LIT1108CS8 [Linear]

IC 1.5 A SWITCHING REGULATOR, 25 kHz SWITCHING FREQ-MAX, PDSO8, PLASTIC, SOIC-8, Switching Regulator or Controller;
LIT1108CS8
型号: LIT1108CS8
厂家: Linear    Linear
描述:

IC 1.5 A SWITCHING REGULATOR, 25 kHz SWITCHING FREQ-MAX, PDSO8, PLASTIC, SOIC-8, Switching Regulator or Controller

开关 光电二极管
文件: 总12页 (文件大小:266K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1108  
Micropower  
DC/DC Converter  
Adjustable and Fixed 5V, 12V  
U
DESCRIPTIO  
EATURE  
S
F
Operates at Supply Voltages from 2V to 30V  
Consumes Only 110µA Supply Current  
Works in Step-Up or Step-Down Mode  
Only Four External Components Required  
Low Battery Detector Comparator On-Chip  
User Adjustable Current Limit  
The LT1108 is a versatile micropower DC/DC converter.  
The device requires only four external components to  
deliver a fixed output of 5V or 12V. Supply voltage ranges  
from 2V to 12V in step-up mode and to 30V in step-down  
mode. The LT1108 functions equally well in step-up, step-  
down, or inverting applications.  
Internal 1A Power Switch  
TheLT1108ispin-for-pincompatiblewiththeLT1173,but  
has a duty cycle of 70%, resulting in increased output  
current in many applications. The LT1108 can deliver  
150mA at 5V from a 2 AA cell input and 5V at 300mA from  
9V in step-down mode. Quiescent current is just 110µA,  
making the LT1108 ideal for power conscious battery-  
operated systems.  
Fixed or Adjustable Output Voltage Versions  
Space Saving 8-Pin MiniDIP or S8 Package  
O U  
PPLICATI  
S
A
Palmtop Computers  
3V to 5V, 5V to 12V Converters  
9V to 5V, 12V to 5V Converters  
LCD Bias Generators  
Switch current limit can be programmed with a single  
resistor. Anauxiliarygainblockcanbeconfiguredasalow  
battery detector, linear post regulator, undervoltage lock-  
out circuit, or error amplifier.  
Peripherals and Add-On Cards  
Battery Backup Supplies  
Cellular Telephones  
Portable Instruments  
U
O
TYPICAL APPLICATI  
Palmtop Computer Logic Supply  
Efficiency  
84  
L1*  
100µH  
1N5817  
5V  
150mA  
82  
V
= 3V  
IN  
47Ω  
80  
78  
76  
74  
72  
70  
V
= 2.5V  
= 2V  
IN  
V
I
V
IN  
SW1  
LIM  
IN  
AVX  
+
+
2 × AA  
CELLS  
TPS  
100µF  
LT1108-5  
330µF  
6.3V  
SENSE  
SW2  
GND  
1
10  
100  
*L1 = GOWANDA GA20-103K  
COILTRONICS CTX100-4  
SUMIDA CD105-101K  
LT1108 • TA01  
LOAD CURRENT (mA)  
LT1108 • TA02  
1
LT1108  
W W W  
U
ABSOLUTE AXI U RATI GS  
Supply Voltage (VIN) ............................................... 36V  
SW1 Pin Voltage (VSW1) ......................................... 50V  
SW2 Pin Voltage (VSW2) ............................ 0.5V to VIN  
Feedback Pin Voltage (LT1108) ............................. 5.5V  
Sense Pin Voltage (LT1108, -5, -12) ...................... 36V  
Maximum Power Dissipation ............................ 500mW  
Maximum Switch Current ...................................... 1.5A  
Operating Temperature Range .................... 0°C to 70°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
W
U
/O  
PACKAGE RDER I FOR ATIO  
ORDER PART  
ORDER PART  
TOP VIEW  
TOP VIEW  
NUMBER  
NUMBER  
I
1
2
3
4
FB (SENSE*)  
I
1
2
3
4
FB (SENSE*)  
8
7
6
5
8
7
6
5
LIM  
LIM  
LT1108CN8  
LT1108CN8-5  
LT1108CN8-12  
LT1108CS8  
LT1108CS8-5  
LT1108CS8-12  
V
IN  
SET  
A0  
V
IN  
SET  
A0  
SW1  
SW2  
SW1  
SW2  
GND  
GND  
S8 PART MARKING  
S8 PACKAGE  
8-LEAD PLASTIC SOIC  
N8 PACKAGE  
8-LEAD PLASTIC DIP  
*FIXED VERSIONS  
*FIXED VERSIONS  
1108  
10805  
10812  
TJMAX = 90°C, θJA = 130°C/W  
TJMAX = 90°C, θJA = 150°C/W  
ELECTRICAL CHARACTERISTICS TA = 25°C, VIN = 3V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
Switch OFF  
No Load  
MIN  
TYP  
MAX  
UNITS  
I
Quiescent Current  
110  
150  
µA  
Q
Quiescent Current, Boost Mode Configuration  
LT1108-5  
LT1108-12  
135  
250  
µA  
µA  
V
V
Input Voltage  
Step-Up Mode  
2
12.6  
30.0  
V
V
IN  
Step-Down Mode  
Comparator Trip Point Voltage  
Output Sense Voltage  
LT1108 (Note 1)  
1.2  
1.245  
1.3  
V
LT1108-5 (Note 2)  
LT1108-12 (Note 2)  
4.75  
11.4  
5
12  
5.25  
12.6  
V
V
OUT  
Comparator Hysteresis  
Output Hysteresis  
LT1108  
5
10  
mV  
LT1108-5  
LT1108-12  
20  
50  
40  
100  
mV  
mV  
f
t
Oscillator Frequency  
Duty Cycle  
14  
63  
28  
19  
70  
25  
78  
kHz  
%
OSC  
ON  
Full Load, Step-Up Mode  
Switch-ON Time  
I
Tied to V , Step-Up Mode  
36  
48  
µs  
nA  
nA  
V
LIM  
IN  
Feedback Pin Bias Current  
Set Pin Bias Current  
Gain Block Output Low  
Reference Line Regulation  
LT1108, V = 0V  
10  
50  
FB  
V
SET  
= V  
20  
100  
0.4  
REF  
V
V
I
= 100µA, V = 1V  
SET  
0.15  
OL  
SINK  
2V V 5V  
0.20  
0.02  
0.400  
0.075  
%/V  
%/V  
IN  
5V V 30V  
IN  
SW  
Voltage, Step-Up Mode  
V
IN  
V
IN  
= 3V, I = 650mA  
0.5  
0.8  
0.65  
1.00  
V
V
SAT  
SAT  
SW  
= 5V, I = 1A  
SW  
2
LT1108  
TA = 25°C, VIN = 3V, unless otherwise noted.  
ELECTRICAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
CONDITIONS  
= 12V, I = 650mA  
MIN  
TYP  
MAX  
UNITS  
V
SAT  
SW Voltage, Step-Down Mode  
V
1.1  
1.5  
1.7  
V
V
SAT  
IN  
SW  
A
V
Gain Block Gain  
R = 100k (Note 3)  
L
400  
1000  
400  
0.3  
1
V/V  
mA  
Current Limit  
220from I to V  
LIM IN  
Current Limit Temperature Coefficient  
Switch OFF Leakage Current  
Maximum Excursion Below GND  
%/°C  
µA  
Measured at SW1 Pin  
10µA, Switch OFF  
10  
V
SW2  
I
400  
350  
mV  
SW1  
The  
denotes specifications which apply over the full operating  
Note 2: The output voltage waveform will exhibit a sawtooth shape due to  
the comparator hysteresis. The output voltage on the fixed output versions  
will always be within the specified range.  
temperature range.  
Note 1: This specification guarantees that both the high and low trip points  
of the comparator fall within the 1.2V to 1.3V range.  
Note 3: 100k resistor connected between a 5V source and the A0 pin.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Switch ON Voltage  
Saturation Voltage Step-Up Mode  
(SW2 Pin Grounded)  
Maximum Switch Current  
vs RLIM  
Step-Down Mode  
(SW1 Pin Connected to VIN)  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.4  
1.3  
2V V 5V  
IN  
V
= 3V  
IN  
1.2  
V
IN  
= 2V  
1.1  
1.0  
0.9  
0.8  
V
IN  
= 5V  
0.7  
10  
100  
()  
1000  
0
0.4  
0.6  
0.8  
1.0  
1.2  
0.2  
0.1 0.2 0.3 0.4  
SWITCH CURRENT (A)  
0.7 0.8  
0
0.5 0.6  
R
SWITCH CURRENT (A)  
LIM  
LT1108 • TPC03  
LT1108 • TPC01  
LT1108 • TPC02  
Saturation Voltage Step-Up Mode  
(SW2 Pin Grounded)  
Supply Current vs Switch Current  
Quiescent Current  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
50  
40  
30  
20  
10  
0
120  
115  
110  
105  
V
= 5V  
OUT  
V
= 24V  
IN  
L = 500µH  
100  
95  
V
= 5V  
IN  
V
= 12V  
IN  
L = 250µH  
90  
85  
80  
V
= 2V  
IN  
100  
1000  
0
200  
400  
600  
800  
1000  
–50  
–25  
0
50  
75  
100  
25  
R
LIM  
()  
SWITCH CURRENT (mA)  
TEMPERATURE (°C)  
LT1108 • TPC04  
LTC1108 • TPC05  
LT1108 • TPC06  
3
LT1108  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Oscillator Frequency  
Duty Cycle  
Switch-ON Time  
80  
75  
70  
65  
60  
55  
50  
22  
21  
20  
19  
18  
17  
16  
15  
14  
44  
42  
40  
38  
36  
34  
32  
30  
13  
–25  
0
50  
–50  
75  
100  
25  
–25  
0
50  
–50 –25  
0
25  
50  
75  
100  
–50  
75  
100  
25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (˚C)  
LT1108 • TPC08  
LT1108 • TPC07  
LT1108 • TPC09  
Minimum/Maximum Frequency  
vs ON-Time  
Switch Saturation Voltage  
Step-Up Mode  
Switch Saturation Voltage  
Step-Down Mode  
28  
1.8  
1.7  
0.8  
0.7  
0.6  
0.5  
I
= 650mA  
SW  
I
= 650mA  
SW  
26  
24  
22  
20  
18  
16  
14  
12  
10  
0
1.6  
1.5  
1.4  
0.4  
0.3  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.2  
0.1  
0
25  
30  
35  
40  
45  
50  
–25  
0
50  
–50 –25  
25  
50  
75  
100  
–50  
75  
100  
25  
0
ON-TIME (µs)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
LT1108 • TPC10  
LT1108 • TPC11  
LT1108 • TPC12  
U
O
U
U
PI  
FU CTI  
S
ILIM (Pin 1): Connect this pin to VIN for normal use. Where  
lower current limit is desired, connect a resistor between  
ILIM and VIN. A 220resistor will limit the switch current  
to approximately 400mA.  
GND (Pin 5): Ground.  
AO(Pin6):Auxiliarygainblock(GB)output.Opencollector,  
can sink 100µA.  
SET (Pin 7): GB input. GB is an op amp with positive input  
connected to SET pin and negative input connected to  
1.245V reference.  
FB/SENSE (Pin 8): On the LT1108 (adjustable) this pin  
goes to the comparator input. On the LT1108-5 and  
LT1108-12,thispingoestotheinternalapplicationresistor  
that sets output voltage.  
VIN (Pin 2): Input supply voltage.  
SW1 (Pin 3): Collector of power transistor. For step-up  
mode connect to inductor/diode. For step-down mode  
connect to VIN.  
SW2 (Pin 4): Emitter of power transistor. For step-up  
mode connect to ground. For step-down mode connect to  
inductor/diode. Thispinmustneverbeallowedtogomore  
than a Schottky diode drop below ground.  
4
LT1108  
U
O
1 OPERATI  
The LT1108 is a gated oscillator switcher. This type  
architecture has very low supply current because the  
switch is cycled when the feedback pin voltage drops  
below the reference voltage. Circuit operation can best be  
understood by referring to the LT1108 block diagram.  
Comparator A1 compares the feedback (FB) pin voltage  
with the 1.245V reference signal. When FB drops below  
1.245V, A1 switches on the 19kHz oscillator. The driver  
amplifier boosts the signal level to drive the output NPN  
power switch. The switch cycling action raises the output  
voltage and FB pin voltage. When the FB voltage is suffi-  
cient to trip A1, the oscillator is gated off. A small amount  
of hysteresis built into A1 ensures loop stability without  
external frequency compensation. When the comparator  
output is low, the oscillator and all high current circuitry  
is turned off, lowering device quiescent current to just  
110µA.  
negative input of A2 is the 1.245V reference. A resistor  
divider from VIN to GND, with the mid-point connected to  
the SET pin provides the trip voltage in a low battery  
detector application. A0 can sink 100µA (use a 47k resis-  
tor pull-up to 5V).  
A resistor connected between the ILIM pin and VIN sets  
maximum switch current. When the switch current ex-  
ceeds the set value, the switch cycle is prematurely  
terminated. If current limit is not used, ILIM should be tied  
directly to VIN. Propagation delay through the current-  
limit circuitry is approximately 2µs.  
In step-up mode the switch emitter (SW2) is connected to  
ground and the switch collector (SW1) drives the induc-  
tor; in step-down mode the collector is connected to VIN  
and the emitter drives the inductor.  
The LT1108-5 and LT1108-12 are functionally identical to  
the LT1108. The -5 and -12 versions have on-chip voltage  
setting resistors for fixed 5V or 12V outputs. Pin 8 on the  
fixed versions should be connected to the output. No  
external resistors are needed.  
The oscillator is set internally for 36µs ON-time and 17µs  
OFF-time, allowing continuous mode operation in many  
cases such as 2V to 5V converters. Continuous mode  
greatly increases available output power.  
Gain block A2 can serve as a low battery detector. The  
W
BLOCK DIAGRA S  
LT1108  
LT1108-5/LT1108-12  
SET  
SET  
A2  
A2  
A0  
A0  
V
IN  
V
IN  
GAIN BLOCK/  
ERROR AMP  
GAIN BLOCK/  
ERROR AMP  
I
SW1  
SW2  
I
SW1  
SW2  
LIM  
LIM  
1.245V  
REFERENCE  
1.245V  
REFERENCE  
A1  
A1  
OSCILLATOR  
OSCILLATOR  
DRIVER  
DRIVER  
COMPARATOR  
COMPARATOR  
GND  
LT1108 • BD  
LT1108-5 • BD  
FB  
R2  
753k  
R1  
LT1108-5: R1 = 250k  
LT1108-12: R1 = 87.4k  
GND  
SENSE  
5
LT1108  
PPLICATI  
O U  
W
U
A
S I FOR ATIO  
where VD is the diode drop (0.5V for a 1N5818 Schottky).  
Energy required by the inductor per cycle must be equal or  
greater than  
INDUCTOR SELECTION  
General  
A DC/DC converter operates by storing energy as mag-  
netic flux in an inductor core, and then switching this  
energy into the load. Since it is flux, not charge, that is  
stored, the output voltage can be higher, lower, or oppo-  
site in polarity to the input voltage by choosing an appro-  
priate switching topology.  
P /  
(02)  
f
L
OSC  
in order for the converter to regulate the output.  
When the switch is closed, current in the inductor builds  
according to  
–R't  
L
V
R'  
To operate as an efficient energy transfer element, the  
inductor must fulfill three requirements. First, the induc-  
tancemustbelowenoughfortheinductortostoreadequate  
energy under the worst case condition of minimum input  
voltage and switch-ON time. The inductance must also be  
high enough so maximum current ratings of the LT1108  
and inductor are not exceeded at the other worst case  
condition of maximum input voltage and ON-time.  
IN  
I (t) =  
1e  
(03)  
L
where R' is the sum of the switch equivalent resistance  
(0.8typical at 25°C) and the inductor DC resistance.  
When the drop across the switch is small compared to VIN,  
the simple lossless equation  
V
L
IN  
Additionally, the inductor core must be able to store the  
required flux; i.e., it must not saturate. At power levels  
generally encountered with LT1108 based designs, small  
surface mount ferrite core units with saturation current  
ratings in the 300mA to 1A range and DCR less than 0.4Ω  
(depending on application) are adequate.  
I
t =  
( )  
t
(04)  
L
can be used. These equations assume that at t = 0,  
inductorcurrentiszero.Thissituationiscalleddiscontinu-  
ous mode operation” in switching regulator parlance.  
Setting “t” to the switch-ON time from the LT1108 specifi-  
cationtable(typically36µs)willyieldIPEAK foraspecificL”  
and VIN. Once IPEAK is known, energy in the inductor at the  
end of the switch-ON time can be calculated as  
Lastly, the inductor must have sufficiently low DC resis-  
tancesoexcessivepowerisnotlostasheatinthewindings.  
An additional consideration is Electro-Magnetic Interfer-  
ence (EMI). Toroid and pot core type inductors are recom-  
mended in applications where EMI must be kept to a  
minimum; for example, where there are sensitive analog  
circuitry or transducers nearby. Rod core types are a less  
expensive choice where EMI is not a problem. Minimum  
and maximum input voltage, output voltage and output  
current must be established before an inductor can be  
selected.  
1
2
2
E = LI  
(05)  
L
PEAK  
EL must be greater than PL/fOSC for the converter to deliver  
therequiredpower. ForbestefficiencyIPEAK shouldbekept  
to 1A or less. Higher switch currents will cause excessive  
drop across the switch resulting in reduced efficiency. In  
general, switch current should be held to as low a value as  
possible in order to keep switch, diode and inductor losses  
at a minimum.  
Step-Up Converter  
Inastep-up,orboostconverter(Figure1),powergenerated  
by the inductor makes up the difference between input and  
output. Power required from the inductor is determined by  
As an example, suppose 12V at 30mA is to be generated  
from a 2V to 3V input. Recalling equation (01),  
P = 12V + 0.5V – 2V 30mA = 315mW  
)(  
(06)  
(
)
L
P = V  
+ V – V  
I
) (  
OUT  
(01)  
(
)
MIN  
L
OUT  
D
IN  
6
LT1108  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
where DC = duty cycle (0.60)  
VSW = switch drop in step-down mode  
VD = diode drop (0.5V for a 1N5818)  
IOUT = output current  
Energy required from the inductor is  
P
315mW  
19kHz  
L
=
= 16.6µJ  
(07)  
f
OSC  
VOUT = output voltage  
VIN = minimum input voltage  
Picking an inductor value of 100µH with 0.2DCR results  
in a peak switch current of  
VSW is actually a function of switch current which is in turn  
a function of VIN, L, time, and VOUT. To simplify, 1.5V can  
be used for VSW as a very conservative value.  
–1.0Ω × 36µs  
2V  
1.0Ω  
I
=
1– e  
= 605mA  
(08)  
100µH  
PEAK  
Once IPEAK is known, inductor value can be derived from  
Substituting IPEAK into Equation 04 results in  
V
V  
V  
OUT  
IN MIN  
SW  
1
2
2
L =  
× t  
(11)  
ON  
E = 100µH 6.605A = 18.3µJ  
) (  
(09)  
(
)
L
I
PEAK  
Since 18.3µJ > 16.6µJ, the 100µH inductor will work. This  
trial-and-error approach can be used to select the optimum  
inductor. Keep in mind the switch current maximum rating  
of 1.5A. If the calculated peak current exceeds this, an  
external power transistor can be used.  
where tON = switch-ON time (36µs).  
Next, the current limit resistor RLIM is selected to give IPEAK  
from the RLIM Step-Down Mode curve. The addition of this  
resistor keeps maximum switch current constant as the  
input voltage is increased.  
A resistor can be added in series with the ILIM pin to invoke  
switch current limit. The resistor should be picked so the  
calculated IPEAK at minimum VIN is equal to the Maximum  
Switch Current (from Typical Performance Characteristic  
curves). Then, as VIN increases, switch current is held  
constant, resulting in increasing efficiency.  
As an example, suppose 5V at 300mA is to be generated  
from a 12V to 24V input. Recalling Equation (10),  
2 300mA  
(
)
5 + 0.5  
I
=
= 500mA (12)  
PEAK  
0.60  
12 – 1.5 + 0.5  
Step-Down Converter  
Next, inductor value is calculated using Equation (11)  
The step-down case (Figure 2) differs from the step-up in  
thattheinductorcurrentflowsthroughtheloadduringboth  
the charge and discharge periods of the inductor. Current  
through the switch should be limited to ~650mA in this  
mode. Higher current can be obtained by using an external  
switch (see Figure 3). The ILIM pin is the key to successful  
operation over varying inputs.  
12 – 1.5 – 5  
L =  
36µs = 396µH  
(13)  
500mA  
Use the next lowest standard value (330µH).  
Then pick RLIM from the curve. For IPEAK = 500mA,  
RLIM = 220.  
After establishing output voltage, output current and input  
voltage range, peak switch current can be calculated by the  
formula:  
Positive-to-Negative Converter  
Figure 4 shows hookup for positive-to-negative conver-  
sion. All of the output power must come from the inductor.  
In this case,  
2I  
V
+ V  
OUT D  
OUT  
I
=
(10)  
PEAK  
DC  
V
– V  
+ V  
IN  
SW D  
PL = ( VOUT + VD)(IOUT)  
(14)  
7
LT1108  
PPLICATI  
O U  
W
U
A
S I FOR ATIO  
In this mode the switch is arranged in common collector or The usual step-up configuration for the LT1108 is shown in  
step-down mode. The switch drop can be modeled as a Figure 1. The LT1108 first pulls SW1 low causing VIN –  
0.75V source in series with a 0.65resistor. When the VCESAT to appear across L1. A current then builds up in L1.  
switch closes, current in the inductor builds according to  
At the end of the switch-ON time the current in L1 is  
V
–R't  
L
IN  
V
R'  
L
I
=
t
*
(20)  
I
t =  
( )  
1– e  
(15)  
PEAK  
ON  
L
L
D1  
L1  
where: R' = 0.65+ DCRL  
V
V
IN  
OUT  
VL = VIN – 0.75V  
R3  
R2  
R1  
As an example, suppose 5V at 100mA is to be generated  
from a 4.5V to 5.5V input. Recalling Equation (14),  
I
V
LIM  
IN  
SW1  
+
C1  
LT1108  
FB  
PL = ( 5V + 0.5V)(100mA) = 550mW.  
Energy required from the inductor is  
(16)  
GND  
SW2  
LT1108 • F01  
P
550mW  
19kHz  
L
=
= 28.9µJ  
(17)  
f
Figure 1. Step-Up Mode Hookup  
OSC  
Picking an inductor value of 220µH with 0.3DCR results  
Immediately after switch turn-off, the SW1 voltage pin  
starts to rise because current cannot instantaneously stop  
flowing in L1. When the voltage reaches VOUT + VD, the  
in a peak switch current of  
–0.95Ω × 36µs  
220µH  
4.5V – 0.75V  
(18)  
(
(
)
1– e  
)
inductorcurrentflowsthroughD1intoC1,increasingVOUT  
.
I
=
PEAK  
ThisactionisrepeatedasneededbytheLT1108tokeepVFB  
at the internal reference voltage of 1.245V. R1 and R2 set  
the output voltage according to the formula  
0.65Ω + 0.3Ω  
= 568mA  
Substituting IPEAK into Equation (04) results in  
R2  
R1  
V
= 1+  
1.245V  
(21)  
(
)
OUT  
1
2
E = 220µH 0.568A = 35.5µJ  
) (  
(19)  
(
)
L
2
STEP-DOWN (BUCK MODE) OPERATION  
Since 35.5µJ > 28.9µJ, the 220µH inductor will work.  
A step-down DC/DC converter converts a higher voltage to  
a lower voltage. The usual hookup for an LT1108 based  
step-down converter is shown in Figure 2.  
Finally, RLIM should be selected by looking at the Switch  
Current vs RLIM curve. In this example, RLIM = 150.  
When the switch turns on, SW2 pulls up to VIN – VSW. This  
putsavoltageacrossL1equaltoVIN VSW VOUT, causing  
acurrenttobuildupinL1. Attheendoftheswitch-ONtime,  
the current in L1 is equal to  
STEP-UP (BOOST MODE) OPERATION  
A step-up DC/DC converter delivers an output voltage  
higher than the input voltage. Step-up converters are not  
short-circuit protected since there is a DC path from input  
to output.  
*Expression 20 neglects the effect of switch and coil resistance. This is taken into account in the  
"Inductor Selection" section.  
8
LT1108  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
HIGHER CURRENT STEP-DOWN OPERATION  
V
V V  
IN  
SW  
OUT  
I
=
t
(22)  
PEAK  
ON  
L
Output current can be increased by using a discrete PNP  
pass transistor as shown in Figure 3. R1 serves as a  
current limit sense. When the voltage drop across R1  
equals 0.5VBE, the switch turns off. As shown, switch  
current is limited to 2A. Inductor value can be calculated  
based on formulas in the Inductor Selection Step-Down  
Converter section with the following conservative expres-  
When the switch turns off, the SW2 pin falls rapidly and  
actually goes below ground. D1 turns on when SW2  
reaches 0.4V below ground. D1 MUST BE A SCHOTTKY  
DIODE. The voltage at SW2 must never be allowed to go  
below –0.5V. A silicon diode such as the 1N4933 will allow  
SW2 to go to –0.8V, causing potentially destructive power  
dissipation inside the LT1108. Output voltage is deter-  
mined by  
sion for VSW  
= V + V 1.0V  
Q1SAT  
:
V
(24)  
SW  
R1  
R2 provides a current path to turn off Q1. R3 provides base  
drive to Q1. R4 and R5 set output voltage. A PMOS FET can  
be used in place of Q1 when VIN is between 10V and 20V.  
R2  
R1  
V
= 1+  
1.245V  
(23)  
(
)
OUT  
R3 programs switch current limit. This is especially impor-  
tant in applications where the input varies over a wide  
range. Without R3, the switch stays on for a fixed time each  
cycle. Under certain conditions the current in L1 can build  
up to excessive levels, exceeding the switch rating and/or  
saturating the inductor. The 100resistor programs the  
switch to turn off when the current reaches approximately  
700mA. When using the LT1108 in step-down mode,  
output voltage should be limited to 6.2V or less. Higher  
output voltages can be accommodated by inserting a  
1N5818 diode in series with the SW2 pin (anode connected  
to SW2).  
R1  
Q1  
V
L1  
0.15Ω  
ZETEX ZTX749  
IN  
30V  
V
OUT  
MAX  
R2  
100Ω  
R6  
100Ω  
D1  
1N5821  
R3  
330Ω  
V
I
L
SW1  
IN  
+
+
C2  
C1  
LT1108  
R4  
FB  
SW2  
GND  
R5  
R4  
V
= 1.245V 1 +  
(
)
OUT  
R5  
LT1108 • F03  
Figure 3. Q1 Permits Higher Current Switching  
The LT1108 Functions as Controller  
V
IN  
R3  
100Ω  
+
I
V
IN  
SW1  
FB  
LIM  
C2  
INVERTING CONFIGURATIONS  
LT1108  
GND  
The LT1108 can be configured as a positive-to-negative  
converter (Figure 4), or a negative-to-positive converter  
(Figure 5). In Figure 4, the arrangement is very similar to a  
step-down, except that the high side of the feedback is  
referred to ground. This level shifts the output negative. As  
in the step-down mode, D1 must be a Schottky diode,  
and VOUT should be less than 6.2V. More negative output  
voltages can be accommodated as in the prior section.  
L1  
V
SW2  
OUT  
R2  
R1  
+
D1  
1N5818  
C1  
LT1108 • F02  
Figure 2. Step-Down Mode Hookup  
InFigure5, theinputisnegativewhiletheoutputispositive.  
Inthisconfiguration,themagnitudeoftheinputvoltagecan  
be higher or lower than the output voltage. A level shift,  
9
LT1108  
PPLICATI  
provided by the PNP transistor, supplies proper polarity  
feedback information to the regulator.  
O U  
W
U
A
S I FOR ATIO  
Another situation where the ILIM feature is useful occurs  
whenthedevicegoesintocontinuousmodeoperation.This  
occurs in step-up mode when  
V
IN  
R3  
V
+
V
1
OUT  
DIODE  
<
.
(25)  
I
V
IN  
SW1  
FB  
LIM  
V V  
1DC  
IN  
SW  
+
C2  
LT1108  
GND  
When the input and output voltages satisfy this relation-  
ship,inductorcurrentdoesnotgotozeroduringtheswitch-  
OFFtime. Whentheswitchturnsonagain, thecurrentramp  
starts from the non-zero current level in the inductor just  
prior to switch turn-on. As shown in Figure 6, the inductor  
current increases to a high level before the comparator  
turns off the oscillator. This high current can cause exces-  
sive output ripple and requires oversizing the output ca-  
pacitor and inductor. With the ILIM feature, however, the  
switch current turns off at a programmed level as shown in  
Figure 7, keeping output ripple to a minimum.  
L1  
SW2  
R1  
R2  
+
D1  
1N5818  
C1  
–V  
OUT  
LT1108 • F04  
Figure 4. Positive-to-Negative Converter  
D1  
L1  
V
OUT  
+
R1  
C1  
I
V
2N3906  
LIM  
IN  
SW1  
+
LT1108  
C2  
AO  
GND  
FB  
SW2  
I
L
R2  
R1  
R2  
V
=
1.245V + 0.6V  
OUT  
(
)
LT1108 • F05  
–V  
IN  
ON  
SWITCH  
Figure 5. Negative-to-Positive Converter  
OFF  
LT1108 • F06  
USING THE ILIM PIN  
Figure 6. No Current Limit Causes Large Inductor  
Current Build-Up  
The LT1108 switch can be programmed to turn off at a set  
switch current, a feature not found on competing devices.  
This enables the input to vary over a wide range without  
exceeding the maximum switch rating or saturating the  
inductor. Consider the case where analysis shows the  
LT1108mustoperateatan800mApeakswitchcurrentwith  
a 2.0V input. If VIN rises to 4V, the peak switch current will  
riseto1.6A, exceedingthemaximumswitchcurrentrating.  
With the proper resistor selected (see the “Maximum  
SwitchCurrent vs RLIM” characteristic), the switch current  
willbelimitedto800mA,eveniftheinputvoltageincreases.  
PROGRAMMED CURRENT LIMIT  
I
L
ON  
SWITCH  
OFF  
LT1108 • F07  
Figure 7. Current Limit Keeps Inductor Current Under Control  
10  
LT1108  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
5V  
Figure 8 details current limit circuitry. Sense transistor Q1,  
whose base and emitter are paralleled with power switch  
Q2, is ratioed such that approximately 0.5% of Q2’s  
collector current flows in Q1’s collector. This current  
passed through internal 80resistor R1 and out through  
the ILIM pin. The value of the external resistor connected  
betweenILIM andVIN setsthecurrentlimit. Whensufficient  
switchcurrentflowstodevelopaVBE across R1 +RLIM, Q3  
turns on and injects current into the oscillator, turning off  
the switch. Delay through this circuitry is approximately  
2µs. The current trip point becomes less accurate for  
switch-ON times less than 5µs. Resistor values program-  
ming switch-ON time for 2µs or less will cause spurious  
response in the switch circuitry although the device will  
still maintain output regulation.  
V
IN  
LT1108  
47k  
R1  
R2  
1.245V  
REF  
+
AO  
V
TO  
BAT  
PROCESSOR  
SET  
GND  
R3  
V
– 1.25V  
35.1µA  
LB  
R1 =  
V
= BATTERY TRIP POINT  
LB  
R2 = 33k  
R3 = 1.6M  
LT1108 • F09  
Figure 9. Setting Low Battery Detector Trip Point  
R
I
LIM  
LIM  
(EXTERNAL)  
Table 1. Inductor Manufacturers  
MANUFACTURER  
V
IN  
R1  
80Ω  
(INTERNAL)  
PART NUMBERS  
OCTA-PACTM  
Series  
Coiltronics International  
984 S.W. 13th Court  
Pompano Beach, FL 33069  
305-781-8900  
Q3  
SW1  
Q2  
DRIVER  
Q1  
OSCILLATOR  
Sumida Electric Co. USA  
708-956-0666  
CD54  
CDR74  
CDR105  
SW2  
LT1108 • F08  
Figure 8. LT1108 Current Limit Circuitry  
Table 2. Capacitor Manufacturers  
MANUFACTURER  
PART NUMBERS  
USING THE GAIN BLOCK  
Sanyo Video Components  
1201 Sanyo Avenue  
San Diego, CA 92073  
619-661-6322  
OS-CON Series  
The gain block (GB) on the LT1108 can be used as an error  
amplifier, low battery detector or linear post regulator. The  
gain block itself is a very simple PNP input op amp with an  
open collector NPN output. The negative input of the gain  
blockistiedinternallytothe1.245Vreference.Thepositive  
input comes out on the SET pin.  
Nichicon America Corporation  
927 East State Parkway  
Schaumberg, IL 60173  
708-843-7500  
PL Series  
AVX Corporation  
Myrtle Beach, SC  
803-946-0690  
TPS Series  
Arrangement of the gain block as a low battery detector  
is straightforward. Figure 9 shows hookup. R1 and R2  
need only be low enough in value so that the bias current  
of the SET input does not cause large errors. 33k for R2  
isadequate. R3canbeaddedtointroduceasmallamount  
of hysteresis. This will cause the gain block to “snap”  
when the trip point is reached. Values in the 1M to 10M  
range are optimal. The addition however, of R3 will  
change the trip point.  
Table 3. Transistor Manufacturers  
MANUFACTURER  
PART NUMBERS  
Zetex Inc.  
ZTX 749 (NPN)  
ZTX 849 (NPN)  
ZTX 949 (PNP)  
87 Modular Avenue  
Commack, NY 11725  
516-543-7100  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LT1108  
U
O
TYPICAL APPLICATI S  
5V to 5V Converter  
6.5V-20V to 5V Step-Down Converter  
V
IN  
L1*  
ZETEX  
5V INPUT  
V
IN  
100µH  
5V  
0.22Ω  
OUT  
200mA AT 6.5V  
500mA AT 8V  
IN  
ZTX-949  
6.5V  
TO  
220Ω  
IN  
20V  
100Ω  
+
I
V
LIM  
IN  
100Ω  
220Ω  
47µF  
1N5818  
+
SW1  
330µF  
+
V
I
LIM  
33pF  
IN  
LT1108-5  
SW1  
SENSE  
SW2  
LT1108-5  
GND  
L1*  
300µH  
LT1108 • TA04  
SENSE  
SW2  
GND  
+
MBRS130T3  
330µF  
* L1= COILTRONICS CTX100-4  
–5V OUTPUT  
150mA  
* L1= COILTRONICS CTX300-4  
LT1108 • TA03  
U
PACKAGE DESCRIPTIO  
Dimensions in inches (millimeters) unless otherwise noted.  
N8 Package  
8-Lead Plastic DIP  
0.400  
(10.160)  
MAX  
0.130 ± 0.005  
0.300 – 0.320  
0.045 – 0.065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.128)  
8
1
7
6
5
4
0.065  
(1.651)  
TYP  
0.250 ± 0.010  
(6.350 ± 0.254)  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
0.020  
(0.508)  
MIN  
(3.175)  
MIN  
+0.025  
–0.015  
2
3
0.045 ± 0.015  
(1.143 ± 0.381)  
0.325  
N8 0393  
+0.635  
–0.381  
8.255  
(
)
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
(0.457 ± 0.076)  
S8 Package  
8-Lead Plastic SOIC  
0.189 – 0.197  
(4.801 – 5.004)  
0.010 – 0.020  
(0.254 – 0.508)  
7
5
8
6
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.228 – 0.244  
0.150 – 0.157  
(5.791 – 6.197)  
(3.810 – 3.988)  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
SO8 0393  
1
3
4
2
LT/GP 0493 10K REV 0  
12 Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7487  
(408) 432-1900 FAX: (408) 434-0507 TELEX: 499-3977  
LINEAR TECHNOLOGY CORPORATION 1993  

相关型号:

LIT1108CS8#PBF

IC 1.5 A SWITCHING REGULATOR, 25 kHz SWITCHING FREQ-MAX, PDSO8, PLASTIC, SOIC-8, Switching Regulator or Controller
Linear

LIT1108CS8-12

IC 1.5 A SWITCHING REGULATOR, 25 kHz SWITCHING FREQ-MAX, PDSO8, PLASTIC, SOIC-8, Switching Regulator or Controller
Linear

LIT1108CS8-12#PBF

IC 1.5 A SWITCHING REGULATOR, 25 kHz SWITCHING FREQ-MAX, PDSO8, PLASTIC, SOIC-8, Switching Regulator or Controller
Linear

LITECHIP

Microcontroller
ETC

LITH-1-2

3V LITHIUM COIN CELLS WITH PC MOUNT
PANASONIC

LITH-1-2VLS

3V LITHIUM COIN CELLS WITH PC MOUNT
PANASONIC

LITH-2-2

3V LITHIUM COIN CELLS WITH PC MOUNT
PANASONIC

LITH-2-2C

3V LITHIUM COIN CELLS WITH PC MOUNT
PANASONIC

LITH-2-2VL

3V LITHIUM COIN CELLS WITH PC MOUNT
PANASONIC

LITH-27-2VL

3V LITHIUM COIN CELLS WITH PC MOUNT
PANASONIC

LITH-32-2

3V LITHIUM COIN CELLS WITH PC MOUNT
PANASONIC

LITH-32-3

3V LITHIUM COIN CELLS WITH PC MOUNT
PANASONIC