LDPR [Linear]

Micropower Buck Regulator with Integrated Boost and Catch Diodes; 微功率降压型调节器,集成的升压和钳位二极管
LDPR
型号: LDPR
厂家: Linear    Linear
描述:

Micropower Buck Regulator with Integrated Boost and Catch Diodes
微功率降压型调节器,集成的升压和钳位二极管

调节器 二极管
文件: 总20页 (文件大小:208K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3470A  
Micropower Buck Regulator  
with Integrated Boost and  
Catch Diodes  
FEATURES  
DESCRIPTION  
The LT®3470A is a micropower step-down DC/DC con-  
verter that integrates a 440mA power switch, catch diode  
and boost diode into low profile 2mm × 3mm DFN  
package. The LT3470A combines Burst Mode and  
continuous operation to allow the use of tiny inductor  
and capacitors while providing a low ripple output to  
loads of up to 250mA.  
n
Low Quiescent Current: 35μA at 12V to 3.3V  
IN  
OUT  
n
Integrated Boost and Catch Diodes  
n
Input Range: 4V to 40V  
n
3.3V at 250mA from 4V to 40V Input  
n
5V at 250mA from 5.7V to 40V Input  
n
Low Output Ripple: <10mV  
n
<1μA in Shutdown Mode  
n
Output Voltage: 1.25V to 16V  
With its wide input range of 4V to 40V, the LT3470A can  
regulateawidevarietyofpowersources,from2-cellLi-Ion  
batteries to unregulated wall transformers and lead-acid  
batteries. Quiescent current in regulation is just 35μA in  
a typical application while a zero current shutdown mode  
disconnects the load from the input source, simplifying  
powermanagementinbattery-poweredsystems.Fastcur-  
rent limiting and hysteretic control protects the LT3470A  
and external components against shorted outputs, even  
at 40V input. The LT3470A has higher output current and  
improved start-up and dropout performance compared  
to the LT3470.  
n
Hysteretic Mode Control  
– Low Ripple Burst Mode® Operation at Light Loads  
– Continuous Operation at Higher Loads  
2
n
n
Solution Size as Small as 50mm  
Low Profile (0.75mm) 2mm × 3mm Thermally  
Enhanced 8-Lead DFN Package  
APPLICATIONS  
n
Automotive Battery Regulation  
n
Power for Portable Products  
n
Distributed Supply Regulation  
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. Burst Mode  
is a registered trademark of Linear Technology Corporation. All other trademarks are the  
property of their respective owners.  
n
Industrial Supplies  
n
Wall Transformer Regulation  
TYPICAL APPLICATION  
Efficiency and Power Loss vs Load Current  
90  
80  
70  
60  
50  
40  
30  
20  
10  
1000  
100  
10  
V
= 12V  
IN  
V
IN  
5.7V TO 40V  
0.22μF  
33μH  
V
BOOST  
IN  
LT3470A  
SHDN  
V
OUT  
5V  
OFF ON  
2.2μF  
SW  
250mA  
BIAS  
604k  
1%  
22pF  
FB  
22μF  
GND  
200k  
1%  
1
3470a TA01  
0.1  
0.1  
1
10  
100  
300  
LOAD CURRENT (mA)  
3470a TA02  
3470afa  
1
LT3470A  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
V , SHDN Voltage ................................................... 40V  
IN  
BOOST Pin Voltage .................................................. 47V  
BOOST Pin Above SW Pin........................................ 25V  
FB Voltage.................................................................. 5V  
BIAS Voltage.............................................................15V  
FB  
BIAS  
1
2
3
4
8
7
6
5
SHDN  
NC  
9
BOOST  
SW  
V
IN  
GND  
SW Voltage ................................................................V  
Maximum Junction Temperature  
LT3470AE, LT3470AI......................................... 125°C  
Operating Temperature Range (Note 2)  
IN  
DDB8 PACKAGE  
8-LEAD (3mm × 2mm) PLASTIC DFN  
= 80°C/W  
θ
JA  
EXPOSED PAD (PIN 9) IS GND, MUST BE SOLDERED TO PCB  
LT3470AE.............................................40°C to 85°C  
LT3470AI............................................ –40°C to 125°C  
Storage Temperature Range................... –65°C to 150°C  
Lead Temperature (Soldering, 10 sec) ................. 300°C  
ORDER INFORMATION  
LEAD FREE FINISH  
LT3470AEDDB#PBF  
LT3470AIDDB#PBF  
TAPE AND REEL  
PART MARKING*  
LDPR  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LT3470AEDDB#TRPBF  
LT3470AIDDB#TRPBF  
–40°C to 85°C  
–40°C to 125°C  
8-Lead (3mm × 2mm) Plastic DFN  
8-Lead (3mm × 2mm) Plastic DFN  
LDPR  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
3470afa  
2
LT3470A  
ELECTRICAL CHARACTERISTICS  
The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
VIN = 10V, VSHDN = 10V, VBOOST = 15V, VBIAS = 3V unless otherwise specified.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Minimum Input Voltage  
Quiescent Current from V  
4
V
V
V
V
= 0.2V  
SHDN  
BIAS  
BIAS  
0.1  
10  
40  
0.5  
18  
55  
μA  
μA  
μA  
IN  
= 3V, Not Switching  
= 0V, Not Switching  
Quiescent Current from Bias  
V
V
V
= 0.2V  
0.1  
30  
0.5  
60  
μA  
μA  
μA  
SHDN  
= 3V, Not Switching  
= 0V, Not Switching  
BIAS  
BIAS  
0.1  
1.5  
FB Comparator Trip Voltage  
FB Pin Bias Current (Note 3)  
V
FB  
V
FB  
Falling  
1.228  
1.250  
1.265  
V
= 1V  
35  
35  
80  
150  
nA  
nA  
FB Voltage Line Regulation  
Minimum Switch Off-Time (Note 5)  
Maximum Duty Cycle  
4V < V < 40V  
0.0006  
500  
95  
0.02  
%/V  
ns  
IN  
90  
%
Switch Leakage Current  
0.7  
150  
0.9  
440  
280  
600  
0.2  
690  
0.2  
1.7  
2.3  
50  
1.5  
μA  
mV  
V
Switch V  
Switch V  
I
= 100mA  
SW  
CESAT  
CESAT  
Without Boost  
V
V
V
= V  
1.2  
BOOST  
SW  
Switch Top Current Limit  
Switch Bottom Current Limit  
Catch Schottky Drop  
= 0V  
320  
560  
mA  
mA  
mV  
μA  
mV  
μA  
V
FB  
FB  
= 0V  
I
= 100mA  
= 10V  
SW  
Catch Schottky Reverse Leakage  
Boost Schottky Drop  
V
2
775  
2
SW  
I
= 50mA  
= 10V, V  
BIAS  
Boost Schottky Reverse Leakage  
Minimum Boost Voltage (Note 4)  
BOOST Pin Current  
V
= 0V  
BIAS  
SW  
2.2  
5
I
= 100mA  
mA  
mA  
μA  
V
SW  
Bias Pin Preload  
V
V
= 10V  
BOOST  
SHDN  
SHDN Pin Current  
= 2.5V  
1
5
SHDN Input Voltage High  
SHDN Input Voltage Low  
2
0.2  
V
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LT3470AE is guaranteed to meet performance specifications  
from 0°C to 85°C. Specifications over the –40°C to 85°C operating  
temperature range are assured by design, characterization and correlation  
with statistical process controls. The LT3470AI specifications are  
guaranteed over the –40°C to 125°C temperature range.  
Note 3: Bias current flows out of the FB pin.  
Note 4: This is the minimum voltage across the boost capacitor needed to  
guarantee full saturation of the switch.  
Note 5: This parameter is assured by design and correlation with statistical  
process controls.  
3470afa  
3
LT3470A  
TA = 25°C unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Efficiency, VOUT = 3.3V  
Efficiency, VOUT = 5V  
VFB vs Temperature  
90  
90  
1.260  
L = TOKO D52LC 47μH  
L = TOKO D52LC 47μH  
V = 12V  
IN  
V
= 7V  
IN  
T
= 25°C  
T
= 25°C  
A
A
V
= 12V  
IN  
80  
70  
80  
70  
1.255  
V
= 36V  
IN  
V
= 24V  
IN  
V
= 24V  
= 36V  
V
IN  
IN  
1.250  
1.245  
60  
50  
60  
50  
40  
30  
40  
30  
1.240  
0.1  
1
10  
100  
0.1  
1
10  
100  
–50 –25  
0
25  
50  
75 100 125  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
3470a G02  
3470a G01  
3470a G03  
Top and Bottom Switch Current  
Limits (VFB = 0V) vs Temperature  
VIN Quiescent Current  
vs Temperature  
600  
50  
40  
30  
20  
10  
0
550  
500  
BIAS < 3V  
BIAS > 3V  
450  
400  
350  
300  
250  
200  
–25  
0
50  
75 100 125  
–50  
25  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3470a G04  
3470a G05  
BIAS Quiescent Current  
(Bias > 3V) vs Temperature  
SHDN Bias Current  
vs Temperature  
30  
25  
20  
15  
9
8
7
6
5
4
3
2
1
V
= 36V  
SHDN  
10  
5
V
= 2.5V  
SHDN  
0
0
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
–50 –25  
0
25  
125  
50  
75 100  
TEMPERATURE (°C)  
3470a G06  
3470a G07  
3470afa  
4
LT3470A  
TA = 25°C unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
FB Bias Current (VFB = 1V)  
vs Temperature  
FB Bias Current (VFB = 0V)  
vs Temperature  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
60  
40  
20  
0
–50 –25  
0
25  
50  
75 100 125  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
TEMPERATURE (°C)  
3470a G08  
3470a G09  
Boost Diode VF (IF = 50mA)  
vs Temperature  
Switch VCESAT (ISW = 100mA)  
vs Temperature  
300  
250  
200  
150  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
100  
50  
0
0
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
–25  
0
50  
75 100 125  
–50  
25  
TEMPERATURE (°C)  
3470a G10  
3470a G11  
Catch Diode VF (IF = 100mA)  
vs Temperature  
Diode Leakage (VR = 36V)  
vs Temperature  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0.7  
0.6  
CATCH  
BOOST  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
50  
TEMPERATURE (°C)  
125  
–50 –25  
0
25  
75 100  
3470a G12  
3470a G13  
3470afa  
5
LT3470A  
TA = 25°C unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Switch VCESAT  
BOOST Pin Current  
700  
600  
500  
14  
12  
10  
400  
300  
200  
100  
0
8
6
4
2
0
100  
200  
SWITCH CURRENT (mA)  
500  
100  
200  
SWITCH CURRENT (mA)  
500  
0
300  
400  
0
300  
400  
3470a G14  
3470a G15  
Catch Diode Forward Voltage  
Boost Diode Forward Voltage  
1.0  
0.8  
0.6  
0.4  
0.2  
0
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
100  
200  
300  
100  
BOOST DIODE CURRENT (mA)  
0
0
200  
400  
50  
150  
CATCH DIODE CURRENT (mA)  
3470a G16  
3470a G17  
Minimum Input Voltage, VOUT = 3.3V  
Minimum Input Voltage, VOUT = 5V  
6.0  
5.5  
8
7
6
5
4
T
= 25°C  
A
T
A
= 25°C  
5.0  
4.5  
V
TO RUN/START  
IN  
4.0  
3.5  
3.0  
V
TO RUN/START  
IN  
0
50  
100  
150  
200  
250  
100  
150  
200  
0
250  
50  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
3470a G18  
3470a G19  
3470afa  
6
LT3470A  
PIN FUNCTIONS  
SHDN (Pin 8): The SHDN pin is used to put the LT3470A in  
shutdown mode. Tie to ground to shut down the LT3470A.  
Apply 2V or more for normal operation. If the shutdown  
BOOST (Pin 3): The BOOST pin is used to provide a drive  
voltage, which is higher than the input voltage, to the  
internal bipolar NPN power switch.  
feature is not used, tie this pin to the V pin.  
IN  
BIAS (Pin 2): The BIAS pin connects to the internal boost  
NC (Pin 7): This pin can be left floating, connected to V ,  
or tied to GND.  
Schottky diode and to the internal regulator. Tie to V  
IN  
OUT  
>3Vthe  
whenV >2.5VortoV otherwise.WhenV  
OUT  
IN  
BIAS  
BIAS pin will supply current to the internal regulator.  
V (Pin 6): The V pin supplies current to the LT3470A’s  
IN  
IN  
internal regulator and to the internal power switch. This  
FB (Pin 1): The LT3470A regulates its feedback pin to  
1.25V. Connect the feedback resistor divider tap to this  
pin. Set the output voltage according to VOUT = 1.25V (1  
+ R1/R2) or R1 = R2 (VOUT/1.25 – 1).  
pin must be locally bypassed.  
GND (Pin 5): Tie the GND pin to a local ground plane  
below the LT3470A and the circuit components. Return  
the feedback divider to this pin.  
Exposed Pad (Pin 9): Ground. Must be soldered to PCB.  
SW (Pin 4): The SW pin is the output of the internal power  
switch. Connect this pin to the inductor, catch diode and  
boost capacitor.  
3470afa  
7
LT3470A  
BLOCK DIAGRAM  
V
IN  
BIAS  
V
IN  
C1  
+
BOOST  
500ns  
ONE SHOT  
R
S
Qʹ  
C3  
Q
L1  
C2  
+
SW  
V
OUT  
ENABLE  
BURST MODE  
DETECT  
NC  
SHDN  
V
REF  
1.25V  
g
m
GND  
FB  
R2  
R1  
3470a BD  
3470afa  
8
LT3470A  
OPERATION  
TheLT3470Ausesahystereticcontrolschemeinconjunc-  
tionwithBurstModeoperationtoprovidelowoutputripple  
and low quiescent current while using a tiny inductor and  
capacitors.  
comparator trips and resets the latch causing the switch  
to turn off. While the switch is off, the inductor current  
ramps down through the catch diode. When both the bot-  
tom current comparator trips and the minimum off-time  
one-shot expires, the latch turns the switch back on thus  
completingafullcycle.Thehystereticactionofthiscontrol  
scheme results in a switching frequency that depends  
on inductor value, input and output voltage. Since the  
switch only turns on when the catch diode current falls  
below threshold, the part will automatically switch slower  
to keep inductor current under control during start-up or  
short-circuit conditions.  
Operation can best be understood by studying the Block  
Diagram. An error amplifier measures the output voltage  
through an external resistor divider tied to the FB pin. If  
the FB voltage is higher than VREF, the error amplifier will  
shut off all the high power circuitry, leaving the LT3470A  
in its micropower state. As the FB voltage falls, the error  
amplifier will enable the power section, causing the chip  
to begin switching, thus delivering charge to the output  
capacitor. If the load is light the part will alternate between  
micropower and switching states to keep the output in  
regulation (See Figure 1a). At higher loads the part will  
switch continuously while the error amp servos the top  
and bottom current limits to regulate the FB pin voltage  
to 1.25V (See Figure 1b).  
The switch driver operates from either the input or from  
the BOOST pin. An external capacitor and internal diode  
is used to generate a voltage at the BOOST pin that is  
higher than the input supply. This allows the driver to  
fully saturate the internal bipolar NPN power switch for  
efficient operation.  
The switching action is controlled by an RS latch and  
two current comparators as follows: The switch turns on,  
and the current through it ramps up until the top current  
If the SHDN pin is grounded, all internal circuits are turned  
off and V current reduces to the device leakage current,  
IN  
typically 100nA.  
NO LOAD  
200mA LOAD  
V
V
OUT  
20mV/DIV  
OUT  
20mV/DIV  
I
L
100mA/DIV  
I
L
100mA/DIV  
1ms/DIV  
1μs/DIV  
10mA LOAD  
150mA LOAD  
V
V
OUT  
20mV/DIV  
OUT  
20mV/DIV  
I
I
L
L
100mA/DIV  
100mA/DIV  
3470a F01a  
3470a F1b  
5μs/DIV  
1μs/DIV  
(1a) Burst Mode Operation  
(1b) Continuous Operation  
Figure 1. Operating Waveforms of the LT3470A Converting 12V to 5V Using a 33μH Inductor and 10μF Output Capacitor  
3470afa  
9
LT3470A  
APPLICATIONS INFORMATION  
Input Voltage Range  
where V  
is the maximum input voltage for the ap-  
IN(MAX)  
plication,t  
is~150nsandI  
isthemaximum  
ON-TIME(MIN)  
MAX  
The minimum input voltage required to generate a par-  
ticular output voltage in an LT3470A application is limited  
by either its 4V undervoltage lockout or by its maximum  
duty cycle. The duty cycle is the fraction of time that the  
internal switch is on and is determined by the input and  
output voltages:  
allowable increase in switch current during a minimum  
switch on-time (150mA). While this equation provides a  
safe inductor value, the resulting application circuit may  
switch at too high a frequency to yield good efficiency.  
It is advised that switching frequency be below 1.2MHz  
during normal operation:  
VOUT + VD  
DC =  
1DC V + V  
(
)
(
)
D
OUT  
V – VSW + VD  
IN  
f =  
L • ΔIL  
where V is the forward voltage drop of the catch diode  
D
(~0.6V) and V is the voltage drop of the internal switch  
where f is the switching frequency, ΔI is the ripple cur-  
rent in the inductor (~200mA), V is the forward voltage  
drop of the catch diode, and V  
voltage.  
SW  
L
at maximum load (~0.4V). Given DC  
to a minimum input voltage of:  
= 0.90, this leads  
MAX  
D
OUT  
is the desired output  
D ꢃ  
OUT + V  
V
V
=
+ VSW – VD  
IN(MIN)  
If the application circuit is intended to operate at high duty  
DCMAX  
cycles (V close to V ), it is important to look at the  
IN  
OUT  
calculated value of the switch off-time:  
Thisanalysisassumestheparthasstartedupsuchthatthe  
capacitor tied between the BOOST and SW pins is charged  
to more than 2V. For proper start-up, the minimum input  
voltage is limited by the boost circuit as detailed in the  
section BOOST Pin Considerations.  
1DC  
tOFF-TIME  
=
f
The calculated t  
minimum t  
should be more than LT3470A’s  
OFF-TIME  
(See Electrical Characteristics), so the  
OFF-TIME  
The maximum input voltage is limited by the absolute  
application circuit is capable of delivering full rated output  
maximum V rating of 40V, provided an inductor of suf-  
IN  
current. If the full output current of 250mA is not required,  
ficient value is used.  
the calculated t  
can be made less than minimum  
OFF-TIME  
t
possibly allowing the use of a smaller inductor.  
OFF-TIME  
Inductor Selection  
See Table 1 for an inductor value selection guide.  
The switching action of the LT3470A during continuous  
operationproducesasquarewaveattheSWpinthatresults  
in a triangle wave of current in the inductor. The hysteretic  
mode control regulates the top and bottom current limits  
(seeElectricalCharacteristics)suchthattheaverageinduc-  
tor current equals the load current. For safe operation, it  
must be noted that the LT3470A cannot turn the switch  
on for less than ~150ns. If the inductor is small and the  
input voltage is high, the current through the switch may  
exceed safe operating limit before the LT3470A is able to  
turn off. To prevent this from happening, the following  
equation provides a minimum inductor value:  
Table 1. Recommended Inductors for Loads up to 250mA  
V
V
IN  
Up to 16V  
10μH  
V
IN  
Up to 40V  
33μH  
OUT  
2.5V  
3.3V  
5V  
10μH  
33μH  
15μH  
33μH  
12V  
33μH  
47μH  
Chooseaninductorthatisintendedforpowerapplications.  
Table 2 lists several manufacturers and inductor series.  
For robust output short-circuit protection at high V (up  
IN  
to 40V) use at least a 33μH inductor with a minimum  
450mA saturation current. If short-circuit performance is  
VIN(MAX) • tON-TIME(MIN)  
not required, inductors with I of 300mA or more may  
SAT  
LMIN  
=
IMAX  
3470afa  
10  
LT3470A  
APPLICATIONS INFORMATION  
Table 2. Inductor Vendors  
VENDOR  
URL  
PART SERIES  
INDUCTANCE RANGE (μH)  
SIZE (mm)  
Coilcraft  
www.coilcraft.com  
DO1605  
ME3220  
DO3314  
10 to 47  
10 to 47  
10 to 47  
1.8 × 5.4 × 4.2  
2.0 × 3.2 × 2.5  
1.4 × 3.3 × 3.3  
Sumida  
www.sumida.com  
CR32  
10 to 47  
10 to 33  
10 to 47  
10 to 15  
3.0 × 3.8 × 4.1  
1.8 × 4.0 × 4.0  
3.0 × 4.0 × 4.0  
2.0 × 3.2 × 3.2  
CDRH3D16/HP  
CDRH3D28  
CDRH2D18/HP  
Toko  
www.tokoam.com  
DB320C  
D52LC  
10 to 27  
10 to 47  
2.0 × 3.8 × 3.8  
2.0 × 5.0 × 5.0  
Würth Elektronik  
www.we-online.com  
WE-PD2 Typ S  
WE-TPC Typ S  
10 to 47  
10 to 22  
3.2 × 4.0 × 4.5  
1.6 × 3.8 × 3.8  
Coiltronics  
Murata  
www.cooperet.com  
www.murata.com  
SD10  
10 to 47  
1.0 × 5.0 × 5.0  
LQH43C  
LQH32C  
10 to 47  
10 to 15  
2.6 × 3.2 × 4.5  
1.6 × 2.5 × 3.2  
be used. It is important to note that inductor saturation  
current is reduced at high temperatures—see inductor  
vendors for more information.  
at the LT3470A’s switching frequency. The capacitor’s  
equivalent series resistance (ESR) determines this im-  
pedance. Choose one with low ESR intended for use in  
switching regulators. The contribution to ripple voltage  
Input Capacitor  
due to the ESR is approximately I  
• ESR. ESR should  
LIM  
be less than ~150mΩ. The value of the output capacitor  
must be large enough to accept the energy stored in the  
inductor without a large change in output voltage. Setting  
this voltage step equal to 1% of the output voltage, the  
output capacitor must be:  
Step-down regulators draw current from the input sup-  
ply in pulses with very fast rise and fall times. The input  
capacitor is required to reduce the resulting voltage ripple  
at the V pin of the LT3470A and to force this switching  
IN  
current into a tight local loop, minimizing EMI. The input  
capacitor must have low impedance at the switching  
frequency to do this effectively. A 1μF to 2.2μF ceramic  
capacitor satisfies these requirements.  
2  
ILIM  
COUT >50 L •  
V
OUT ꢄ  
WhereI isthetopcurrentlimitwithV =0V(seeElectri-  
If the input source impedance is high, a larger value ca-  
pacitor may be required to keep input ripple low. In this  
case, an electrolytic of 10μF or more in parallel with a 1μF  
ceramic is a good combination. Be aware that the input  
capacitor is subject to large surge currents if the LT3470A  
circuit is connected to a low impedance supply, and that  
some electrolytic capacitors (in particular tantalum) must  
be specified for such use.  
LIM  
FB  
cal Characteristics). For example, an LT3470A producing  
3.3V with L = 33μH requires 22μF. The calculated value  
can be relaxed if small circuit size is more important than  
low output ripple.  
Sanyo’s POSCAP series in B-case and provides very good  
performance in a small package for the LT3470A. Similar  
performance in traditional tantalum capacitors requires  
a larger package (C-case). With a high quality capacitor  
filtering the ripple current from the inductor, the output  
voltage ripple is determined by the delay in the LT3470A’s  
feedback comparator. This ripple can be reduced further  
by adding a small (typically 22pF) phase lead capacitor  
between the output and the feedback pin.  
Output Capacitor and Output Ripple  
The output capacitor filters the inductor’s ripple current  
and stores energy to satisfy the load current when the  
LT3470A is quiescent. In order to keep output voltage  
ripple low, the impedance of the capacitor must be low  
3470afa  
11  
LT3470A  
APPLICATIONS INFORMATION  
Ceramic Capacitors  
BOOST and BIAS Pin Considerations  
Ceramic capacitors are small, robust and have very low  
ESR. However, ceramic capacitors can cause problems  
whenusedwiththeLT3470A.Notallceramiccapacitorsare  
suitable. X5R and X7R types are stable over temperature  
and applied voltage and give dependable service. Other  
types, including Y5V and Z5U have very large temperature  
and voltage coefficients of capacitance. In an application  
circuit they may have only a small fraction of their nominal  
capacitanceresultinginmuchhigheroutputvoltageripple  
than expected.  
Capacitor C3 and the internal boost Schottky diode (see  
Block Diagram) are used to generate a boost voltage that  
is higher than the input voltage. In most cases a 0.22μF  
capacitor will work well. Figure 2 shows two ways to ar-  
range the boost circuit. The BOOST pin must be more than  
2.5V above the SW pin for best efficiency. For outputs of  
3.3V and above, the standard circuit (Figure 2a) is best.  
For outputs between 2.5V and 3V, use a 0.47μF. For lower  
output voltages the boost diode can be tied to the input  
V
IN  
C3  
0.22μF  
Ceramic capacitors are piezoelectric. The LT3470A’s  
switching frequency depends on the load current, and at  
light loads the LT3470A can excite the ceramic capacitor  
at audio frequencies, generating audible noise. Since the  
LT3470A operates at a lower current limit during Burst  
Mode operation, the noise is typically very quiet to a ca-  
sual ear. If this audible noise is unacceptable, use a high  
performanceelectrolyticcapacitorattheoutput. Theinput  
capacitor can be a parallel combination of a 2.2μF ceramic  
capacitor and a low cost electrolytic capacitor.  
V
BOOST  
LT3470A  
IN  
V
SW  
OUT  
BIAS  
GND  
V
– V  
BOOST  
V  
OUT  
BOOST  
SW  
MAX V  
V + V  
IN OUT  
(2a)  
V
IN  
C3  
0.22μF  
V
BOOST  
SW  
IN  
LT3470A  
V
BIAS  
OUT  
A final precaution regarding ceramic capacitors concerns  
themaximuminputvoltageratingoftheLT3470A.Aceramic  
input capacitor combined with trace or cable inductance  
forms a high quality (under damped) tank circuit. If the  
LT3470Acircuitispluggedintoalivesupply,theinputvolt-  
agecanringtotwiceitsnominalvalue, possiblyexceeding  
the LT3470A’s rating. This situation is easily avoided; see  
the Hot-Plugging Safely section.  
GND  
3470a F02  
V
– V  
BOOST  
V  
SW  
BOOST  
IN  
IN  
MAX V  
2•V  
(2b)  
Figure 2. Two Circuits for Generating the Boost Voltage  
Table 2. Capacitor Vendors  
Vendor  
Phone  
URL  
Part Series  
Comments  
Panasonic  
(714) 373-7366  
www.panasonic.com  
Ceramic,  
Polymer,  
Tantalum  
EEF Series  
Kemet  
Sanyo  
(864) 963-6300  
(408) 749-9714  
www.kemet.com  
Ceramic,  
Tantalum  
T494, T495  
POSCAP  
www.sanyovideo.com Ceramic,  
Polymer,  
Tantalum  
Murata  
AVX  
(404) 436-1300  
(864) 963-6300  
www.murata.com  
www.avxcorp.com  
Ceramic  
Ceramic,  
Tantalum  
TPS Series  
Taiyo Yuden  
www.taiyo-yuden.com Ceramic  
3470afa  
12  
LT3470A  
APPLICATIONS INFORMATION  
the boost capacitor. When the boost capacitor voltage is  
above 1.8V (typical) the current source turns off, and the  
part may enter BurstMode. This cycle will repeat anytime  
there is an undervoltage condition on the boost capaci-  
tor. See Figure 3 for minimum input voltage for outputs  
of 3.3V and 5V.  
(Figure 2b). The circuit in Figure 2a is more efficient  
because the BOOST pin current and BIAS pin quiescent  
currentcomesfromalowervoltagesource. Youmustalso  
be sure that the maximum voltage ratings of the BOOST  
and BIAS pins are not exceeded.  
The LT3470A monitors the boost capacitor for sufficient  
voltage such that the switch is allowed to fully saturate.  
When boost voltage falls below adequate levels (1.8V  
typical) the switch will operate with about 1V of drop, and  
an internal current source will begin to pull 50mA (typi-  
cal) from the BIAS pin which is typically connected to the  
output. This current forces the LT3470A to switch more  
often and with more inductor current, which recharges  
Shorted Input Protection  
If the inductor is chosen so that it won’t saturate exces-  
sively at the top switch current limit maximum of 525mA,  
an LT3470A buck regulator will tolerate a shorted output  
even if V = 40V. There is another situation to consider  
IN  
in systems where the output will be held high when the  
input to the LT3470A is absent. This may occur in battery  
charging applications or in battery backup systems where  
a battery or some other supply is diode OR-ed with the  
Minimum Input Voltage, VOUT = 3.3V  
6.0  
T
= 25°C  
A
LT3470A’s output. If the V pin is allowed to float and the  
IN  
5.5  
SHDN pin is held high (either by a logic signal or because  
it is tied to V ), then the LT3470A’s internal circuitry will  
5.0  
4.5  
IN  
pull its quiescent current through its SW pin. This is fine  
if your system can tolerate a few mA in this state. If you  
ground the SHDN pin, the SW pin current will drop to es-  
4.0  
3.5  
3.0  
V
TO RUN/START  
IN  
sentially zero. However, if the V pin is grounded while  
IN  
the output is held high, then parasitic diodes inside the  
LT3470A can pull large currents from the output through  
0
50  
100  
150  
200  
250  
the SW pin and the V pin. Figure 4 shows a circuit that  
IN  
LOAD CURRENT (mA)  
will run only when the input voltage is present and that  
3470a F03a  
protects against a shorted or reversed input.  
Minimum Input Voltage, VOUT = 5V  
D1  
8
7
6
5
4
T
A
= 25°C  
V
IN  
V
BOOST  
IN  
LT3470A  
SHDN  
100k  
1M  
V
SW  
OUT  
BIAS  
FB  
V
TO RUN/START  
IN  
GND  
BACKUP  
3470a F04  
Figure 4. Diode D1 Prevents a Shorted Input from Discharging  
a Backup Battery Tied to the Output; It Also Protects the Circuit  
from a Reversed Input. The LT3470A Runs Only When the Input is  
Present Hot-Plugging Safely  
100  
150  
200  
0
250  
50  
LOAD CURRENT (mA)  
3470a F03b  
Figure 3. The Minimum Input Voltage Depends on Output  
Voltage, Load Current and Boost Circuit  
3470afa  
13  
LT3470A  
APPLICATIONS INFORMATION  
PCB Layout  
ideally at the ground terminal of the output capacitor C2.  
Additionally, the SW and BOOST nodes should be kept as  
small as possible. Unshielded inductors can induce noise  
in the feedback path resulting in instability and increased  
output ripple. To avoid this problem, use vias to route the  
For proper operation and minimum EMI, care must be  
taken during printed circuit board layout. Note that large,  
switched currents flow in the power switch, the internal  
catch diode and the input capacitor. The loop formed by  
thesecomponentsshouldbeassmallaspossible.Further-  
more, the system ground should be tied to the regulator  
ground in only one place; this prevents the switched cur-  
rent from injecting noise into the system ground. These  
components,alongwiththeinductorandoutputcapacitor,  
should be placed on the same side of the circuit board,  
and their connections should be made on that layer. Place  
a local, unbroken ground plane below these components,  
andtiethisgroundplanetosystemgroundatonelocation,  
V
trace under the ground plane to the feedback divider  
OUT  
(as shown in Figure 5). Finally, keep the FB node as small  
as possible so that the ground pin and ground traces will  
shield it from the SW and BOOST nodes. Figure 5 shows  
component placement with trace, ground plane and via  
locations. Include vias near the GND pin, or pad, of the  
LT3470A to help remove heat from the LT3470A to the  
ground plane.  
SHDN  
V
IN  
GND  
V
OUT  
3470a F05  
Figure 5. A Good PCB Layout Ensures Proper, Low EMI Operation  
3470afa  
14  
LT3470A  
APPLICATIONS INFORMATION  
Hot-Plugging Safely  
voltage overshoot (it also reduces the peak input current).  
A 0.1μF capacitor improves high frequency filtering. This  
solution is smaller and less expensive than the electrolytic  
capacitor. For high input voltages its impact on efficiency  
is minor, reducing efficiency less than one half percent for  
a 5V output at full load operating from 24V.  
The small size, robustness and low impedance of ceramic  
capacitors make them an attractive option for the input  
bypass capacitor of LT3470A. However, these capacitors  
can cause problems if the LT3470A is plugged into a live  
supply (see Linear Technology Application Note 88 for  
a complete discussion). The low loss ceramic capacitor  
combined with stray inductance in series with the power  
source forms an under damped tank circuit, and the volt-  
High Temperature Considerations  
The die junction temperature of the LT3470A must be  
lowerthanthemaximumratingof125°C.Thisisgenerally  
not a concern unless the ambient temperature is above  
85°C. For higher temperatures, care should be taken in  
the layout of the circuit to ensure good heat sinking of the  
LT3470A. The maximum load current should be derated  
as the ambient temperature approaches the maximum  
junction rating. The die temperature is calculated by  
multiplyingtheLT3470Apowerdissipationbythethermal  
resistance from junction to ambient. Power dissipation  
within the LT3470A can be estimated by calculating the  
totalpowerlossfromanefficiencymeasurement.Thermal  
resistance depends on the layout of the circuit board and  
choice of package. The DFN package with the exposed  
pad has a thermal resistance of approximately 80°C/W.  
Finally, be aware that at high ambient temperatures the  
internalSchottkydiodewillhavesignificantleakagecurrent  
(see Typical Performance Characteristics) increasing the  
quiescent current of the LT3470A converter.  
age at the V pin of the LT3470A can ring to twice the  
IN  
nominal input voltage, possibly exceeding the LT3470A’s  
rating and damaging the part. If the input supply is poorly  
controlled or the user will be plugging the LT3470A into an  
energized supply, the input network should be designed  
to prevent this overshoot. Figure 6 shows the waveforms  
that result when an LT3470A circuit is connected to a 24V  
supply through six feet of 24-gauge twisted pair. The first  
plot is the response with a 2.2μF ceramic capacitor at the  
input. The input voltage rings as high as 35V and the input  
current peaks at 20A. One method of damping the tank  
circuit is to add another capacitor with a series resistor to  
the circuit. In Figure 6b an aluminum electrolytic capacitor  
has been added. This capacitor’s high equivalent series  
resistance damps the circuit and eliminates the voltage  
overshoot. The extra capacitor improves low frequency  
ripplelteringandcanslightlyimprovetheefficiencyofthe  
circuit,thoughitislikelytobethelargestcomponentinthe  
circuit. An alternative solution is shown in Figure 6c. A 1Ω  
resistor is added in series with the input to eliminate the  
3470afa  
15  
LT3470A  
APPLICATIONS INFORMATION  
CLOSING SWITCH  
SIMULATES HOT PLUG  
I
IN  
V
IN  
LT3470A  
2.2μF  
V
IN  
10V/DIV  
+
I
IN  
10A/DIV  
LOW  
STRAY  
IMPEDANCE  
ENERGIZED  
24V SUPPLY  
INDUCTANCE  
10μs/DIV  
DUE TO 6 FEET  
(2 METERS) OF  
TWISTED PAIR  
(6a)  
V
LT3470A  
2.2μF  
IN  
10V/DIV  
+
10μF  
35V  
AI.EI.  
I
IN  
10A/DIV  
10μs/DIV  
(6b)  
1ꢀ  
V
LT3470A  
2.2μF  
IN  
10V/DIV  
0.1μF  
I
IN  
10A/DIV  
3470a F06  
10μs/DIV  
(6c)  
Figure 6: A Well Chosen Input Network Prevents Input Voltage Overshoot and  
Ensures Reliable Operation When the LT3470A is Connected to a Live Supply  
3470afa  
16  
LT3470A  
APPLICATIONS INFORMATION  
3.3V Step-Down Converter  
V
IN  
C3  
4V TO 40V  
0.22μF, 6.3V  
L1  
33μH  
V
BOOST  
IN  
LT3470A  
SHDN  
V
OUT  
3.3V  
OFF ON  
SW  
250mA  
BIAS  
R1  
22pF  
324k  
C1  
1μF  
C2  
22μF  
FB  
GND  
R2  
200k  
3470a TA03  
C1: TDK C3216JB1H105M  
C2: CE JMK316 BJ226ML-T  
L1: TOKO A993AS-270M=P3  
5V Step-Down Converter  
V
IN  
C3  
5.7V TO 40V  
0.22μF, 6.3V  
L1  
33μH  
V
BOOST  
IN  
LT3470A  
SHDN  
V
OUT  
5V  
OFF ON  
SW  
250mA  
BIAS  
R1  
22pF  
604k  
C1  
1μF  
C2  
22μF  
FB  
GND  
R2  
200k  
3470a TA04  
C1: TDK C3216JB1H105M  
C2: CE JMK316 BJ226ML-T  
L1: TOKO A914BYW-330M=P3  
2.5V Step-Down Converter  
V
IN  
C3  
4V TO 40V  
0.47μF, 6.3V  
L1  
33μH  
V
BOOST  
IN  
LT3470A  
SHDN  
V
OUT  
2.5V  
OFF ON  
SW  
250mA  
BIAS  
R1  
22pF  
200k  
C1  
1μF  
C2  
22μF  
FB  
GND  
R2  
200k  
3470a TA07  
C1: TDK C3216JB1H105M  
C2: TDK C2012JB0J226M  
L1: SUMIDA CDRH3D28  
3470afa  
17  
LT3470A  
TYPICAL APPLICATIONS  
1.8V Step-Down Converter  
V
IN  
C3  
4V TO 23V  
0.22μF, 25V  
L1  
22μH  
V
BOOST  
SW  
IN  
LT3470A  
V
OUT  
1.8V  
OFF ON  
SHDN  
250mA  
R1  
BIAS  
22pF  
147k  
C1  
1μF  
C2  
22μF  
FB  
GND  
R2  
332k  
3470a TA05  
C1: TDK C3216JB1H105M  
C2: TDK C2012JB0J226M  
L1: MURATA LQH32CN150K53  
12V Step-Down Converter  
V
IN  
C3  
15V TO 34V  
0.22μF, 16V  
L1  
33μH  
V
BOOST  
IN  
LT3470A  
SHDN  
V
OUT  
12V  
OFF ON  
SW  
250mA  
BIAS  
R1  
22pF  
866k  
C1  
1μF  
C2  
10μF  
FB  
GND  
R2  
100k  
3470a TA06  
C1: TDK C3216JB1H105M  
C2: TDK C3216JB1C106M  
L1: MURATA LQH32CN150K53  
3470afa  
18  
LT3470A  
PACKAGE DESCRIPTION  
DDB Package  
8-Lead Plastic DFN (3mm × 2mm)  
(Reference LTC DWG # 05-08-1702 Rev B)  
0.61 0.05  
(2 SIDES)  
R = 0.115  
0.40 0.10  
8
3.00 0.10  
(2 SIDES)  
TYP  
5
R = 0.05  
TYP  
0.70 0.05  
2.55 0.05  
1.15 0.05  
2.00 0.10  
PIN 1 BAR  
TOP MARK  
PIN 1  
(2 SIDES)  
R = 0.20 OR  
0.25 × 45°  
CHAMFER  
(SEE NOTE 6)  
PACKAGE  
OUTLINE  
0.56 0.05  
(2 SIDES)  
4
1
(DDB8) DFN 0905 REV B  
0.25 0.05  
0.50 BSC  
0.25 0.05  
0.75 0.05  
0.200 REF  
0.50 BSC  
2.20 0.05  
(2 SIDES)  
2.15 0.05  
(2 SIDES)  
0 – 0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING CONFORMS TO VERSION (WECD-1) IN JEDEC PACKAGE OUTLINE M0-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
3470afa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
19  
LT3470A  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
= 3.6V to 25V, V  
LT1616  
25V, 500mA (I ), 1.4MHz, High Efficiency  
Step-Down DC/DC Converter  
V
= 1.25V, I = 1.9mA, I = <1μA,  
Q SD  
OUT  
IN  
OUT  
OUT  
ThinSOT Package  
LT1676  
60V, 440mA (I ), 100kHz, High Efficiency  
V
= 7.4V to 60V, V  
= 1.24V, I = 3.2mA, I = 2.5μA,  
Q SD  
OUT  
IN  
Step-Down DC/DC Converter  
S8 Package  
LT1765  
25V, 2.75A (I ), 1.25MHz, High Efficiency  
V
= 3V to 25V, V  
= 1.2V, I = 1mA, I = 15μA,  
OUT Q SD  
OUT  
IN  
Step-Down DC/DC Converter  
S8, TSSOP16E Packages  
LT1766  
60V, 1.2A (I ), 200kHz, High Efficiency  
V
IN  
= 5.5V to 60V, V = 1.2V, I = 2.5mA, I = 25μA,  
OUT  
OUT  
Q
SD  
Step-Down DC/DC Converter  
TSSOP16/E Package  
= 3V to 25V; V = 1.2V, I = 1mA, I = 6μA,  
OUT Q SD  
LT1767  
25V, 1.2A (I ), 1.25MHz, High Efficiency  
V
OUT  
IN  
Step-Down DC/DC Converter  
MS8/E Packages  
LT1776  
40V, 550mA (I ), 200kHz, High Efficiency  
V
= 7.4V to 40V; V  
= 1.24V, I = 3.2mA, I = 30μA,  
OUT Q SD  
OUT  
IN  
Step-Down DC/DC Converter  
N8, S8 Packages  
LTC®1877  
LTC1879  
LT1933  
600mA (I ), 550kHz, Synchronous  
V
= 2.7V to 10V; V  
= 0.8V, I = 10μA, I = <1μA,  
Q SD  
OUT  
IN  
OUT  
OUT  
OUT  
Step-Down DC/DC Converter  
MS8 Package  
1.2A (I ), 550kHz, Synchronous  
V
= 2.7V to 10V; V  
= 0.8V, I = 15μA, I = <1μA,  
Q SD  
OUT  
IN  
Step-Down DC/DC Converter  
TSSOP16 Package  
36V, 600mA, 500kHz, High Efficiency  
Step-Down DC/DC Converter  
V
= 3.6V to 36V; V  
= 1.25V, I = 2.5μA, I = <1μA,  
Q SD  
IN  
ThinSOT and 2mm × 3mm DFN-6 Package  
V = 3.2V to 34V; V = 1.25V, I = 12μA, I = <1μA,  
IN  
LT1934  
34V, 250mA (I ), Micropower, Step-Down  
OUT  
OUT  
Q
SD  
DC/DC Converter  
ThinSOT and 2mm × 3mm DFN-6 Package  
LT1956  
60V, 1.2A (I ), 500kHz, High Efficiency  
V
IN  
= 5.5V to 60V, V = 1.2V, I = 2.5mA, I = 25μA,  
OUT  
OUT  
Q
SD  
Step-Down DC/DC Converter  
TSSOP16/E Package  
= 2.7V to 6V, V = 0.8V, I = 20μA, I = <1μA,  
OUT Q SD  
LTC3405/LTC3405A  
LTC3406/LTC3406B  
LTC3411  
LTC3412  
LT3430  
300mA (I ), 1.5MHz, Synchronous  
V
IN  
OUT  
Step-Down DC/DC Converter  
ThinSOT Package  
600mA (I ), 1.5MHz, Synchronous  
V
IN  
= 2.5V to 5.5V, V = 0.6V, I = 20μA, I = <1μA,  
OUT Q SD  
OUT  
Step-Down DC/DC Converter  
ThinSOT Package  
1.25A (I ), 4MHz, Synchronous  
V
= 2.5V to 5.5V, V  
= 0.8V, I = 60μA, I = <1μA,  
Q SD  
OUT  
IN  
OUT  
OUT  
OUT  
Step-Down DC/DC Converter  
MS Package  
2.5A (I ), 4MHz, Synchronous  
V
= 2.5V to 5.5V, V  
= 0.8V, I = 60μA, I = <1μA,  
Q SD  
OUT  
IN  
Step-Down DC/DC Converter  
TSSOP16E Package  
60V, 2.75A (I ), 200kHz, High Efficiency  
V
= 5.5V to 60V, V  
= 1.2V, I = 2.5mA, I = 30μA,  
Q SD  
OUT  
IN  
Step-Down DC/DC Converter  
TSSOP16E Package  
= 4V to 40V, V = 1.25V, I = 35μA, I = <1μA, DFN-8,  
OUT Q SD  
LT3470  
40V, 200mA, Micropower Step-Down DC/DC Converter  
V
IN  
ThinSOT Packages  
3470afa  
LT 1108 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
© LINEAR TECHNOLOGY CORPORATION 2008  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

MINI
MINI

LDPW0004-FC

PINFET optical receiver modules
TE

LDPW0004-FCR

PINFET optical receiver modules
TE

LDPW0004-LC

PINFET optical receiver modules
TE

LDPW0004-LCR

PINFET optical receiver modules
TE

LDPW0004-SC

PINFET optical receiver modules
TE

LDPW0004-SCR

PINFET optical receiver modules
TE

LDPW0004-ST

PINFET optical receiver modules
TE

LDPW0004-STR

PINFET optical receiver modules
TE

LDPW0005-FC

PINFET optical receiver modules
TE

LDPW0005-FCR

PINFET optical receiver modules
TE