LM334Z#PBF [Linear]

LM334S - Constant Current Source and Temperature Sensor; Package: TO-92; Pins: 3; Temperature Range: 0°C to 70°C;
LM334Z#PBF
型号: LM334Z#PBF
厂家: Linear    Linear
描述:

LM334S - Constant Current Source and Temperature Sensor; Package: TO-92; Pins: 3; Temperature Range: 0°C to 70°C

传感器 换能器
文件: 总12页 (文件大小:158K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM134 Series  
Constant Current Source  
and Temperature Sensor  
U
FEATURES  
DESCRIPTIO  
1µA to 10mA Operation  
The LM134 is a three-terminal current source designed to  
operate at current levels from 1µA to 10mA, as set by an  
external resistor. The device operates as a true two-  
terminalcurrentsource, requiringnoextrapowerconnec-  
tions or input signals. Regulation is typically 0.02%/V and  
terminal-to-terminal voltage can range from 800mV to  
40V.  
0.02%/V Regulation  
0.8V to 40V Operating Voltage  
Can be Used as Linear Temperature Sensor  
Draws No Reverse Current  
Supplied in Standard Transistor Packages  
U
Because the operating current is directly proportional to  
absolute temperature in degrees Kelvin, the device will  
also find wide applications as a temperature sensor. The  
temperature dependence of the operating current is  
0.336%/°C at room temperature. For example, a device  
operating at 298µA will have a temperature coefficient of  
1µA/°C. The temperature dependence is extremely accu-  
rate and repeatable. Devices specified as temperature  
sensors in the 100µA to 1mA range are the LM134-3,  
LM234-3 and the LM134-6, LM234-6, with the dash  
numbers indicating ±3°C and ±6°C accuracies, respec-  
tively.  
APPLICATIO S  
Current Mode Temperature Sensing  
Constant Current Source for Shunt References  
Cold Junction Compensation  
Constant-Gain Bias for Bipolar Differential Stage  
Micropower Bias Networks  
Buffer for Photoconductive Cell  
Current Limiter  
If a zero temperature coefficient current source is re-  
quired, this is easily achieved by adding a diode and a  
resistor.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
Remote Temperature Sensor with Voltage Output  
Operating Current vs Temperature  
225  
125  
25  
500  
400  
300  
200  
100  
0
V
IN  
5V  
+
V
V
R
SET  
= 226  
R
R
SET  
10mV/°K  
–75  
–175  
–275  
226Ω  
LM234-3  
R1  
10k  
TA01a  
0
100  
200  
300  
400  
500  
OPERATING CURRENT (µA)  
TA01b  
1
LM134 Series  
W W U W  
ABSOLUTE AXI U RATI GS (Note 1)  
V+ to VForward Voltage  
Power Dissipation.............................................. 200mW  
Operating Temperature Range  
LM134 (OBSOLETE) ................... –55°C to 125°C  
LM234-3/LM234-6 ............................–25°C to 100°C  
LM334 ..................................................... 0°C to 70°C  
Storage Temperature Range ................. – 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
LM134 ................................................................. 40V  
LM134-3/LM134-6/LM234-3/  
LM234-6/LM334 ................................................. 30V  
V+ to VReverse Voltage ........................................ 20V  
R Pin to VVoltage.................................................... 5V  
Set Current ........................................................... 10mA  
U
W
U
PACKAGE/ORDER I FOR ATIO  
ORDER PART  
ORDER PART  
BOTTOM VIEW  
NUMBER  
NUMBER  
BOTTOM VIEW  
+
V
V
CURRENT  
SOURCE  
TEMP  
SENSOR  
CURRENT  
SOURCE  
TEMP  
SENSOR  
R
+
V
R
V
LM134H  
LM334H  
LM134H-3  
LM234H-3  
LM134H-6  
LM234H-6  
LM334Z  
LM234Z-3  
LM234Z-6  
H PACKAGE  
Z PACKAGE  
3-LEAD TO-46 METAL CAN  
3-LEAD PLASTIC TO-92  
TJMAX = 150°C, θJA = 440°C/W, θJA = 80°C/W  
TJMAX = 100°C, θJA = 160°C/W  
OBSOLETE PACKAGE  
Consider the S8 or Z Packages for Alternate Source  
ORDER PART  
NUMBER  
V
1
2
3
4
8
7
6
5
NC  
NC  
NC  
NC  
LM334S8  
R
+
V
S8 PART  
MARKING  
NC  
S8 PACKAGE  
8-LEAD PLASTIC SO  
TJMAX = 100°C, θJA = 180°C/W  
334  
Consult LTC Marketing for availability of LM234Z-3 and LM234Z-6  
2
LM134 Series  
ELECTRICAL CHARACTERISTICS  
CURRENT SOURCE (Note 2)  
LM134  
TYP  
LM334  
TYP  
SYMBOL  
I  
PARAMETER  
CONDITIONS  
10µA I 1mA  
MIN  
MAX  
MIN  
MAX  
UNITS  
+
Set Current Error, V = 2.5V  
(Note 3)  
3
5
8
6
8
12  
%
%
%
SET  
SET  
1mA < I 5mA  
SET  
2µA I < 10µA  
SET  
Ratio of Set Current to  
V Current  
10µA I 1mA  
14  
18  
14  
18  
23  
14  
18  
14  
18  
26  
SET  
1mA I  
5mA  
SET  
2µA I 10µA  
23  
26  
SET  
V
Minimum Operating Voltage  
2µA I 100µA  
0.8  
0.9  
1.0  
0.8  
0.9  
1.0  
V
V
V
MIN  
SET  
100µA < I  
1mA  
SET  
1mA < I 5mA  
SET  
+
I  
V  
Average Change in Set Current  
with Input Voltage  
1.5V V 5V  
0.02  
0.05  
0.03  
0.02  
0.1  
%/V  
SET  
2µA I 1mA  
IN  
SET  
+
5V V V  
(Note 5)  
0.01  
0.03  
0.01  
0.03  
0.05  
%/V  
%/V  
MAX  
1.5V V 5V  
1mA < I 5mA  
SET  
5V V V  
(Note 5)  
0.02  
0.02  
%/V  
MAX  
Temperature Dependence of  
Set Current (Note 4)  
25µA I 1mA  
0.96  
1.04  
0.96  
1.04  
SET  
C
Effective Shunt Capacitance  
15  
15  
pF  
S
TEMPERATURE SENSOR (Note 2)  
LM134-3,LM234-3  
LM134-6, LM234-6  
SYMBOL  
I  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
+
Set Current Error, V = 2.5V  
(Note 3)  
100µA I 1mA  
±1  
±2  
%
SET  
SET  
T = 25°C  
j
Equivalent Temperature Error  
Ratio of Set Current to  
V Current  
±3  
±6  
°C  
100µA I 1mA  
14  
18  
26  
14  
18  
26  
SET  
V
Minimum Operating Voltage  
100µA I 1mA  
0.9  
0.9  
V
MIN  
SET  
+
I  
V  
Average Change in Set Current  
with Input Voltage  
1.5V V 5V  
0.02  
0.05  
0.02  
0.1  
%/V  
SET  
100µA I 1mA  
5V V 30V  
IN  
SET  
+
0.01  
0.03  
1.02  
0.01  
0.05  
1.03  
%/V  
Temperature Dependence of  
Set Current (Note 4)  
100µA I 1mA  
0.98  
0.97  
SET  
Equivalent Slope Error  
±2  
±3  
%
C
Effective Shunt Capacitance  
15  
15  
pF  
S
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
is expressed as a percent deviation from this amount. I increases at  
SET  
0.336%/°C at T = 25°C.  
j
Note 2: Unless otherwise specified, tests are performed at T = 25°C with  
Note 4: I is nominally directly proportional to absolute temperature  
SET  
j
pulse testing so that junction temperature does not change during test.  
(°K). I  
at any temperature can be calculated from: I = I (T/T )  
SET SET O O  
+
where I is I  
measured at T (°K).  
O
O
SET  
Note 3: Set current is the current flowing into the V pin. It is determined  
by the following formula: I = 67.7mV/R (at 25°C). Set current error  
Note 5: V  
= 40V for LM134 and 30V for other grades.  
SET  
SET  
MAX  
3
LM134 Series  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Maximum Slew Rate for  
Linear Operation  
Start-Up  
Output Impedance  
9
8
7
6
10  
10  
10  
10  
10  
10µA  
0µA  
I = 10µA  
200µs  
1.0  
100µA  
0µA  
50µs  
5µs  
I = 100µA  
0.1  
1mA  
0mA  
5V  
0.01  
I = 1mA  
INPUT  
0.001  
0V  
10  
100  
1k  
10k  
1
10  
100  
(µA)  
1000  
10000  
TIME  
FREQUENCY (Hz)  
I
(*NOTE SCALE CHANGES FOR EACH CURRENT LEVEL)  
SET  
134 G02  
134 G01  
134 G03  
Current Noise  
Voltage Across RSET  
Transient Response  
86  
82  
78  
74  
70  
66  
62  
58  
54  
50  
46  
2
10k  
2µs  
1
0
I
= 1mA  
SET  
1k  
100  
10  
+
V
TO V = 5V  
V = 0.4V  
t , = 500ns  
–1  
5
I
I
= 5mA  
= 1mA  
SET  
SET  
r
f
0
I
= 100µA  
10µs  
50µs  
SET  
I
= 100µA  
= 10µA  
–5  
10  
0
SET  
I
SET  
I
= 10µA  
SET  
–10  
–20  
1
TIME  
–50  
0
25  
50  
75 100 125  
–25  
10  
100  
1k  
10k  
100k  
(*NOTE SCALE CHANGES FOR EACH CURRENT LEVEL)  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
134 G06  
134 G04  
1314/15 G01  
Operating Current vs  
Temperature  
Ratio of ISET to VCurrent  
Turn-On Voltage  
225  
500  
400  
300  
200  
100  
0
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10mA  
T = 25°C  
j
R
SET  
= 226Ω  
R
R
= 14Ω  
= 68Ω  
SET  
SET  
125  
25  
1mA  
100µA  
10µA  
R
= 680Ω  
SET  
R
–75  
–175  
–275  
= 6.8k  
SET  
1µA  
0
100  
200  
300  
400  
500  
10µA  
100µA  
1mA  
10mA  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
+
I
V
TO V VOLTAGE  
OPERATING CURRENT (µA)  
SET  
134 G08  
134 G02  
134 G09  
4
LM134 Series  
U
W U U  
APPLICATIO S I FOR ATIO  
Basic Theory of Operation  
the device is ±2% when the room temperature current is  
set to the exact desired value.  
The equivalent circuit of the LM134 is shown in Figure 1.  
A reference voltage of 64mV is applied to the minus input  
of A1 with respect to the Vpin. A1 serves the drive to Q2  
to keep the R pin at 64mV, independent of the value of  
Supply Voltage Slew Rate  
At slew rates above a given threshold (see curve), the  
LM134 may exhibit nonlinear current shifts. The slewing  
rate at which this occurs is directly proportional to ISET. At  
ISET = 10µA, maximum dv/dt is 0.01V/µs; at ISET = 1mA,  
the limits is 1V/µs. Slew rates above the limit do not harm  
the LM134, or cause large currents to flow.  
R
SET. Transistor Q1 is matched to Q2 at a 17:1 ratio so that  
the current flowing out of the Vpin is always 1/18 of the  
total current into the V+ pin. This total current is called ISET  
and is equal to:  
64mV 18  
RSET 17  
67.7mV  
RSET  
=
Thermal Effects  
Internal heating can have a significant effect on current  
regulation for ISET greater than 100µA. For example, each  
1V increase across the LM134 at ISET = 1mA will increase  
junction temperature by 0.4°C in still air. Output current  
(ISET) has a temperature coefficient of 0.33%/°C, so the  
changeincurrentduetotemperaturerisewillbe(0.4)(0.33)  
= 0.132%. This is a 10:1 degradation in regulation com-  
pared to true electrical effects. Thermal effects, therefore,  
must be taken into account when DC regulation is critical  
and ISET exceeds 100µA. Heat sinking of the TO-46 pack-  
age or the TO-92 leads can reduce this effect by more than  
3:1.  
+
V
I
SET  
Q1  
Q2  
+
R
R
V
A1  
+
SET  
64mV  
134 F01  
Figure 1.  
Shunt Capacitance  
The 67.7mV equivalent reference voltage is directly pro-  
portional to absolute temperature in degrees Kelvin (see  
curve, “Operating Current vs Temperature”). This means  
that the reference voltage can be plotted as a straight line  
going from 0mV at absolute zero temperature to 67.7mV  
at 298°K (25°C). The slope of this line is 67.7mV/298 =  
227µV/°C.  
In certain applications, the 15pF shunt capacitance of the  
LM134 may have to be reduced, either because of loading  
problems or because it limits the AC output impedance of  
the current source. This can be easily accomplished by  
buffering the LM134 with a FET, as shown in the applica-  
tions. This can reduce capacitance to less than 3pF and  
improve regulation by at least an order of magnitude. DC  
characteristics (with the exception of minimum input  
voltage) are not affected.  
The accuracy of the device is specified as a percent error  
at room temperature, or in the case of the -3 and -6  
devices, as both a percent error and an equivalent tem-  
perature error. The LM134 operating current changes at a  
percentrateequalto(100)(227µV/°C)/(67.7mV)=0.336%/  
°C at 25°C, so each 1% operating current error is equiva-  
lent to 3°C temperature error when the device is used as  
a temperature sensor. The slope accuracy (temperature  
coefficient) of the LM134 is expressed as a ratio com-  
pared to unity. The LM134-3, for instance, is specified at  
0.98 to 1.02, indicating that the maximum slope error of  
Noise  
Current noise generated by the LM134 is approximately 4  
times the shot noise of a transistor. If the LM134 is used  
as an active load for a transistor amplifier, input referred  
noise will be increased by about 12dB. In many cases, this  
is acceptable and a single stage amplifier can be built with  
a voltage gain exceeding 2000.  
5
LM134 Series  
U
W U U  
APPLICATIO S I FOR ATIO  
Lead Resistance  
voltage across the 10k resistor will be 2.98V at 25°C, with  
a slope of 10mV/°C. The simplest way to convert this  
signal to a Centigrade scale is to subtract a constant 2.73V  
in software. Alternately, a hardware conversion can be  
used, as shown in Figure 3, using an LT1009 as a level  
shifter to offset the output to a Centigrade scale.  
The sense voltage which determines the operating current  
of the LM134 is less than 100mV. At this level, thermo-  
couple or lead resistance effects should be minimized by  
locating the current setting resistor physically close to the  
device. Sockets should be avoided if possible. It takes only  
0.7contact resistance to reduce output current by 1% at  
the 1mA level.  
The resistor (RSET) used to set the operating current of the  
LM134 in temperature sensing applications should have  
low temperature coefficient and good long term stability.  
A30ppm/°Cdriftintheresistorwillchangetheslopeofthe  
temperature sensor by 1%, assuming that the resistor is  
atthesametemperatureasthesensor,whichisusuallythe  
case since the resistor should be located physically close  
to the LM134 to prevent errors due to wire resistance. A  
long term shift of 0.3% in the resistor will create a 1°C  
temperature error. The long term drift of the LM134 is  
typicallymuchbetterthanthis, sostableresistorsmustbe  
used for best long term performance.  
Start-Up Time  
The LM134 is designed to operate at currents as low as  
1µA. This requires that internal biasing current be well  
below that level because the device achieves its wide  
operating current range by using part of the operating  
current as bias current for the internal circuitry. To ensure  
start-up, however, a fixed trickle current must be provided  
internally. This is typically in the range of 20nA to 200nA  
and is provided by the special ultralow IDDS FETs shown in  
the Schematic Diagrams as Q7 and Q8. The start-up time  
of the LM134 is determined by the IDSS of these FETs and  
the capacitor C1. This capacitor must charge to approxi-  
mately 500mV before Q3 turns on to start normal circuit  
operation. This takes as long as (500mV)(50pF)/(20nA) =  
1.25ms for very low IDSS values.  
Calibration of the LM134 as a temperature sensor is  
extremelyeasy.ReferringtoFigure2,calibrationisachieved  
by trimming the termination resistor. This theoretically  
trims both zero and slope simultaneously for Centigrade  
andFahrenheitapplications.TheinitialerrorsintheLM134  
are directly proportional to absolute temperature, just like  
the actual output. This allows the sensor to be trimmed at  
any temperature and have the slope error be corrected at  
the same time. Residual slope error is typically less than  
1% after this single trim is completed.  
Using the LM134 as a Temperature Sensor  
Because it has a highly linear output characteristic, the  
LM134makesagoodtemperaturesensor. Itisparticularly  
useful in remote sensing applications because it is a  
current output device and is therefore not affected by long  
wire runs. It is easy to calibrate, has good long term  
stability and can be interfaced directly with most data  
acquisition systems, eliminating the expensive preampli-  
fiers required for thermocouples and platinum sensors.  
V
S
5V  
+
V
V
LM234-3  
R
TO DATA  
ACQUISITION  
SYSTEM  
R
SET  
226Ω  
10mV/°K  
I = 1µA/°K  
9.53k  
1k  
A typical temperature sensor application is shown in  
Figure 2. The LM134 operating current at 25°C is set at  
298µA by the 226resistor, giving an output of 1µA/°K.  
The current flows through the twisted pair sensor leads to  
the 10k termination resistor, which converts the current  
output to a voltage of 10mV/°K referred to ground. The  
CALIBRATE  
134 F02  
Figure 2 Kelvin Temperature Sensor  
6
LM134 Series  
U
W U U  
APPLICATIO S I FOR ATIO  
If higher accuracy is required, a two point calibration  
techniquecanbeused.InFigure4,separatezeroandslope  
trims are provided. Residual nonlinearity is now the limi-  
tation on accuracy. Nonlinearity of the LM134 in a 100°C  
span is typically less than 0.5°C. This particular method of  
trimming has the advantage that the slope trim does not  
interact with the zero trim. Trim procedure is to adjust for  
zero output with TSENSOR = 0°C, then trim slope for proper  
output at some convenient second temperature. No fur-  
ther trimming is required.  
The two trims shown in Figure 3 are still intended to be a  
“one point” temperature calibration, where the zero and  
theslopearetrimmedatasingletemperature. TheLT1009  
referenceisadjustedtogive2.700VatnodeaatTSENSOR  
= 25°C. The 1k trimmer then adjusts the output for 0.25V,  
completing the calibration. If the calibration is to be done  
at a temperature other than 25°C , trim the LT1009 for  
2.7025—(1µA)[TSENSOR (°C)](100) at node “a”, then  
adjust the 1k trimmer for proper output.  
V
4V  
S
+
+
V
5V  
V
LM134-3  
R
+
V
LM134-3  
R
R
OUTPUT  
SET  
226Ω  
10mV/°C  
V
9.53k  
OUTPUT  
226*  
1%  
10mV/°C  
V
332k  
1%  
11k*  
1%  
1k  
SLOPE  
ADJ  
50k  
SLOPE  
TRIM  
500k  
*LOW TC, STABLE RESISTOR  
LT1009  
ZERO  
TRIM  
10k  
15k  
LT1009  
100Ω  
“a”  
10k  
–15V  
134 F04  
134 F03  
10k  
ZERO  
ADJ  
–15V  
Figure 4. Centigrade Temperature Sensor with 2 Point Trim  
Figure 3. Centigrade Temperature Sensor  
U
TYPICAL APPLICATIO S  
Basic 2-Terminal  
Zero Temperature  
Coefficient Current Source  
Low Output Impedance  
Thermometer (Kelvin Output)  
Current Source  
V
IN  
V
IN  
V
IN  
4.8V  
+
I
+
+
+
V
V
V
R3*  
600Ω  
R
R
R
V
= 10mV/°K  
100Ω  
I
OUT  
OUT  
SET  
Z
R1  
230Ω  
1%  
R
SET  
V
LM334  
LM334  
LM334  
V
V
R
SET  
R2  
10k  
1%  
C1  
0.1µF  
D1  
1N457  
R1*  
10 R  
134 TA02  
SET  
–V  
IN  
134 TA03  
–V  
IN  
134 TA04  
*SELECT RATIO OF R1 TO R  
TO  
SET  
+
*OUTPUT IMPEDANCE OF THE LM134 AT THE “R” PIN IS  
OBTAIN ZERO DRIFT. I 2 I  
.
SET  
–R  
O
APPROXIMATELY  
, WHERE R IS THE EQUIVALENT  
O
16  
EXTERNAL RESISTANCE CONNECTED TO THE V PIN. THIS  
NEGATIVE RESISTANCE CAN BE REDUCED BY A FACTOR OF  
5 OR MORE BY INSERTING AN EQUIVALENT RESISTOR IN  
SERIES WITH THE OUTPUT.  
7
LM134 Series  
U
TYPICAL APPLICATIO S  
Higher Output Current  
Low Input Voltage Reference Driver  
Low Output Impedance Thermometer  
V
IN  
V  
REF  
+ 200mV  
V
V
IN  
IN  
R1  
1.5k  
R1  
15k  
R2  
300Ω  
2N2905  
R1*  
C1  
0.1  
Q1  
2N4250  
2N4250  
+
+
V
V
= V + 64mV AT 25°C  
V
OUT  
Z
C1*  
+
V
V
+
Z
I
3mA  
OUT  
LT1009  
V
Z
= 10mV/°K  
2Ω  
OUT  
OUT  
V
R
R
C1  
0.0022  
R
LM334  
R3  
100Ω  
R
SET  
R2  
120Ω  
LM334  
V
LM334  
V
R4  
4.5k  
–V  
TA05  
IN  
TA07  
*SELECT R1 AND C1 FOR OPTIMUM STABILITY  
TA06  
Micropower Bias  
Zener Biasing  
1.2V Regulator with 1.8V Minimum Input  
V
1.8V  
IN  
V
IN  
100k  
V
IN  
2N4250  
V
C1  
0.001  
+
V
R1  
33k  
= 1.2V  
200µA  
LM4250  
OUT  
I
OUT  
R
LM334  
1N457**  
1µA  
+
R
SET  
+
R1*  
6k  
1%  
V
V
V
R
SET  
V
OUT  
68k  
R
R
LM134**  
LM334  
V
Z
R2*  
680Ω  
1%  
V
V
TA10  
TA09  
TA08  
*
SELECT RATIO OF R1 TO R2 FOR ZERO TEMPERATURE DRIFT  
LM134 AND DIODE SHOULD BE ISOTHERMAL  
–V  
IN  
**  
Buffer for Photoconductive Cell  
Alternate Trimming Technique  
High Precision Low TC Current Source  
+
I
50µA  
SET  
V
IN  
+
V
+
V
R
LM334  
+
R
V
LM334  
V
R
R
SET  
1.5V  
V
LM334  
R1*  
R1  
6.8k  
LT1004-1.2  
(1.235V)  
R2*  
V
TA11  
TA12  
TA13  
–V  
IN  
*FOR ±10% ADJUSTMENT, SELECT R  
10% HIGH AND MAKE R1 3R  
1.37V  
R2  
SET  
*I  
=
+ 10µA  
SET  
SET  
I
TC = 0.016%/°C + 33nA/°C  
SET  
REGULATION 0.001%/V  
8
LM134 Series  
U
TYPICAL APPLICATIO S  
Precision 10nA Current Source  
Micropower 5V Reference  
V
IN  
= 6.5V TO 15V  
15V  
V
+
R
LM334  
R
LM134  
5.6k  
R1  
2.7k  
V
7
3
+
6
R2  
226k  
LM4250  
V
OUT  
= 5V  
LT1004-1.2  
15V  
2
8
LT1004-1.2  
(1.235V)  
22M  
R3  
3.01M  
1%  
4
150pF  
1M  
2
7
1M  
1%  
BUFFERED  
VOLTAGE  
OUTPUT  
R4  
100MΩ  
6
LT1008  
3
8
TA15  
+
I
200pF  
O
4
I
Z
= 10nA  
12  
O
–15V  
10 Ω  
O
TA14  
COMPLIANCE = –14V TO 12.5V  
FET Cascoding for Low Capacitance  
and/or Ultrahigh Output Impedance  
V
IN  
V
IN  
I
SET  
+
V
LM334  
R
Q1*  
V
+
LM334  
R
R
SET  
V
Q2*  
R
SET  
V
I
SET  
TA16  
–V  
–V  
IN  
IN  
*SELECT Q1 OR Q2 TO ENSURE AT LEAST 1V  
ACROSS THE LM134. V (1 – I /I ) 1.2V.  
P
SET DSS  
W
W
SCHE ATIC DIAGRA  
+
V
Q7  
Q8  
Q4  
Q5  
Q6  
Q3  
Q2  
Q1  
C1  
50pF  
R
V
134 SD  
9
LM134 Series  
U
PACKAGE DESCRIPTIO  
H Package  
2-Lead and 3-Lead TO-46 Metal Can  
(Reference LTC DWG # 05-08-1340)  
0.100  
(2.540)  
TYP  
0.209 – 0.219  
(5.309 – 5.537)  
0.178 – 0.195  
(4.521 – 4.953)  
0.050  
(1.270)  
TYP  
0.050  
(1.270)  
TYP  
0.085 – 0.105  
(2.159 – 2.667)  
PIN 1  
0.500  
(12.700)  
MIN  
FOR 3-LEAD PACKAGE ONLY  
REFERENCE  
45°  
PLANE  
0.028 – 0.048  
(0.711 – 1.219)  
0.036 – 0.046  
(0.914 – 1.168)  
*
0.025  
(0.635)  
MAX  
H02/03(TO-46) 1098  
0.016 – 0.021**  
*LEAD DIAMETER IS UNCONTROLLED BETWEEN THE REFERENCE PLANE  
AND 0.045" BELOW THE REFERENCE PLANE  
0.016 – 0.024  
**FOR SOLDER DIP LEAD FINISH, LEAD DIAMETER IS  
(0.406 – 0.610)  
(0.406 – 0.533)  
DIA  
OBSOLETE PACKAGE  
Z Package  
3-Lead Plastic TO-92 (Similar to TO-226)  
(Reference LTC DWG # 05-08-1410)  
0.180 ± 0.005  
(4.572 ± 0.127)  
0.060 ± 0.005  
(1.524± 0.127)  
DIA  
0.90  
(2.286)  
NOM  
0.180 ± 0.005  
(4.572 ± 0.127)  
5°  
NOM  
0.500  
(12.70)  
MIN  
0.050  
(1.270)  
MAX  
UNCONTROLLED  
LEAD DIMENSION  
0.016 ± 0.003  
0.015 ± 0.002  
(0.406 ± 0.076)  
(0.381 ± 0.051)  
0.050  
(1.27)  
BSC  
Z3 (TO-92) 0401  
0.098 +016/–0.04  
(2.5 +0.4/–0.1)  
2 PLCS  
0.060 ± 0.010  
(1.524 ± 0.254)  
TO-92 TAPE AND REEL  
REFER TO TAPE AND REEL SECTION OF  
LTC DATA BOOK FOR ADDITIONAL INFORMATION  
0.140 ± 0.010  
(3.556 ± 0.127)  
10° NOM  
10  
LM134 Series  
U
PACKAGE DESCRIPTIO  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
7
5
8
6
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
SO8 1298  
1
3
4
2
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.016 – 0.050  
(0.406 – 1.270)  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
TYP  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LM134 Series  
U
TYPICAL APPLICATIO S  
In-Line Current Limiter  
Generating Negative Output Impedance  
R
SET  
V
IN  
R
+
V
V
+
V
IN  
V
R1*  
C1*  
R
LM334  
R
SET  
V
LM334  
OP AMP  
–V  
TA18  
IN  
TA17  
*Z  
–16 • R1(R1/V MUST NOT EXCEED I ).  
IN SET  
OUT  
*USE MINIMUM VALUE REQUIRED TO  
ENSURE STABILITY OF PROTECTED  
DEVICE. THIS MINIMIZES INRUSH  
CURRENT TO A DIRECT SHORT.  
Ground Referred Fahrenheit Thermometer  
V
3V  
IN  
R4  
56k  
2N4250  
C1  
0.01  
V
= 10mV/°F  
OUT  
10°F T 250°F  
V
IN  
R1  
8.25k  
1%  
+
V
V
R5**  
R
R3*  
R2  
100Ω  
1%  
LT1009  
2.5V*  
LM334  
TA19  
*SELECT R3 = V /583µA  
REF  
**SELECT FOR 1.2mA  
134sc LT/CP 1001 1.5K REV C • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1991  
12 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LM334Z/LFT1

LM134/LM234/LM334 3-Terminal Adjustable Current Sources
TI

LM334Z/NOPB

LM134/LM234/LM334 3-Terminal Adjustable Current Sources
TI

LM334ZLFT1

LM134/LM234/LM334 3-Terminal Adjustable Current Sources
TI

LM334ZT

Three terminal adjustable current sources
STMICROELECTR

LM335

PRECISION TEMPERATURE SENSORS
STMICROELECTR

LM335

Precision Temperature Sensors
NSC

LM335

采用气密性封装的 10mV/K、2C 模拟温度传感器
TI

LM3350

Switched Capacitor Voltage Converter
NSC

LM3350MDC

IC SWITCHED CAPACITOR CONVERTER, 1100 kHz SWITCHING FREQ-MAX, UUC, DIE, Switching Regulator or Controller
NSC

LM3350MM

Switched Capacitor Voltage Converter
NSC

LM3350MMX

Switched Capacitor Voltage Converter
NSC

LM3350MMX/NOPB

SWITCHED CAPACITOR CONVERTER, 1100kHz SWITCHING FREQ-MAX, PDSO8, MINI, SO-8
TI