 Seconds from 3.6V,  
LT3484-0 V : 2.5V to 16V, V : 1.8V to 16V, I = 5mA, I < 1µA,  
IN  
BAT  
Q
SD  
6-lead 2mm × 3mm DFN Package  
LT3485-0/LT3485-1  
LT3485-2/LT3485-3  
Photoflash Capacitor Charger with Output Voltage  
Monitor and Integrated IGBT Drive  
Charges 100µF Capacitor to 320V in 2.5 Seconds from 3.6V.  
V : 1.8V to 10V, I = 5mA, I < 1µA, 10-Lead 3mm × 3mm DFN  
IN  
Q
SD  
Package  
ThinSOT is a trademark of Linear Technology Corporation.  
3585f  
LT 0706 • PRINTED IN USA  
20 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
© LINEAR TECHNOLOGY CORPORATION 2006  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LCLT

1.1MHz/2.2MHz, 500mA Step-Down Regulators in 2mm × 2mm DFN and MS10
Linear

LCLV

1.1MHz/2.2MHz, 500mA Step-Down Regulators in 2mm × 2mm DFN and MS10
Linear

LCM-120

LINE CONDITIONING MODULE
CRANE

LCM-120

LINE CONDITIONING MODULE 28 VOLT INPUT
CRANE

LCM-120/ES

SMPS Controller
ETC

LCM-120ES

LINE CONDITIONING MODULE 28 VOLT INPUT
CRANE

LCM-25BLE

25W Wireless Lighting Constant Current LED Driver Solution
MEANWELL

LCM-25IOT

25W Wireless Lighting Constant Current LED Driver Solution
MEANWELL

LCM-25SVA

25W Wireless Lighting Constant Current LED Driver Solution
MEANWELL

LCM-25TY1

25W Wireless Lighting Constant Current LED Driver Solution
MEANWELL

LCM-40

40W Multiple-Stage Output Current LED Power Supply
MEANWELL

LCM-40BLEAUX

40W Wireless Lighting Constant Current LED Driver Solution
MEANWELL