LT1013DN8#TRPBF [Linear]

IC DUAL OP-AMP, 400 uV OFFSET-MAX, PDIP8, 0.300 INCH, LEAD FREE, PLASTIC, DIP-8, Operational Amplifier;
LT1013DN8#TRPBF
型号: LT1013DN8#TRPBF
厂家: Linear    Linear
描述:

IC DUAL OP-AMP, 400 uV OFFSET-MAX, PDIP8, 0.300 INCH, LEAD FREE, PLASTIC, DIP-8, Operational Amplifier

运算放大器 放大器电路
文件: 总20页 (文件大小:548K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1013/LT1014  
Quad Precision Op Amp (LT1014)  
Dual Precision Op Amp (LT1013)  
U
FEATURES  
DESCRIPTION  
TheLT®1014isthefirstprecisionquadoperationalamplifier  
which directly upgrades designs in the industry standard  
14-pinDIPLM324/LM348/OP-11/4156pinconfiguration.  
Single Supply Operation  
Input Voltage Range Extends to Ground  
Output Swings to Ground while Sinking Current  
Pin Compatible to 1458 and 324 with Precision Specs It is no longer necessary to compromise specifications,  
Guaranteed Offset Voltage  
Guaranteed Low Drift  
Guaranteed Offset Current  
Guaranteed High Gain  
150µV Max.  
2µV/°C Max.  
0.8nA Max.  
while saving board space and cost, as compared to single  
operational amplifiers.  
TheLT1014’slowoffsetvoltageof50µV, driftof0.3µV/°C,  
offset current of 0.15nA, gain of 8 million, common-mode  
rejection of 117dB and power supply rejection of 120dB  
qualify it as four truly precision operational amplifiers.  
Particularly important is the low offset voltage, since no  
offset null terminals are provided in the quad configura-  
tion. Although supply current is only 350µA per amplifier,  
a new output stage design sources and sinks in excess of  
20mA of load current, while retaining high voltage gain.  
5mA Load Current  
1.5 Million Min.  
0.8 Million Min.  
500µA Max.  
17mA Load Current  
Guaranteed Low Supply Current  
Low Voltage Noise, 0.1Hz to 10Hz  
0.55µVp-p  
Low Current Noise—Better than 0P-07, 0.07pA/Hz  
U
APPLICATIONS  
Similarly, the LT1013 is the first precision dual op amp in  
the 8-pin industry standard configuration, upgrading the  
performance of such popular devices as the MC1458/  
1558, LM158 and OP-221. The LT1013’s specifications  
are similar to (even somewhat better than) the LT1014’s.  
Battery-Powered Precision Instrumentation  
Strain Gauge Signal Conditioners  
Thermocouple Amplifiers  
Instrumentation Amplifiers  
4mA–20mA Current Loop Transmitters  
Both the LT1013 and LT1014 can be operated off a single  
5V power supply: input common-mode range includes  
ground;theoutputcanalsoswingtowithinafewmillivolts  
of ground. Crossover distortion, so apparent on previous  
single-supply designs, is eliminated. A full set of specifi-  
cations is provided with ±15V and single 5V supplies.  
Multiple Limit Threshold Detection  
Active Filters  
Multiple Gain Blocks  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
LT1014 Distribution of Offset Voltage  
3 Channel Thermocouple Thermometer  
4k  
1M  
700  
3k  
299k  
V
= ±15V  
= 25°C  
S
A
+5V  
+5V  
T
600  
500  
400  
300  
200  
100  
0
425 LT1014s  
(1700 OP AMPS)  
TESTED FROM  
THREE RUNS  
J PACKAGE  
4
LT1004  
1.2V  
2
3
YSI 44007  
5k  
1684Ω  
260Ω  
1
OUTPUT A  
AT 25°C  
LT1014  
10mV/°C  
+
12  
+
11  
14  
LT1014  
1.8k  
4k  
13  
1M  
6
5
7
USE TYPE K THERMOCOUPLES. ALL RESISTORS = 1% FILM.  
COLD JUNCTION COMPENSATION ACCURATE  
OUTPUT B  
10mV/°C  
LT1014  
+
TO ±1°C FROM 0°C  
60°C.  
–300 –200 –100  
0
100  
200  
300  
USE 4TH AMPLIFIER FOR OUTPUT C.  
INPUT OFFSET VOLTAGE (µV)  
1
LT1013/LT1014  
W W U W  
ABSOLUTE MAXIMUM RATINGS  
Lead Temperature (Soldering, 10 sec.)................. 300°C  
Operating Temperature Range  
Supply Voltage ...................................................... ±22V  
Differential Input Voltage ....................................... ±30V  
Input Voltage ...............Equal to Positive Supply Voltage  
............5V Below Negative Supply Voltage  
LT1013AM/LT1013M/  
LT1014AM/LT1014M ...................... 55 °C to 125°C  
LT1013AC/LT1013C/LT1013D  
LT1014AC/LT1014C/LT1014D................. 0°C to 70°C  
LT1013I/ LT1014I............................... 40°C to 85°C  
Output Short-Circuit Duration.......................... Indefinite  
Storage Temperature Range  
All Grades ......................................... 65°C to 150°C  
U
W U  
PACKAGE/ORDER INFORMATION  
ORDER PART  
NUMBER  
ORDER PART  
ORDER PART  
NUMBER  
TOP VIEW  
NUMBER  
TOP VIEW  
+
TOP VIEW  
V
8
1
2
3
4
5
6
7
14 OUTPUT D  
13  
OUTPUT A  
–IN A  
+
+
LT1013AMH  
LT1013MH  
LT1013ACH  
LT1013CH  
OUTPUT A  
–IN A  
1
2
3
4
V
–IN D  
LT1014AMJ  
LT1014MJ  
LT1014ACJ  
LT1014CJ  
LT1014ACN  
LT1014CN  
LT1014DN  
LT1014IN  
8
7
6
5
LT1013AMJ8  
LT1013MJ8  
LT1013ACJ8  
LT1013CJ8  
LT1013ACN8  
LT1013CN8  
LT1013DN8  
LT1013IN8  
OUTPUT B  
OUTPUT A  
–IN A  
+IN A  
1
7
A
D
C
+
A
B
+
12 +IN D  
OUTPUT B  
–IN B  
+IN A  
A
+
6
2
–IN B  
+
+
+
5
11  
V
V
+IN A  
B
10 +IN C  
+IN B  
–IN B  
V
+IN B  
+
+
3
+IN B  
B
4
9
8
–IN C  
J PACKAGE  
8-LEAD CERAMIC DIP  
V
(CASE)  
H PACKAGE  
8-LEAD TO-5 METAL CAN  
OUTPUT C  
OUTPUT B  
N PACKAGE  
8-LEAD PLASTIC DIP  
J PACKAGE  
14-LEAD CERAMIC DIP  
N PACKAGE  
14-LEAD PLASTIC DIP  
ORDER PART  
NUMBER  
LT1014DS  
LT1014IS  
ORDER PART  
NUMBER  
LT1013DS8  
LT1013IS8  
TOP VIEW  
TOP VIEW  
OUTPUT A  
–IN A  
1
2
3
4
5
6
7
8
16 OUTPUT D  
15 –IN D  
+
+INA  
1
2
3
4
8
7
6
5
–INA  
+IN A  
14 +IN D  
V
OUTA  
+
+
V
13  
12  
11  
10  
9
V
+INB  
–INB  
V
+
+IN B  
–IN B  
+IN C  
–IN C  
OUTPUT C  
NC  
OUTB  
SO PACKAGE  
8-LEAD PLASTIC SOIC  
PART MARKING  
PART MARKING  
OUTPUT B  
NC  
NOTE: THIS PIN CONFIGURATION DIFFERS FROM  
THE STANDARD 8-PIN DUAL-IN-LINE CONFIGURATION  
LT1014DS  
LT1014IS  
1013  
1013I  
SO PACKAGE  
16-LEAD PLASTIC SOIC  
VS = ±15V, VCM = 0V, TA = 25°C unless otherwise noted  
ELECTRICAL CHARACTERISTICS  
LT1013AM/AC  
LT1014AM/AC  
LT1013C/D/I/M  
LT1014C/D/I/M  
SYMBOL  
PARAMETER  
CONDITIONS  
UNITS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
V
OS  
Input Offset Voltage  
LT1013  
LT1014  
LT1013D/I, LT1014D/I  
40  
50  
150  
180  
60  
60  
200  
300  
300  
800  
µV  
µV  
µV  
Long Term Input Offset Voltage  
Stability  
0.4  
0.5  
µV/Mo.  
I
I
Input Offset Current  
Input Bias Current  
0.15  
12  
0.8  
20  
0.2  
15  
1.5  
30  
nA  
nA  
SO  
B
e
Input Noise Voltage  
Input Noise Voltage Density  
0.1Hz to 10Hz  
0.55  
0.55  
µVp-p  
n
e
f = 10Hz  
24  
22  
24  
22  
nV/Hz  
nV/Hz  
n
O
f = 1000Hz  
O
i
Input Noise Current Density  
f = 10Hz  
O
0.07  
0.07  
pA/Hz  
n
2
LT1013/LT1014  
ELECTRICAL CHARACTERISTICS  
VS = ±15V, VCM = 0V, TA = 25°C unless otherwise noted  
LT1013AM/AC  
LT1014AM/AC  
LT1013C/D/I/M  
LT1014C/D/I/M  
SYMBOL PARAMETER  
CONDITIONS  
UNITS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
Input Resistance – Differential  
Common-Mode  
Large Signal Voltage Gain  
(Note 1)  
100  
400  
5
70  
300  
4
MΩ  
GΩ  
A
VOL  
V = ±10V, R = 2k  
1.5  
0.8  
8.0  
2.5  
1.2  
0.5  
7.0  
2.0  
V/µV  
V/µV  
O
L
V = ±10V, R = 600Ω  
O
L
Input Voltage Range  
+13.5  
15.0  
+13.8  
15.3  
+13.5  
15.0  
+13.8  
15.3  
V
V
CMRR  
PSRR  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Channel Separation  
Output Voltage Swing  
Slew Rate  
V
= +13.5V, 15.0V  
100  
103  
123  
±13  
0.2  
117  
120  
140  
±14  
0.4  
97  
100  
120  
±12.5  
0.2  
114  
117  
137  
±14  
0.4  
dB  
dB  
CM  
V = ±2V to ±18V  
S
V = ±10V, R = 2k  
dB  
O
L
V
OUT  
R = 2k  
V
L
V/µs  
mA  
I
Supply Current  
Per Amplifier  
0.35  
0.50  
0.35  
0.55  
S
Note 1: This parameter is guaranteed by design and is not tested. Typical  
parameters are defined as the 60% yield of parameter distributions of  
individual amplifiers; i.e., out of 100 LT1014s (or 100 LT1013s) typically  
240 op amps (or 120 ) will be better than the indicated specification.  
ELECTRICAL CHARACTERISTICS  
VS+ = +5V, VS= 0V, VOUT = 1.4V, VCM = 0V, TA = 25°C unless otherwise noted  
LT1013AM/AC  
LT1014AM/AC  
LT1013C/D/I/M  
LT1014C/D/I/M  
SYMBOL  
PARAMETER  
CONDITIONS  
UNITS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
V
Input Offset Voltage  
LT1013  
LT1014  
LT1013D/I, LT1014D/I  
60  
70  
250  
280  
90  
90  
250  
450  
450  
950  
µV  
µV  
µV  
OS  
I
I
Input Offset Current  
Input Bias Current  
0.2  
15  
1.3  
35  
0.3  
18  
2.0  
50  
nA  
nA  
OS  
B
A
Large Signal Voltage Gain  
Input Voltage Range  
V = 5mV to 4V, R = 500Ω  
1.0  
1.0  
V/µV  
VOL  
O
L
+3.5  
0
+3.8  
0.3  
+3.5  
0
+3.8  
0.3  
V
V
V
Output Voltage Swing  
Supply Current  
Output Low, No Load  
Output Low, 600to Ground  
15  
5
220  
25  
10  
350  
15  
5
220  
25  
10  
350  
mV  
mV  
mV  
OUT  
Output Low, I  
= 1mA  
SINK  
Output High, No Load  
Output High, 600to Ground 3.4  
4.0  
4.4  
4.0  
4.0  
3.4  
4.4  
4.0  
V
V
I
Per Amplifier  
0.31  
0.45  
0.32  
0.50  
mA  
S
3
LT1013/LT1014  
VS = ±15V, VCM = 0V, 55°C TA 125°C unless otherwise noted  
ELECTRICAL CHARACTERISTICS  
LT1013AM  
LT1014AM  
LT1013M/LT1014M  
SYMBOL PARAMETER  
CONDITIONS  
UNITS  
MIN TYP MAX MIN TYP MAX MIN TYP MAX  
V
OS  
Input Offset Voltage  
80  
300  
90  
350  
110  
550  
µV  
V = +5V, 0V; V = +1.4V  
S
O
55°C T 100°C  
80  
120  
250  
450  
450  
900  
90  
150  
300  
480  
480  
960  
100  
200  
400 1500  
750  
750  
µV  
µV  
µV  
A
V
V
= 0.1V, T = 125°C  
CM  
CM  
A
= 0V, T = 125°C  
A
Input Offset Voltage Drift  
Input Offset Current  
(Note 2)  
0.4  
0.3  
0.6  
15  
20  
2.0  
2.5  
6.0  
30  
80  
0.4  
0.3  
0.7  
15  
25  
2.0  
2.8  
7.0  
30  
90  
0.5  
0.4  
0.9  
18  
28  
2.5 µV/°C  
I
I
5.0  
10.0  
nA  
nA  
OS  
V = +5V, 0V; V = +1.4V  
S
O
Input Bias Current  
45  
120  
nA  
nA  
B
V = +5V, 0V; V = +1.4V  
S
O
A
Large Signal Voltage Gain  
Common-Mode Rejection  
Power Supply Rejection  
Ratio  
V = ±10V, R = 2k  
0.5  
97  
100  
2.0  
114  
117  
0.4  
96  
100  
2.0  
114  
117  
0.25  
94  
97  
2.0  
113  
116  
V/µV  
dB  
dB  
VOL  
O
L
CMRR  
PSRR  
V
= +13.0V, 14.9V  
CM  
V = ±2V to ±18V  
S
V
OUT  
Output Voltage Swing  
R = 2k  
V = +5V, 0V  
S
±12 ±13.8  
±12 ±13.8  
±11.5 ±13.8  
V
L
R = 600to Ground  
Output Low  
Output High  
L
3.2  
6
3.8  
15  
3.2 3.8  
6
15  
3.1  
6
3.8  
18  
mV  
V
I
Supply Current  
Per Amplifier  
0.38 0.60  
0.34 0.55  
0.38 0.60  
0.34 0.55  
0.38  
0.34  
0.7  
0.65  
mA  
mA  
S
V = +5V, 0V; V = +1.4V  
S
O
ELECTRICAL CHARACTERISTICS  
V = ±15V, V = 0V, –40°C T 85°C for LT1013I, LT1014I, 0°C T 70°C for LT1013C, LT1013D, LT1014C, LT1014D unless otherwise noted  
S
CM  
A
A
LT1013C/D/I  
LT1014C/D/I  
LT1013AC  
LT1014AC  
SYMBOL PARAMETER  
CONDITIONS  
UNITS  
MIN TYP MAX MIN TYP MAX MIN TYP MAX  
V
OS  
Input Offset Voltage  
55  
75  
240  
350  
65  
85  
270  
380  
80  
230 1000  
110 570  
400  
µV  
µV  
µV  
LT1013D/I, LT1014D/I  
V = +5V, 0V; V = 1.4V  
S
O
LT1013D/I, LT1014D/I  
V = +5V, 0V; V = 1.4V  
280 1200  
µV  
S
O
Average Input Offset  
Voltage Drift  
(Note 2)  
LT1013D/I, LT1014D/I  
0.3  
2.0  
0.3  
2.0  
0.4  
0.7  
2.5 µV/°C  
5.0 µV/°C  
I
I
Input Offset Current  
0.2  
0.4  
13  
18  
1.5  
3.5  
25  
55  
0.2  
0.4  
13  
20  
1.7  
4.0  
25  
60  
0.3  
0.5  
16  
24  
2.8  
6.0  
38  
90  
nA  
nA  
nA  
nA  
OS  
V = +5V, 0V; V = 1.4V  
S
O
Input Bias Current  
B
V = +5V, 0V; V = 1.4V  
S
O
A
Large Signal Voltage Gain  
Common-Mode Rejection  
Ratio  
V = ±10V, R = 2k  
1.0  
98  
5.0  
116  
1.0  
98  
5.0  
116  
0.7  
94  
4.0  
113  
V/µV  
dB  
VOL  
O
L
CMRR  
V
= +13.0V, 15.0V  
CM  
PSRR  
Power Supply Rejection  
Ratio  
Output Voltage Swing  
V = ±2V to ±18V  
101  
119  
101  
119  
97  
116  
dB  
V
S
V
OUT  
R = 2k  
L
±12.5 ±13.9  
±12.5 ±13.9  
±12.0 ±13.9  
V = +5V, 0V; R = 600Ω  
S
L
Output Low  
Output High  
3.3  
6
3.9  
13  
3.3  
6
3.9  
13  
3.2  
6
3.9  
13  
mV  
V
I
Supply Current per Amplifier  
0.36 0.55  
0.32 0.50  
0.36 0.55  
0.32 0.50  
0.37 0.60  
0.34 0.55  
mA  
mA  
S
V = +5V, 0V; V = 1.4V  
S
O
Note 2: This parameter is not 100% tested.  
The  
denotes specifications which apply over the full operating temperature range.  
4
LT1013/LT1014  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Offset Voltage Drift with  
Temperature of Representative  
Units  
Offset Voltage vs Balanced  
Source Resistance  
Warm-Up Drift  
5
4
3
2
1
0
10  
1
V
= ±15V  
S
V
= ±15V  
= 25°C  
S
A
200  
100  
0
T
V
= 5V, 0V, –55°C TO 125°C  
S
V
= ±15V, 0V, –55°C TO 125°C  
S
LT1013 METAL CAN (H) PACKAGE  
V
= 5V, 0V, 25°C  
S
LT1014  
0.1  
0.01  
–100  
–200  
R
S
+
V
= ±15V, 0V, 25°C  
S
LT1013 CERDIP (J) PACKAGE  
R
S
–50  
0
25  
50  
75 100 125  
0
1
3
4
5
–25  
1k  
3k 10k 30k 100k 300k 1M 3M 10M  
BALANCED SOURCE RESISTANCE ()  
2
TEMPERATURE (°C)  
TIME AFTER POWER ON (MINUTES)  
Common-Mode Rejection Ratio  
vs Frequency  
Power Supply Rejection Ratio  
vs Frequency  
0.1Hz to 10Hz Noise  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
T
= 25°C  
= ±2V TO ±18V  
A
S
T
= 25°C  
A
V
NEGATIVE  
SUPPLY  
POSITIVE  
SUPPLY  
V
= 5V, 0V  
V
S
= ±15V  
S
V
= ±15V + 1V SINE WAVE  
P-P  
S
A
T
= 25°C  
1k  
FREQUENCY (Hz)  
100k 1M  
10  
100  
1k  
10k  
100k  
1M  
0.1  
1
10 100  
10k  
0
2
4
6
8
10  
FREQUENCY (Hz)  
TIME (SECONDS)  
10Hz Voltage Noise  
Distribution  
Noise Spectrum  
Supply Current vs Temperature  
200  
180  
160  
140  
120  
100  
80  
460  
1000  
V
S
T
A
= ±15V  
= 25°C  
T
= 25°C  
= ±2V TO ±18V  
A
S
V
328 UNITS TESTED  
FROM THREE RUNS  
420  
380  
340  
300  
260  
300  
100  
V
S
= ±15V  
CURRENT NOISE  
V
S
= 5V, 0V  
60  
VOLTAGE NOISE  
30  
10  
40  
20  
1/f CORNER 2Hz  
0
10  
20  
30  
40  
50  
60  
–50  
0
25  
50  
75 100 125  
–25  
1
10  
100  
1k  
VOLTAGE NOISE DENSITY (nV/Hz)  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
5
LT1013/LT1014  
TYPICAL PERFORMANCE CHARACTERISTICS  
W
U
Input Bias Current vs  
Common-Mode Voltage  
Input Offset Current vs  
Temperature  
Input Bias Current vs  
Temperature  
5
4
15  
10  
5
1.0  
0.8  
0.6  
0.4  
0.2  
0
–30  
–25  
–20  
–15  
–10  
–5  
T
= 25°C  
A
V
= 0V  
V
= 0V  
CM  
CM  
3
V
= 5V, 0V  
S
2.5V  
±
=
V
S
2
0
V
= ±15V  
V = 5V, 0V  
S
S
V
= ±15V  
S
1
–5  
–10  
–15  
2.5V  
±
V
= 5V, 0V  
S
=
S
V
0
V
= ±15V  
S
–1  
0
0
–10  
–15  
–20  
–25 –30  
–5  
–50  
0
25  
50  
75 100 125  
–50 –25  
25  
50  
75  
100 125  
–25  
0
INPUT BIAS CURRENT (nA)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Output Saturation vs Sink  
Current vs Temperature  
Small Signal Transient  
Response, VS = ±15V  
Large Signal Transient  
Response, VS = ±15V  
10  
1
+
V
V
= 5V TO 30V  
= 0V  
I
= 10mA  
SINK  
I
I
= 5mA  
= 1mA  
SINK  
SINK  
0.1  
0.01  
I
I
= 100µA  
= 10µA  
SINK  
AV = +1  
2µs/DIV  
AV = +1  
50µs/DIV  
SINK  
I
= 0  
SINK  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
Large Signal Transient  
Response, VS = 5V, 0V  
Large Signal Transient  
Response, VS = 5V, 0V  
Small Signal Transient  
Response, VS = 5V, 0V  
4V  
4V  
2V  
0V  
100mV  
2V  
0V  
50mV  
0
AV = +1  
RL = 4.7k TO 5V  
INPUT = 0V TO 4V PULSE  
10µs/DIV  
AV = +1  
10µs/DIV  
AV = +1  
20µs/DIV  
NO LOAD  
RL = 600TO GROUND  
INPUT = 0V TO 100mV PULSE  
INPUT = 0V TO 4V PULSE  
6
LT1013/LT1014  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Output Short Circuit Current  
vs Time  
Voltage Gain vs Load  
Resistance  
Voltage Gain vs Frequency  
10M  
40  
30  
140  
120  
100  
80  
TA = 25°C, VS = ±15V  
TA = –55°C, VS = ±15V  
TA = 125°C, VS = ±15V  
V
S
= ±15V  
–55°C  
25°C  
T
= 25°C  
= 100pF  
A
C
L
125°C  
20  
TA = –55°C, VS = 5V, 0V  
TA = 25°C, VS = 5V, 0V  
10  
V
= 5V, 0V  
V
= ±15V  
S
S
1M  
0
60  
TA = 125°C, VS = 5V, 0V  
125°C  
–10  
–20  
–30  
–40  
40  
25°C  
20  
VO = ±10V WITH VS = ±15V  
–55°C  
VO = 20mV TO 3.5V  
WITH VS = 5V, 0V  
0
100k  
–20  
1
2
0
3
100  
1k  
LOAD RESISTANCE TO GROUND ()  
10k  
100 1k  
0.01 0.1  
1
10  
10k 100k 1M 10M  
TIME FROM OUTPUT SHORT TO GROUND (MINUTES)  
FREQUENCY (Hz)  
Channel Separation vs  
Frequency  
Gain, Phase vs Frequency  
80  
160  
T
= 25°C  
CM  
= 100pF  
A
V
T
= ±15V  
= 25°C  
= 20Vp-p to 5kHz  
= 2k  
S
A
V
C
= 0V  
20  
10  
100  
120  
140  
160  
180  
200  
PHASE  
L
V
IN  
140  
120  
100  
80  
R
±15V  
L
LIMITED BY  
THERMAL  
INTERACTION  
±15V  
GAIN  
R
= 100Ω  
S
R
= 1kΩ  
S
0
5V, 0V  
5V, 0V  
LIMITED BY  
PIN TO PIN  
CAPACITANCE  
–10  
60  
0.1  
0.3  
1
3
10  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (MHz)  
FREQUENCY (Hz)  
U
W U U  
APPLICATIONS INFORMATION  
Single Supply Operation  
The LT1013/1014 are fully specified for single supply  
a few hundred millivolts below ground, two distinct prob-  
operation, i.e., when the negative supply is 0V. Input lemscanoccuronprevioussinglesupplydesigns,suchas  
common-mode range includes ground; the output swings the LM124, LM158, OP-20, OP-21, OP-220, OP-221, OP-  
within a few millivolts of ground. Single supply operation,  
however, can create special difficulties, both at the input  
and at the output. The LT1013/LT1014 have specific  
circuitry which addresses these problems.  
420:  
a)Whentheinputismorethanadiodedropbelowground,  
unlimited current will flow from the substrate (Vtermi-  
nal) to the input. This can destroy the unit. On the LT1013/  
1014, the 400resistors, in series with the input (see  
At the input, the driving signal can fall below 0V— inad- schematic diagram), protect the devices even when the  
vertently or on a transient basis. If the input is more than  
input is 5V below ground.  
7
LT1013/LT1014  
U
W U U  
APPLICATIONS INFORMATION  
At the output, the aforementioned single supply designs  
eithercannotswingtowithin600mVofground(OP-20) or  
cannot sink more than a few microamperes while swing-  
ing to ground (LM124, LM158). The LT1013/1014’s  
all-NPN output stage maintains its low output resistance  
and high gain characteristics until the output is saturated.  
(b) When the input is more than 400mV below ground (at  
25°C), the input stage saturates (transistors Q3 and Q4)  
and phase reversal occurs at the output. This can cause  
lock-up in servo systems. Due to a unique phase reversal  
protection circuitry (Q21, Q22, Q27, Q28), the LT1013/  
1014’s outputs do not reverse, as illustrated below, even  
when the inputs are at –1.5V.  
There is one circumstance, however, under which the phase  
reversal protection circuitry does not function: when the  
other op amp on the LT1013, or one specific amplifier of the  
other three on the LT1014, is driven hard into negative  
saturation at the output.  
In dual supply operations, the output stage is crossover  
distortion-free.  
Comparator Applications  
Phase reversal protection does not work on amplifier:  
A when D’s output is in negative saturation. B’s and C’s  
outputs have no effect.  
B when C’s output is in negative saturation. A’s and D’s  
outputs have no effect.  
C when B’s output is in negative saturation. A’s and D’s  
outputs have no effect.  
D when A’s output is negative saturation. B’s and C’s  
outputs have no effect.  
The single supply operation of the LT1013/1014 lends  
itself to its use as a precision comparator with TTL  
compatible output:  
In systems using both op amps and comparators, the  
LT1013/1014 can perform multiple duties; for example,  
on the LT1014, two of the devices can be used as op amps  
and the other two as comparators.  
Voltage Follower with Input Exceeding the Negative Common-Mode Range  
4V  
2V  
4V  
2V  
4V  
2V  
0V  
0V  
0V  
6Vp-p INPUT, 1.5V TO 4.5V  
LM324, LM358, OP-20  
EXHIBIT OUTPUT PHASE  
REVERSAL  
LT1013/LT1014  
NO PHASE REVERSAL  
Comparator Rise Response Time  
10mV, 5mV, 2mV Overdrives  
Comparator Fall Response Time  
to 10mV, 5mV, 2mV Overdrives  
4
2
4
2
0
0
0
100  
100  
0
VS = 5V, 0V  
50µs/DIV  
V
S = 5V, 0V  
50µs/DIV  
8
LT1013/LT1014  
U
W U U  
APPLICATIONS INFORMATION  
Test Circuit for Offset Voltage and  
Offset Drift with Temperature  
Low Supply Operation  
The minimum supply voltage for proper operation of the  
LT1013/1014 is 3.4V (three Ni-Cad batteries). Typical  
supply current at this voltage is 290µA, therefore power  
dissipation is only one milliwatt per amplifier.  
50k*  
+15V  
100*  
V
O
+
Noise Testing  
LT1013  
OR LT1014  
50k*  
–15V  
For applications information on noise testing and calcula-  
tions, please see the LT1007 or LT1008 data sheet.  
*RESISTOR MUST HAVE LOW  
THERMOELECTRIC POTENTIAL.  
THIS CIRCUIT IS ALSO USED AS THE BURN-IN  
CONFIGURATION, WITH SUPPLY VOLTAGES  
INCREASED TO ±20V.  
**  
V
= 1000V  
O
OS  
U
TYPICAL APPLICATIONS  
5V Single Supply Dual Instrumentation Amplifier  
50MHz Thermal rms to DC Converter  
100k*  
+5V  
+5V  
1/2 LTC1043  
8
5
0.01  
+INPUT  
6
5
+
2
7
1/2 LT1013  
OUTPUT A  
R2  
10k*  
10k*  
10k*  
30k*  
10k  
30k*  
1
LT1014  
6
2
3
+
3
4
+5V  
4
+
1µF  
1µF  
6
5
1µF  
300*  
7
LT1014  
11  
100k*  
0.01  
R1  
–INPUT  
+INPUT  
18  
7
15  
8
10k*  
13  
1/2 LTC1043  
14  
LT1014  
0.01  
3
2
10k  
+
+
12  
1
1/2 LT1013  
OUTPUT B  
INPUT  
1µF  
300mV–  
11  
10V  
RMS  
R2  
10  
+
1µF  
1µF  
BRN RED  
RED BRN  
20k  
8
0V–4V  
OUTPUT  
10k  
LT1014  
FULL-  
SCALE  
TRIM  
12  
16  
9
R1  
OFFSET = 150µV  
10k*  
T1A T1B  
GRN  
T2B T2A  
GRN  
R2  
R1  
–INPUT  
13  
14  
GAIN =  
+ 1.  
10k*  
CMRR = 120dB.  
COMMON-MODE RANGE IS 0V TO 5V.  
0.01  
2% ACCURACY, DC–50MHz.  
100:1 CREST FACTOR CAPABILITY.  
0.1% RESISTOR.  
*
T1–T2 = YELLOW SPRINGS INST. CO. THERMISTOR COMPOSITE #44018.  
ENCLOSE T1 AND T2 IN STYROFOAM.  
7.5mW DISSIPATION.  
9
LT1013/LT1014  
U
TYPICAL APPLICATIONS  
Hot Wire Anemometer  
+15V  
500pF  
Q2–Q5  
CA3046  
PIN 3 TO –15V  
Q1  
2N6533  
Q2  
2k  
Q5  
Q3  
220  
13  
12  
1000pF  
150k*  
Q4  
6
A4  
LT1014  
14  
2k  
150k*  
0.01µF  
A2  
7
1µF  
10k*  
LT1014  
33k  
+
27Ω  
1W  
5
+
0V–10V =  
0–1000 FEET/MINUTE  
12k  
+15V  
10M  
4
RESPONSE  
TIME  
2
2M  
A1  
1
1k  
ADJUST  
FULL-  
SCALE  
FLOW  
LT1014  
ZERO  
FLOW  
3.3k  
–15V  
REMOVE LAMP'S GLASS ENVELOPE FROM 328 LAMP.  
#328  
3
+
100k  
500k  
11  
–15V  
2k*  
A1 SERVOS #328 LAMP TO CONSTANT TEMPERATURE.  
A2-A3 FURNISH LINEAR OUTPUT vs FLOW RATE.  
1% RESISTOR.  
1µF  
9
*
A3  
8
LT1014  
+
10  
Liquid Flowmeter  
3.2k**  
1M*  
6
5
10M  
RESPONSE  
TIME  
+15V  
3.2k*  
1M*  
2
A2  
LT1014  
7
15  
+
A1  
1
DALE  
6.98k*  
LT1014  
1M*  
6.25k**  
HL-25  
100k  
+
3
6.25k**  
5k  
FLOW  
CALIB  
1µF  
1M*  
1k*  
T1  
T2  
+15V  
4.7k  
1N4148  
100k  
2N4391  
300pF  
0.1  
OUTPUT  
LT1004  
–1.2  
0Hz  
0
300Hz =  
300ML/MIN  
383k*  
9
+15V  
4
100k  
12  
13  
A3  
LT1014  
8
+
2.7k  
–15V  
+
10  
A4  
LT1014  
14  
100k  
11  
–15V  
T1  
T2  
15HEATER RESISTOR  
* 1% FILM RESISTOR.  
FLOW  
FLOW  
** SUPPLIED WITH YSI THERMISTOR NETWORK.  
T1, T2 YSI THERMISTOR NETWORK = #44201.  
FLOW IN PIPE IS INVERSELY PROPORTIONAL TO  
RESISTANCE OF T1–T2 TEMPERATURE DIFFERENCE.  
A1–A2 PROVIDE GAIN. A3–A4 PROVIDE LINEARIZED  
FREQUENCY OUTPUT.  
PIPE  
10  
LT1013/LT1014  
U
TYPICAL APPLICATIONS  
5V Powered Precision Instrumentation Amplifier  
9
TO  
8
INPUT  
LT1014  
200k*  
CABLE SHIELDS  
+
10  
2
3
+5V  
10k*  
10k*  
1
LT1014  
+
20k  
–INPUT  
+5V  
10k  
4
13  
12  
RG (TYP 2k)  
200k*  
14  
OUTPUT  
LT1014  
1µF  
+
11  
10k  
10k*  
6
5
10k*  
7
LT1014  
+
20k  
+INPUT  
*1% FILM RESISTOR. MATCH 10k's 0.05%  
400,000  
+5V  
GAIN EQUATION: A =  
+ 1.  
RG  
FOR HIGH SOURCE IMPEDANCES,  
USE 2N2222 AS DIODES.  
9V Battery Powered Strain Gauge Signal Conditioner  
15k  
+9V  
+9V  
22M  
1N4148  
47µF  
4
2
3
4.7k  
330Ω  
1
0.068  
LT1014  
11  
2N2219  
+
100k  
100k  
15  
0.01  
TO A/D RATIO  
REFERENCE  
100k  
100k  
6
5
350Ω  
STRAIN GAUGE  
BRIDGE  
+9V  
+9V  
499  
499  
+
7
8
13  
12  
LT1014  
LT1014  
1
+
14  
15k  
3k  
13  
TO A/D  
LT1014  
0.068  
14  
7
74C221  
+
9
100k  
0.068  
6
9
10  
5
TO A/D  
CONVERT COMMAND  
SAMPLED OPERATION GIVES LOW AVERAGE OPERATING CURRENT 650µA.  
4.7k–0.01µF RC PROTECTS STRAIN BRIDGE FROM LONG TERM DRIFTS DUE TO  
HIGH V/T STEPS.  
11  
LT1013/LT1014  
U
TYPICAL APPLICATIONS  
5V Powered Motor Speed Controller  
No Tachometer Required  
+5V  
47  
+
100k  
1k  
82  
Q3  
2N5023  
2
A1  
2k  
1
Q1  
2N3904  
0.47  
330k  
1/2 LT1013  
+
3
1N4001  
1M  
2k  
6.8M  
0.068  
1/4 CD4016  
5V  
8
1N4001  
1N4148  
1N4148  
3.3M  
0.47  
6
0.068  
2k  
A2  
7
1/2 LT1013  
+
5
MOTOR = CANON–FN30–R13N1B.  
A1 DUTY CYCLE MODULATES MOTOR.  
A2 SAMPLES MOTORS BACK EMF.  
Q2  
4
E
IN  
0V–3V  
5V Powered EEPROM Pulse Generator  
+5V  
DALE  
#TC-10-04  
1N4148  
1N4148  
1N4148  
2N2222  
10Ω  
0.05  
+5V  
20k  
0.1  
2N2222  
0.33  
2N2222  
4.7k  
1N4148  
820  
100k  
100Ω  
270Ω  
820  
4.7M  
2
1N4148  
8
LT1013  
4
1
6
5
1N4148  
LT1013  
TTL INPUT  
1k  
7
+
3
2N2222  
0.005  
+
MEETS ALL V PROGRAMMING SPECS WITH NO TRIMS AND  
PP  
21V  
RUNS OFF 5V SUPPLY—NO EXTERNAL HIGH VOLTAGE SUPPLY REQUIRED.  
SUITABLE FOR BATTERY POWERED USE (600µA QUIESCENT CURRENT).  
1% METAL FILM.  
OUTPUT  
100K*  
120k  
*
600µs RC  
LT1004  
1.2V  
6.19K  
12  
LT1013/LT1014  
U
TYPICAL APPLICATIONS  
Methane Concentration Detector with Linearized Output  
+5V  
1
*1% METAL FILM RESISTOR  
SENSOR = CALECTRO-GC ELECTRONICS #J4-807 OR FIGARO #813  
14  
LT1004  
1.2V  
–5V  
0.033  
1N4148 (4)  
CD4016  
390k*  
9
+
100k*  
A3  
LT1014  
13  
8
74C04  
74C04  
A4  
LT1014  
10  
14  
2.7k  
11  
5
12  
+
8
LTC1044  
2
+5V  
–5V  
10µF  
4
3
+
10µF  
470pF  
+
470pF  
10k  
+5V  
1
74C04  
14  
SENSOR  
1N4148  
CA3046  
–5V  
Q4  
Q1  
OUTPUT  
Q2 Q3  
500ppm-10,000ppm  
1000pF  
+5V  
4
50Hz  
1kHz  
2
3
2k  
+
100k*  
A1  
LT1014  
6
5
1
5k  
+
1000ppm  
TRIM  
2k  
150k*  
A2  
LT1014  
7
12k*  
Low Power 9V to 5V Converter  
L
+9V INPUT  
2N2905  
5V  
20mA  
2N5434  
+
1N4148  
47  
10k  
390k  
1%  
HP5082-2811  
V
= 200mV  
2
3
D
10k  
+9V  
8
100µA  
1
LT1013  
+
+
5
6
120k  
1%  
7
330k  
LT1013  
4
+9V  
LT1004  
1.2V  
47k  
L = DALE TE-3/Q3/TA.  
SHORT CIRCUIT CURRENT = 30mA.  
75% EFFICIENCY.  
SWITCHING PREREGULATOR CONTROLS DROP ACROSS FET TO 200mV.  
13  
LT1013/LT1014  
U
TYPICAL APPLICATIONS  
5V Powered 4mA–20mA Current Loop Transmitter†  
+5V  
Q3  
2N2905  
820Ω  
T1  
74C04  
(6)  
Q1  
2N2905  
1N4002 (4)  
10µF  
+
10µF  
+
68Ω  
0.002  
10k  
Q2  
2N2905  
820Ω  
10k  
0.33  
100k  
+5V  
8
10k*  
10k*  
20mA  
TRIM  
2
2k  
A1  
1/2 LT1013  
Q4  
2N2222  
1
100*  
4k*  
3
+
100pF  
4
80k*  
10k*  
1k  
4mA  
TRIM  
6
5
4mA-20mA OUT  
4.3k  
TO LOAD  
2.2kMAXIMUM  
A2  
7
+5V  
12-BIT ACCURACY.  
* 1% FILM.  
T1 = PICO-31080.  
1/2 LT1013  
+
LT1004  
1.2V  
INPUT  
0 TO 4V  
Fully Floating Modification to 4mA-20mA Current Loop†  
T1  
1N4002 (4)  
0.1Ω  
+5V  
8
+
3
2
100k  
A2  
1/2 LT1013  
6
1
10µF  
A1  
7
TO INVERTER  
DRIVE  
+
1/2 LT1013  
68k*  
5
+
4mA-20mA OUT  
FULLY FLOATING  
4
301*  
4k*  
8-BIT ACCURACY.  
10k*  
1k  
20mA  
TRIM  
4.3k  
+5V  
2k  
LT1004  
1.2V  
4mA  
TRIM  
INPUT  
0V–4V  
14  
LT1013/LT1014  
U
TYPICAL APPLICATIONS  
5V Powered, Linearized Platinum RTD Signal Conditioner  
2M  
9
OUTPUT  
499Ω  
167Ω  
Q2  
200k  
200k  
A4  
2
8
0V–4V =  
0°C–400°C  
±0.05°C  
1/4 LT1014  
150Ω  
A2  
1
10 +  
Q1  
1/4 LT1014  
3 +  
5k  
LINEARITY  
GAIN TRIM  
1k  
2N4250  
(2)  
2M  
3.01k  
SENSOR  
1.5k  
6
8.25k  
ROSEMOUNT  
118MF  
A3  
7
1/4 LT1014+ 5  
50k  
ZERO  
TRIM  
+5V  
2.4k  
5%  
274k  
+5V  
13  
4
LT1009  
2.5V  
A1  
14  
10k  
1/4 LT1014+ 12  
250k  
11  
ALL RESISTORS ARE TRW-MAR-6 METAL FILM.  
RATIO MATCH 2M–200K ± 0.01%.  
TRIM SEQUENCE:  
SET SENSOR TO °0VALUE.  
ADJUST ZERO FOR 0V OUT.  
SET SENSOR TO 10°0C VALUE.  
ADJUST GAIN FOR 1.000V OUT.  
SET SENSOR TO 40°0C.  
ADJUST LINEARITY FOR 4.000V OUT, REPEAT AS REQUIRED.  
Strain Gauge Bridge Signal Conditioner  
+5V  
220  
1.2V  
REFERENCE  
OUT  
TO A/D CONVERTER  
FOR RATIOMETRIC OPERATION  
1mA MAXIMUM LOAD  
+5V  
LT1004  
1.2V  
10k  
ZERO  
TRIM  
V
REF  
0.1  
8
+
2
3
301k  
39k  
1
1/2 LT1013  
100k  
8
5
6
+
2
4
4
7
A
E
D
+
OUTPUT  
0V–3.5V  
0psi–350psi  
1/2 LT1013  
0.33  
100µF  
LTC1044  
5
PRESSURE  
TRANSDUCER  
V –V  
REF  
0.047  
350Ω  
C
100µF  
2k GAIN TRIM  
46k*  
+
*
1% FILM RESISTOR.  
PRESSURE TRANSDUCER–BLH/DHF–350.  
CIRCLED LETTER IS PIN NUMBER.  
100*  
15  
LT1013/LT1014  
TYPICAL APPLICATIONS  
U
LVDT Signal Conditioner  
7
0.005  
30k  
0.005  
8
30k  
+5V  
FREQUENCY =  
1.5kHz  
11  
5
6
+
LVDT  
7
YEL-BLK  
RD-  
BLUE  
LT1013  
BLUE  
GRN  
–5V  
10k  
YEL-RD  
BLK  
12  
4.7k  
1N914  
LT1004  
1.2V  
2N4338  
100k  
3
2
14  
+
0.01  
1
OUT  
1.2k  
1µF  
LT1013  
0V–3V  
13  
10µF  
7.5k  
+
1/2 LTC1043  
200k  
100k  
+5V  
2
3
8
1k  
+
7
10k  
TO PIN 16, LT1043  
LT1011  
100k  
PHASE  
TRIM  
LVDT = SCHAEVITZ E-100.  
4
1
Triple Op Amp Instrumentation Amplifier with Bias Current Cancellation  
+
3
–INPUT  
R2  
R1  
1
1/4 LT1014  
2 –  
R3  
2R  
10M  
R
G
9
6
8
R1  
OUTPUT  
1/4 LT1014  
R2  
7
10 +  
1/4 LT1014  
5 +  
+INPUT  
R3  
+
2R1 R3  
G
V
R
5M  
GAIN = 1 +  
(
)
R
R2  
4
+
12  
14  
2R  
1/4 LT1014  
INPUT BIAS CURRENT TYPICALLY <1nA  
INPUT RESISTANCE = 3R = 15M FOR VALUES SHOWN  
NEGATIVE COMMON-MODE LIMIT = V + I × 2R + 30mV  
10M  
13 –  
11  
B
10pF  
= 150mV for V = 0V  
I = 12nA  
B
100k  
V
16  
LT1013/LT1014  
U
TYPICAL APPLICATIONS  
Voltage Controlled Current Source with  
Ground Referred Input and Output  
Low Dropout Regulator for 6V Battery  
+5V  
+12 OUTPUT  
1N914  
10  
8
3
2
100  
+
3
8
0V–2V  
+
LTC1044  
1
1/2 LT1013  
2
+
4
5
4
10  
2N2219  
5V OUTPUT  
0.68µF  
V
BATT  
6V  
100k  
100Ω  
1k  
1/2 LTC1043  
0.01Ω  
7
8
0.003µF  
120k  
1M  
8
3
+
1
11  
LT1004  
1.2V  
1.2k  
LT1013  
2
1µF  
100Ω  
1µF  
4
6
5
12  
7
A2  
LT1013  
1N914  
13  
14  
30k  
+
I
= 0mA TO 15mA  
0.009V DROPOUT AT 5mA OUTPUT.  
0.108V DROPOUT AT 100mA OUTPUT.  
OUT  
50k  
OUTPUT ADJUST  
I
= 850µA.  
V
IN  
100Ω  
QUIESCENT  
I
=
OUT  
FOR BIPOLAR OPERATION,  
RUN BOTH ICs FROM  
A BIPOLAR SUPPLY.  
6V to ±15V Regulating Converter  
+6V  
+
1µF  
+6V  
15pF  
10k  
22k  
10k  
2N3906  
2N4391  
–16V  
+15V  
+V  
CLK 1  
Q1  
CLK 2  
Q2  
OUT  
74C00  
+16V  
8
74C74  
100kHz INPUT  
1.4M  
10  
0.005  
+6V  
+
L1  
1MHY  
+
2
3
D1 Q1 D2 Q2  
200k  
1
+16V  
V
LT1013  
OUT  
10k  
ADJ  
+
22k  
2N3904  
10  
100k  
4
10k  
–16V  
15pF  
LT1004  
1.2V  
82k  
+
6
5
7
LT1013  
L1 = 24-104 AIE VERNITRON  
= 1N4148  
0.005  
2N5114  
1M  
±5mA OUTPUT  
75% EFFICIENCY  
–15V  
OUT  
17  
LT1013/LT1014  
TYPICAL APPLICATIONS  
U
Low Power, 5V Driven, Temperature Compensated Crystal Oscillator (TXCO)†  
+5V  
8
3
2
+
1
1/2 LT1013  
OSCILLATOR SUPPLY  
STABILIZATION  
1M*  
4
5M*  
4.3k  
3.4k*  
+5V  
R
1M*  
6
LT1009  
2.5V  
2.16k*  
T1  
3.2k  
4.22M*  
+5V  
TEMPERATURE  
COMPENSATION  
GENERATOR  
100Ω  
3.5MHz  
XTAL  
100k  
20k  
100k  
7
R
6.25k  
2N2222  
T2  
1/2 LT1013  
1M*  
OSCILLATOR  
560k  
5
510pF  
510pF  
+
MV-209  
3.5MHz OUTPUT  
0.03ppm/°C, 0°C–70°C  
680Ω  
4.22M*  
R
T
YSI 44201  
*1% FILM  
3.5MHz XTAL = AT CUT – 35°20'  
MOUNT R NEAR XTAL  
T
3mA POWER DRAIN  
THERMISTOR-AMPLIFIER-VARACTOR NETWORK GENERATES  
A TEMPERATURE COEFFICIENT OPPOSITE THE CRYSTAL TO  
MINIMIZE OVERALL OSCILLATOR DRIFT  
Step-Up Switching Regulator for 6V Battery  
OUTPUT  
INPUT  
+15V  
+6V  
50mA  
22k  
2N2222  
+
2.2  
200k  
LT1004  
1.2V  
L1  
1MHY  
8
5
+
220pF  
7
LT1013  
1N5821  
130k  
100  
6
1M  
220k  
3
2
4
+
+
300Ω  
1
2N5262  
LT1013  
0.001  
5.6k  
0.1  
5.6k  
LT = AIE–VERNITRON 24–104  
78% EFFICIENCY  
18  
LT1013/LT1014  
W
W
SCHEMATIC DIAGRAM  
1/2 LT1013, 1/4 LT1014  
+
V
9k  
9k  
1.6k  
1.6k  
1.6k  
100Ω  
1k  
800Ω  
Q6  
Q13  
Q16  
Q14  
Q36  
Q5  
Q30  
Q15  
Q32  
Q35  
Q3  
J1  
Q4  
Q37  
Q25  
Q33  
21pF  
Q27  
3.9k  
Q26  
Q1  
2.4k  
2.5pF  
18Ω  
400Ω  
400Ω  
Q38  
Q41  
IN  
Q21  
OUTPUT  
14k  
Q28  
Q12  
Q2  
+
Q39  
IN  
Q18  
Q22  
4pF  
Q31  
Q40  
Q29  
Q10  
Q19  
2k  
100pF  
Q34  
Q11  
10pF  
600Ω  
42k  
Q9  
Q7  
Q17  
2k  
Q24  
Q8  
5k  
Q23  
2k  
Q20  
1.3k  
75pF  
5k  
30Ω  
V
J8 Package  
N8 Package  
8-Lead CERDIP (Narrow 0.300, Hermetic)  
8-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1110)  
(LTC DWG # 05-08-1510)  
0.400*  
(10.160)  
MAX  
0.405  
(10.287)  
MAX  
CORNER LEADS OPTION  
(4 PLCS)  
0.005  
(0.127)  
MIN  
8
7
6
5
4
6
5
4
8
7
0.023 – 0.045  
(0.584 – 1.143)  
HALF LEAD  
OPTION  
0.255 ± 0.015*  
(6.477 ± 0.381)  
0.025  
(0.635)  
RAD TYP  
0.220 – 0.310  
(5.588 – 7.874)  
0.045 – 0.068  
(1.143 – 1.727)  
FULL LEAD  
OPTION  
1
2
3
1
2
3
0.200  
(5.080)  
MAX  
0.300 BSC  
(0.762 BSC)  
0.130 ± 0.005  
(3.302 ± 0.127)  
0.300 – 0.325  
(7.620 – 8.255)  
0.045 – 0.065  
(1.143 – 1.651)  
0.015 – 0.060  
(0.381 – 1.524)  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
0.008 – 0.018  
(0.203 – 0.457)  
0° – 15°  
0.125  
(3.175)  
MIN  
(0.229 – 0.381)  
0.005  
(0.127)  
MIN  
0.015  
(0.380)  
MIN  
+0.025  
–0.015  
0.325  
0.045 – 0.068  
(1.143 – 1.727)  
0.385 ± 0.025  
(9.779 ± 0.635)  
0.125  
3.175  
MIN  
+0.635  
8.255  
(
)
–0.381  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
(0.457 ± 0.076)  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.014 – 0.026  
(0.360 – 0.660)  
N8 0695  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
J8 0694  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE OR TIN PLATE LEADS.  
Tjmax  
θja  
Tjmax  
θja  
150°C  
100°C/W  
100°C  
130°C/W  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
19  
LT1013/LT1014  
U
PACKAGE DESCRIPTION  
H Package  
8-Lead TO-5 Metal Can (0.200 PCD)  
(LTC DWG # 05-08-1320)  
0.335 – 0.370  
(8.509 – 9.398)  
DIA  
0.305 – 0.335  
(7.747 – 8.509)  
0.040  
(1.016)  
MAX  
0.050  
(1.270)  
MAX  
0.027 – 0.045  
(0.686 – 1.143)  
0.165 – 0.185  
(4.191 – 4.699)  
45°TYP  
0.027 – 0.034  
(0.686 – 0.864)  
REFERENCE  
PLANE  
SEATING  
PLANE  
GAUGE  
PLANE  
0.500 – 0.750  
(12.700 – 19.050)  
0.200  
(5.080)  
TYP  
0.010 – 0.045*  
(0.254 – 1.143)  
*LEAD DIAMETER IS UNCONTROLLED BETWEEN THE REFERENCE PLANE  
AND 0.045" BELOW THE REFERENCE PLANE  
0.016 – 0.021**  
(0.406 – 0.533)  
0.016 – 0.024  
**FOR SOLDER DIP LEAD FINISH, LEAD DIAMETER IS  
(0.406 – 0.610)  
0.110 – 0.160  
(2.794 – 4.064)  
INSULATING  
STANDOFF  
H8(TO-5) 0.200 PCD 0595  
NOTE: DIMENSIONS IN INCHES (MILLIMETERS)  
Tjmax  
150°C  
θja  
150°C/W  
θjc  
45°C/W  
J Package  
N Package  
14-Lead CERDIP (Narrow 0.300, Hermetic)  
14-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1110)  
(LTC DWG # 05-08-1510)  
0.785  
(19.939)  
MAX  
0.770*  
(19.558)  
MAX  
CORNER LEADS OPTION  
(4 PLCS)  
0.005  
(0.127)  
MIN  
14  
13  
12  
11  
10  
9
8
14  
13  
12  
11  
10  
9
8
7
0.023 – 0.045  
(0.584 – 1.143)  
HALF LEAD  
OPTION  
0.255 ± 0.015*  
(6.477 ± 0.381)  
0.220 – 0.310  
(5.588 – 7.874)  
0.025  
(0.635)  
RAD TYP  
0.045 – 0.068  
(1.143 – 1.727)  
FULL LEAD  
OPTION  
1
2
3
5
6
2
3
4
5
6
4
1
7
0.200  
0.300 BSC  
(0.762 BSC)  
(5.080)  
MAX  
0.300 – 0.325  
(7.620 – 8.255)  
0.045 – 0.065  
(1.143 – 1.651)  
0.130 ± 0.005  
(3.302 ± 0.127)  
0.015  
(0.381  
0.060  
1.524)  
0.015  
(0.380)  
MIN  
0.065  
(1.651)  
TYP  
0.008  
(0.203  
0.018  
0.457)  
0.009 – 0.015  
(0.229 – 0.381)  
0°  
15°  
+0.025  
0.325  
0.005  
(0.125)  
MIN  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.385± 0.025  
(9.779± 0.635)  
–0.015  
0.125  
(3.175)  
MIN  
0.018 ± 0.003  
(0.457 ± 0.076)  
0.045  
(1.143  
0.068  
1.727)  
0.100± 0.010  
(2.540± 0.254)  
0.125  
(3.175)  
MIN  
+0.635  
8.255  
(
)
–0.381  
0.014  
(0.360  
0.026  
0.660)  
N14 0695  
J14 0694  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP OR TIN PLATE LEADS.  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
Tjmax  
150°C  
Tjmax  
100°C  
θja  
100°C/W  
θja  
100°C/W  
SW Package  
S8 Package  
16-Lead Plastic Small Outline (Wide 0.300)  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1620)  
(LTC DWG # 05-08-1610)  
0.398 – 0.413*  
(10.109 – 10.490)  
0.189  
(4.801  
0.197*  
5.004)  
15 14  
12  
10  
11  
9
16  
13  
8
7
6
5
0.394 – 0.419  
(10.007 – 10.643)  
NOTE 1  
0.150  
(3.810  
0.157**  
0.228  
(5.791  
0.244  
6.197)  
3.988)  
0.291 – 0.299**  
(7.391 – 7.595)  
1
2
3
4
2
3
5
7
8
1
4
6
0.037 – 0.045  
(0.940 – 1.143)  
0.010  
(0.254  
0.020  
× 45°  
0.508)  
0.093 – 0.104  
(2.362 – 2.642)  
0.053  
(1.346  
0.069  
1.752)  
0.010 – 0.029  
(0.254 – 0.737)  
× 45°  
0.004  
(0.101  
0.010  
0.254)  
0.008  
(0.203  
0.010  
0.254)  
0°8° TYP  
0° – 8° TYP  
0.016  
0.406  
0.050  
1.270  
0.050  
(1.270)  
BSC  
0.014  
(0.355  
0.019  
0.483)  
0.050  
(1.270)  
TYP  
0.004 – 0.012  
(0.102 – 0.305)  
0.009 – 0.013  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
SO8 0695  
NOTE 1  
(0.229 – 0.330)  
0.014 – 0.019  
0.016 – 0.050  
(0.356 – 0.482)  
TYP  
(0.406 – 1.270)  
NOTE:  
1. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS  
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS.  
S16 (WIDE) 0695  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
LT/GP 0196 REV A • PRINTED IN USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
(408) 432-1900 FAX: (408) 434-0507 TELEX: 499-3977  
LINEAR TECHNOLOGY CORPORATION 1990  

相关型号:

LT1013DP

DUAL PRECISION OPERATIONAL AMPLIFIERS
TI

LT1013DP

DUAL OP-AMP, 1000uV OFFSET-MAX, 1MHz BAND WIDTH, PDIP8, ROHS COMPLIANT, PLASTIC, DIP-8
ROCHESTER

LT1013DPE4

DUAL PRECISION OPERATIONAL AMPLIFIERS
TI

LT1013DS8

Quad Precision Op Amp
Linear

LT1013DS8#PBF

LT1013 - Dual Precision Op Amp; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1013DS8#TR

暂无描述
Linear

LT1013DS8#TRPBF

LT1013 - Dual Precision Op Amp; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1013FK

DUAL PRECISION OPERATIONAL AMPLIFIERS
TI

LT1013IH

IC DUAL OP-AMP, 5 uV OFFSET-MAX, MBCY, METAL CAN, TO-5, Operational Amplifier
Linear

LT1013IJ8

IC DUAL OP-AMP, CDIP8, HERMETIC SEALED, CERDIP-8, Operational Amplifier
Linear

LT1013IN8

Quad Precision Op Amp
Linear

LT1013IN8#PBF

LT1013 - Dual Precision Op Amp; Package: PDIP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear