LT1014DN#TRPBF [Linear]

IC QUAD OP-AMP, 400 uV OFFSET-MAX, PDIP14, 0.300 INCH, LEAD FREE, PLASTIC, DIP-14, Operational Amplifier;
LT1014DN#TRPBF
型号: LT1014DN#TRPBF
厂家: Linear    Linear
描述:

IC QUAD OP-AMP, 400 uV OFFSET-MAX, PDIP14, 0.300 INCH, LEAD FREE, PLASTIC, DIP-14, Operational Amplifier

放大器 光电二极管
文件: 总26页 (文件大小:513K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1013/LT1014  
Quad Precision Op Amp (LT1014)  
Dual Precision Op Amp (LT1013)  
DescripTion  
FeaTures  
TheLT®1014istherstprecisionquadoperationalamplifier  
which directly upgrades designs in the industry standard  
14-pinDIPLM324/LM348/OP-11/4156pinconfiguration.  
It is no longer necessary to compromise specifications,  
while saving board space and cost, as compared to single  
operational amplifiers.  
n
Single Supply Operation  
Input Voltage Range Extends to Ground  
Output Swings to Ground While Sinking Current  
n
Pin Compatible to 1458 and 324 with Precision Specs  
n
Guaranteed Offset Voltage: 150µV Max  
n
Guaranteed Low Drift: 2µV/°C Max  
n
Guaranteed Offset Current: 0.8nA Max  
The LT1014’s low offset voltage of 50µV, drift of 0.3µV/°C,  
offset current of 0.15nA, gain of 8 million, common mode  
rejection of 117dB and power supply rejection of 120dB  
qualify it as four truly precision operational amplifiers.  
Particularly important is the low offset voltage, since no  
offsetnullterminalsareprovidedinthequadconfiguration.  
Althoughsupplycurrentisonly350µAperamplifier,anew  
output stage design sources and sinks in excess of 20mA  
of load current, while retaining high voltage gain.  
n
Guaranteed High Gain  
5mA Load Current: 1.5 Million Min  
17mA Load Current: 0.8 Million Min  
n
Guaranteed Low Supply Current: 500µA Max  
n
Low Voltage Noise, 0.1Hz to 10Hz: 0.55µV  
Low Current Noise—Better than 0P-07, 0.07pA/√Hz  
P-P  
n
applicaTions  
Similarly,theLT1013istherstprecisiondualopampinthe  
8-pin industry standard configuration, upgrading the per-  
formanceofsuchpopulardevicesastheMC1458/MC1558,  
LM158andOP-221.TheLT1013’sspecificationsaresimilar  
to (even somewhat better than) the LT1014’s.  
n
Battery-Powered Precision Instrumentation  
Strain Gauge Signal Conditioners  
Thermocouple Amplifiers  
Instrumentation Amplifiers  
n
4mA to 20mA Current Loop Transmitters  
n
Both the LT1013 and LT1014 can be operated off a single  
5V power supply: input common mode range includes  
ground;theoutputcanalsoswingtowithinafewmillivolts  
of ground. Crossover distortion, so apparent on previous  
single-supplydesigns,iseliminated.Afullsetofspecifica-  
tions is provided with 15V and single 5V supplies.  
Multiple Limit Threshold Detection  
Active Filters  
Multiple Gain Blocks  
n
n
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
Typical applicaTion  
LT1014 Distribution of Offset Voltage  
3-Channel Thermocouple Thermometer  
4k  
1M  
700  
V
T
=
15V  
3k  
299k  
S
A
= 25°C  
5V  
5V  
600  
500  
400  
300  
200  
100  
0
425 LT1014s  
(1700 OP AMPS)  
TESTED FROM  
THREE RUNS  
J PACKAGE  
4
LT1004  
1.2V  
2
3
YSI 44007  
5k  
1684Ω  
260Ω  
1
OUTPUT A  
10mV/°C  
AT 25°C  
LT1014  
+
12  
+
11  
14  
LT1014  
1.8k  
4k  
13  
1M  
6
5
7
USE TYPE K THERMOCOUPLES. ALL RESISTORS = 1% FILM.  
COLD JUNCTION COMPENSATION ACCURATE  
TO 1°C FROM 0°C TO 60°C.  
OUTPUT B  
10mV/°C  
–300 –200 –100  
0
100  
200  
300  
LT1014  
INPUT OFFSET VOLTAGE (µV)  
+
1013/14 TA02  
USE 4TH AMPLIFIER FOR OUTPUT C.  
10134fd  
LT1013/LT1014  
(Note 1)  
absoluTe MaxiMuM raTings  
Supply Voltage....................................................... 22V  
Differential Input Voltage........................................ 30V  
Input Voltage................ Equal to Positive Supply Voltage  
............5V Below Negative Supply Voltage  
Lead Temperature (Soldering, 10 sec.) ................. 300°C  
Operating Temperature Range  
LT1013AM/LT1013M/  
LT1014AM/LT1014M.........................55 °C to 125°C  
LT1013AC/LT1013C/LT1013D  
LT1014AC/LT1014C/LT1014D................... 0°C to 70°C  
LT1013I/ LT1014I.................................– 40°C to 85°C  
Output Short-Circuit Duration .......................... Indefinite  
Storage Temperature Range  
All Grades ..........................................65°C to 150°C  
pin conFiguraTion  
LT1013  
LT1013  
LT1013  
TOP VIEW  
TOP VIEW  
TOP VIEW  
+
V
+
+
OUTPUT A  
–IN A  
1
2
3
4
V
8
7
6
5
+INA  
1
2
3
4
8
7
6
5
–INA  
8
OUTPUT B  
OUTPUT A  
7
OUTPUT B  
–IN B  
1
3
V
OUTA  
A
+
A
B
+
+
+IN A  
+
6
+INB  
–INB  
V
–IN A  
2
–IN B  
+
+
5
B
V
+IN B  
OUTB  
+IN B  
+IN A  
4
N8 PACKAGE  
8-LEAD PDIP  
S8 PACKAGE  
8-LEAD PLASTIC SO  
V (CASE)  
H PACKAGE  
8-LEAD TO-5 METAL CAN  
= 125°C, θ = 55°C/W  
T
= 150°C, Q = 130°C  
JMAX  
JA  
NOTE: THIS PIN CONFIGURATION DIFFERS FROM  
THE STANDARD 8-PIN DUAL-IN-LINE CONFIGURATION  
J8 PACKAGE  
8-LEAD CERDIP  
T
JMAX  
JA  
T
= 150°C, Q = 100°C  
T
= 150°C, θ = 190°C/W  
JA  
JMAX  
JA  
JMAX  
OBSOLETE PACKAGE  
OBSOLETE PACKAGE  
Consider the N or S8 Packages for Alternate Source  
LT1014  
Consider the N or S8 (Not N8) Packages for Alternate Source  
LT1014  
TOP VIEW  
1
2
3
4
5
6
7
OUTPUT D  
–IN D  
14  
13  
12  
11  
10  
9
OUTPUT A  
TOP VIEW  
+
–IN A  
+IN A  
A
+
D
C
OUTPUT A  
1
2
3
4
5
6
7
8
16 OUTPUT D  
15 –IN D  
+IN D  
–IN A  
+IN A  
+
V
V
14  
13  
12  
11  
10  
9
+IN D  
+IN C  
+IN B  
–IN B  
+
+
+
B
V
V
–IN C  
+IN B  
–IN B  
+IN C  
–IN C  
OUTPUT C  
NC  
OUTPUT C  
8
OUTPUT B  
N PACKAGE  
OUTPUT B  
NC  
14-LEAD PDIP  
T
T
= 150°C, Q = 100°C  
JMAX  
JA  
J PACKAGE  
SW PACKAGE  
16-LEAD PLASTIC SO  
14-LEAD CERDIP  
= 150°C, Q = 100°C  
JMAX  
JA  
T
= 150°C, θ = 130°C/W  
JA  
JMAX  
OBSOLETE PACKAGE  
Consider the N or SW Packages for Alternate Source  
10134fd  
LT1013/LT1014  
orDer inForMaTion  
LEAD FREE FINISH  
LT1013DS8#PBF  
LT1013IS8#PBF  
LT1013ACN8#PBF  
LT1013CN8#PBF  
LT1013DN8#PBF  
LT1013IN8#PBF  
LT1014DSW#PBF  
LT1014ISW#PBF  
LT1014ACN#PBF  
LT1014CN#PBF  
LT1014DN#PBF  
LT1014IN#PBF  
TAPE AND REEL  
PART MARKING  
1013  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
0°C to 70°C  
LT1013DS8#TRPBF  
LT1013IS8#TRPBF  
LT1013ACN8#TRPBF  
LT1013CN8#TRPBF  
LT1013DN8#TRPBF  
LT1013IN8#TRPBF  
LT1014DSW#TRPBF  
LT1014ISW#TRPBF  
LT1014ACN#TRPBF  
LT1014CN#TRPBF  
LT1014DN#TRPBF  
LT1014IN#TRPBF  
LT1013AMJ8#TRPBF  
LT1013MJ8#TRPBF  
LT1013ACJ8#TRPBF  
LT1013CJ8#TRPBF  
LT1013AMH#TRPBF  
LT1013MH#TRPBF  
LT1013ACH#TRPBF  
LT1013CH#TRPBF  
LT1014AMJ#TRPBF  
LT1014MJ#TRPBF  
LT1014ACJ#TRPBF  
LT1014CJ#TRPBF  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead PDIP  
1013I  
–40°C to 85°C  
LT1013ACN8  
LT1013CN8  
LT1013DN8  
LT1013IN8  
LT1014DSW  
LT1014ISW  
LT1014ACN  
LT1014CN  
LT1014DN  
LT1014IN  
0°C to 70°C  
8-Lead PDIP  
0°C to 70°C  
8-Lead PDIP  
0°C to 70°C  
8-Lead PDIP  
–40°C to 85°C  
16-Lead Plastic SO  
16-Lead Plastic SO  
14-Lead PDIP  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
14-Lead PDIP  
0°C to 70°C  
14-Lead PDIP  
0°C to 70°C  
14-Lead PDIP  
–40°C to 85°C  
LT1013AMJ8#PBF  
LT1013MJ8#PBF  
LT1013ACJ8#PBF  
LT1013CJ8#PBF  
LT1013AMH#PBF  
LT1013MH#PBF  
LT1013ACH#PBF  
LT1013CH#PBF  
LT1014AMJ#PBF  
LT1014MJ#PBF  
LT1014ACJ#PBF  
LT1014CJ#PBF  
LT1013AMJ8  
LT1013MJ8  
LT1013ACJ8  
LT1013CJ8  
LT1013AMH  
LT1013MH  
LT1013ACH  
LT1013CH  
LT1014AMJ  
LT1014MJ  
LT1014ACJ  
LT1014CJ  
8-Lead CERDIP  
8-Lead CERDIP  
8-Lead CERDIP  
8-Lead CERDIP  
8-Lead TO-5 Metal Can  
8-Lead TO-5 Metal Can  
8-Lead TO-5 Metal Can  
8-Lead TO-5 Metal Can  
14-Lead CERDIP  
14-Lead CERDIP  
14-Lead CERDIP  
14-Lead CERDIP  
–55°C to 125°C (OBSOLETE)  
–55°C to 125°C (OBSOLETE)  
0°C to 70°C (OBSOLETE)  
0°C to 70°C (OBSOLETE)  
–55°C to 125°C (OBSOLETE)  
–55°C to 125°C (OBSOLETE)  
0°C to 70°C (OBSOLETE)  
0°C to 70°C (OBSOLETE)  
–55°C to 125°C (OBSOLETE)  
–55°C to 125°C (OBSOLETE)  
0°C to 70°C (OBSOLETE)  
0°C to 70°C (OBSOLETE)  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
10134fd  
LT1013/LT1014  
elecTrical characTerisTics  
TA = 25°C. VS = 15V, VCM = 0V unless otherwise noted.  
LT1013AM/AC  
LT1014AM/AC  
LT1013C/D/I/M  
LT1014C/D/I/M  
TYP  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
MAX  
UNITS  
V
Input Offset Voltage  
LT1013  
40  
50  
150  
180  
60  
60  
200  
300  
300  
800  
µV  
µV  
µV  
OS  
LT1014  
LT1013D/I, LT1014D/I  
Long-Term Input Offset Voltage  
Stability  
0.4  
0.5  
µV/Mo.  
I
I
Input Offset Current  
Input Bias Current  
0.15  
12  
0.8  
20  
0.2  
15  
1.5  
30  
nA  
nA  
SO  
B
e
n
e
n
Input Noise Voltage  
Input Noise Voltage Density  
0.1Hz to 10Hz  
0.55  
0.55  
µV  
P-P  
f = 10Hz  
24  
22  
24  
22  
nV/√Hz  
nV/√Hz  
O
f = 1000Hz  
O
i
Input Noise Current Density  
f = 10Hz  
O
0.07  
0.07  
pA/√Hz  
n
Input Resistance – Differential  
Common Mode  
(Note 2)  
100  
400  
5
70  
300  
4
MΩ  
GΩ  
A
VOL  
Large-Signal Voltage Gain  
V = 10V, R = 2k  
1.5  
0.8  
8.0  
2.5  
1.2  
0.5  
7.0  
2.0  
V/µV  
V/µV  
O
L
V = 10V, R = 600Ω  
O
L
Input Voltage Range  
13.5  
15.0  
13.8  
15.3  
13.5  
15.0  
13.8  
15.3  
V
V
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Channel Separation  
Output Voltage Swing  
Slew Rate  
V
= 13.5V, 15.0V  
100  
103  
123  
13  
117  
120  
140  
14  
97  
114  
117  
137  
14  
dB  
dB  
CM  
V = 2V to 18V  
100  
120  
12.5  
0.2  
S
V = 10V, R = 2k  
dB  
O
L
V
R = 2k  
V
OUT  
L
0.2  
0.4  
0.4  
V/µs  
mA  
I
Supply Current  
Per Amplifier  
0.35  
0.50  
0.35  
0.55  
S
TA = 25°C. VS+ = 5V, VS= 0V, VOUT = 1.4V, VCM = 0V unless otherwise noted  
LT1013AM/AC  
LT1014AM/AC  
LT1013C/D/I/M  
LT1014C/D/I/M  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
V
OS  
Input Offset Voltage  
LT1013  
60  
70  
250  
280  
90  
90  
250  
450  
450  
950  
µV  
µV  
µV  
LT1014  
LT1013D/I, LT1014D/I  
I
I
Input Offset Current  
Input Bias Current  
0.2  
15  
1.3  
35  
0.3  
18  
2.0  
50  
nA  
nA  
OS  
B
A
VOL  
Large-Signal Voltage Gain  
Input Voltage Range  
V = 5mV to 4V, R = 500Ω  
1.0  
1.0  
V/µV  
O
L
3.5  
3.8  
– 0.3  
3.5  
0
3.8  
– 0.3  
V
V
V
Output Voltage Swing  
Supply Current  
Output Low, No Load  
15  
5
220  
4.4  
4.0  
25  
10  
15  
5
220  
4.4  
4.0  
25  
10  
mV  
mV  
mV  
V
V
OUT  
Output Low, 600Ω to Ground  
Output Low, I  
= 1mA  
350  
350  
SINK  
Output High, No Load  
Output High, 600Ω to  
Ground  
4.0  
3.4  
4.0  
3.4  
I
Per Amplifier  
0.31  
0.45  
0.32  
0.50  
mA  
S
10134fd  
LT1013/LT1014  
elecTrical characTerisTics  
The l denotes the specifications which apply over the temperature range  
55°C ≤ TA ≤ 125°C. VS = 15V, VCM = 0V unless otherwise noted.  
SYMBOL PARAMETER CONDITIONS  
V = 5V, 0V; V = 1.4V  
LT1013AM  
LT1014AM  
LT1013M/LT1014M  
MIN TYP MAX MIN TYP MAX MIN TYP MAX UNITS  
l
l
V
OS  
Input Offset Voltage  
80  
300  
90  
350  
110  
550  
µV  
S
O
80  
450  
450  
900  
90  
480  
480  
960  
100  
200  
750  
750  
µV  
µV  
µV  
55°C ≤ T ≤ 100°C  
A
120  
250  
150  
300  
V
CM  
V
CM  
= 0.1V, T = 125°C  
A
400 1500  
= 0V, T = 125°C  
A
l
Input Offset Voltage Drift  
Input Offset Current  
(Note 3)  
0.4  
2.0  
0.4  
2.0  
0.5  
2.5  
µV/°C  
l
l
I
I
0.3  
0.6  
2.5  
6.0  
0.3  
0.7  
2.8  
7.0  
0.4  
0.9  
5.0  
10.0  
nA  
nA  
OS  
V = 5V, 0V; V = 1.4V  
S
O
l
l
Input Bias Current  
15  
20  
30  
80  
15  
25  
30  
90  
18  
28  
45  
120  
nA  
nA  
B
V = 5V, 0V; V = 1.4V  
S
O
l
l
l
A
Large-Signal Voltage Gain  
Common Mode Rejection  
V = 10V, R = 2k  
0.5  
97  
2.0  
114  
117  
0.4  
96  
2.0  
114  
117  
0.25  
94  
2.0  
113  
116  
V/µV  
dB  
VOL  
O
L
CMRR  
PSRR  
V
CM  
= 13.0V, 14.9V  
Power Supply Rejection  
Ratio  
V = 2V to 18V  
S
100  
100  
97  
dB  
l
V
OUT  
Output Voltage Swing  
R = 2k  
S
12  
13.8  
12  
13.8  
11.5 13.8  
V
L
V = 5V, 0V  
R = 600Ω to Ground  
L
l
l
Output Low  
Output High  
6
3.8  
15  
6
3.8  
15  
6
18  
mV  
V
3.2  
3.2  
3.1  
3.8  
l
l
I
S
Supply Current  
Per Amplifier  
0.38 0.60  
0.34 0.55  
0.38 0.60  
0.34 0.55  
0.38  
0.7  
mA  
mA  
V = 5V, 0V; V = 1.4V  
0.34 0.65  
S
O
10134fd  
LT1013/LT1014  
elecTrical characTerisTics  
The l denotes the specifications which apply over the temperature range  
–40°C ≤ TA ≤ 85°C for LT1013I, LT1014I, 0°C ≤ TA ≤ 70°C for LT1013C, LT1013D, LT1014C, LT1014D. VS = 15V, VCM = 0V unless  
otherwise noted.  
LT1013C/D/I  
LT1014C/D/I  
LT1013AC  
LT1014AC  
SYMBOL PARAMETER  
CONDITIONS  
MIN TYP MAX MIN TYP MAX MIN TYP MAX UNITS  
l
l
l
V
OS  
Input Offset Voltage  
55  
240  
65  
270  
80  
230 1000  
110 570  
400  
µV  
µV  
µV  
LT1013D/I, LT1014D/I  
75  
350  
85  
380  
V = 5V, 0V; V = 1.4V  
S
O
LT1013D/I, LT1014D/I  
l
280 1200  
µV  
V = 5V, 0V; V = 1.4V  
S
O
l
l
Average Input Offset  
Voltage Drift  
(Note 3)  
0.3  
2.0  
0.3  
2.0  
0.4  
0.7  
2.5  
5.0  
µV/°C  
µV/°C  
LT1013D/I, LT1014D/I  
V = 5V, 0V; V = 1.4V  
l
l
I
I
Input Offset Current  
0.2  
0.4  
1.5  
3.5  
0.2  
0.4  
1.7  
4.0  
0.3  
0.5  
2.8  
6.0  
nA  
nA  
OS  
S
O
l
l
Input Bias Current  
13  
18  
25  
55  
13  
20  
25  
60  
16  
24  
38  
90  
nA  
nA  
B
V = 5V, 0V; V = 1.4V  
S
O
l
l
A
Large-Signal Voltage Gain  
V = 10V, R = 2k  
1.0  
98  
5.0  
1.0  
98  
5.0  
0.7  
94  
4.0  
V/µV  
dB  
VOL  
O
L
CMRR  
Common Mode Rejection  
Ratio  
V
CM  
= 13.0V, –15.0V  
116  
116  
113  
l
l
PSRR  
Power Supply Rejection  
Ratio  
V = 2V to 18V  
101  
119  
101  
119  
97  
116  
dB  
V
S
V
OUT  
Output Voltage Swing  
R = 2k  
12.5 13.9  
6
12.5 13.9  
6
12.0 13.9  
6
L
V = 5V, 0V; R = 600Ω  
S
L
l
l
13  
13  
13  
mV  
V
Output Low  
3.3  
3.9  
3.3  
3.9  
3.2  
3.9  
Output High  
l
l
I
S
Supply Current per Amplifier  
0.36 0.55  
0.32 0.50  
0.36 0.55  
0.32 0.50  
0.37 0.60  
0.34 0.55  
mA  
mA  
V = 5V, 0V; V = 1.4V  
S
O
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Rating condition for extended periods may affect device reliability  
and lifetime.  
Note 2: This parameter is guaranteed by design and is not tested. Typical  
parameters are defined as the 60% yield of parameter distributions of  
individual amplifiers; i.e., out of 100 LT1014s (or 100 LT1013s) typically  
240 op amps (or 120 ) will be better than the indicated specification.  
Note 3: This parameter is not 100% tested.  
10134fd  
LT1013/LT1014  
Typical perForMance characTerisTics  
Offset Voltage Drift with  
Temperature of Representative  
Units  
Offset Voltage vs Balanced  
Source Resistance  
Warm-Up Drift  
10  
1
5
4
3
2
1
0
V
= 15V  
S
V
=
15V  
S
A
200  
100  
0
T
= 25°C  
V
= 5V, 0V, –55°C TO 125°C  
S
V
= 15V, 0V, –55°C TO 125°C  
S
LT1013 METAL CAN (H) PACKAGE  
V
= 5V, 0V, 25°C  
S
0.1  
0.01  
LT1014  
–100  
–200  
R
S
+
V
S
= 15V, 0V, 25°C  
LT1013 CERDIP (J) PACKAGE  
R
S
1k  
3k 10k 30k 100k 300k 1M 3M 10M  
BALANCED SOURCE RESISTANCE (Ω)  
1013/14 TPC02  
–50  
0
25  
50  
75 100 125  
–25  
1
3
0
2
4
5
TEMPERATURE (°C)  
TIME AFTER POWER ON (MINUTES)  
1013/14 TPC01  
1013/14 TPC03  
Common Mode Rejection Ratio  
vs Frequency  
Power Supply Rejection Ratio  
vs Frequency  
0.1Hz to 10Hz Noise  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
T
= 25oC  
= p2V TO p18V  
A
S
T
= 25°C  
A
V
NEGATIVE  
SUPPLY  
POSITIVE  
SUPPLY  
V
= 5V, 0V  
V
=
15V  
S
S
V
= 1ꢀV ꢁ 1V SINE WAVE  
P-P  
= 2ꢀ°C  
S
A
T
0
2
4
6
8
10  
1k  
FREQUENCY (Hz)  
100k 1M  
0.1  
1
10 100  
10k  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
TIME (SECONDS)  
1013/14 TPC04  
1013/14 TPC0ꢀ  
1013/14 TPC06  
10Hz Voltage Noise  
Distribution  
Noise Spectrum  
Supply Current vs Temperature  
1000  
460  
420  
380  
340  
300  
260  
200  
180  
160  
140  
120  
100  
80  
T
= 25°C  
A
S
V
=
15V  
S
A
V
= ±2V TO ±1±V  
T
= 25°C  
328 UNITS TESTED  
FROM THREE RUNS  
300  
100  
V
= 15V  
S
CURRENT NOISE  
V
= 5V, 0V  
S
60  
VOLTAGE NOISE  
30  
10  
40  
1/f CORNER 2Hz  
20  
0
–50  
0
25  
50  
75 100 125  
1
10  
100  
1k  
10  
20  
40  
50  
60  
–25  
30  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
VOLTAGE NOISE DENSITY (nV/√Hz)  
1013/14 TPC07  
1013/14 TPC09  
1013/14 TPC08  
10134fd  
LT1013/LT1014  
Typical perForMance characTerisTics  
Input Bias Current  
vs Common Mode Voltage  
Input Offset Current  
vs Temperature  
Input Bias Current  
vs Temperature  
5
4
15  
10  
5
1.0  
0.8  
0.6  
0.4  
0.2  
0
–30  
–25  
–20  
–15  
–10  
–5  
T
= 25°C  
V
CM  
= 0V  
A
V
= 0V  
CM  
3
V
= 5V, 0V  
S
2
0
V
=
15V  
V = 5V, 0V  
S
S
V
=
15V  
S
1
–5  
–10  
–15  
V
= 5V, 0V  
S
=
2.5V  
S
V
0
V
=
15V  
50  
S
0
–1  
50  
100 125  
–50 –25  
0
25  
75  
–50  
0
25  
75 100 125  
0
–10  
–15  
–20  
–25  
–30  
–25  
–5  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
INPUT BIAS CURRENT (nA)  
1013/14 TPC11  
1013/14 TPC12  
1013/14 TPC10  
Output Saturation vs Sink  
Current vs Temperature  
Small-Signal Transient  
Response, VS = 15V  
Large-Signal Transient  
Response, VS = 15V  
10  
+
V
V
= 5V TO 30V  
= 0V  
I
= 10mA  
SINK  
1
0.1  
I
I
= 5mA  
= 1mA  
SINK  
SINK  
I
I
= 100µA  
= 10µA  
SINK  
SINK  
A
V
= +1  
2µs/DIV  
1013/14 TPC14  
A
V
= +1  
50µs/DIV  
1013/14 TPC15  
I
= 0  
SINK  
0.01  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
1013/14 TPC13  
Large-Signal Transient  
Response, VS = 5V, 0V  
Large-Signal Transient  
Response, VS = 5V, 0V  
Small-Signal Transient  
Response, VS = 5V, 0V  
4V  
4V  
2V  
0V  
100mV  
2V  
0V  
50mV  
0
A
= +1  
20µs/DIV  
1013/14 TPC16  
A
= +1  
10µs/DIV  
1013/14 TPC17  
A
= +1  
10µs/DIV  
1013/14 TPC18  
V
V
V
R
L
= 600Ω TO GROUND  
R
L
= 4.7k TO 5V  
NO LOAD  
INPUT = 0V TO 4V PULSE  
INPUT = 0V TO 100mV PULSE  
INPUT = 0V TO 4V PULSE  
10134fd  
LT1013/LT1014  
Typical perForMance characTerisTics  
Output Short-Circuit Current  
vs Time  
Voltage Gain vs Load Resistance  
Voltage Gain vs Frequency  
10M  
40  
30  
TA = 25°C, VS  
=
15V  
15V  
15V  
140  
120  
100  
80  
V
S
= 15V  
–55°C  
25°C  
T
= 2ꢀ°C  
= 100pF  
A
L
TA = –55°C, VS  
TA = 125°C, VS  
=
=
C
125°C  
20  
TA = –55°C, VS = 5V, 0V  
TA = 25°C, VS = 5V, 0V  
10  
V
= ꢀV, 0V  
V = 1ꢀV  
S
S
1M  
0
60  
TA = 125°C, VS = 5V, 0V  
125°C  
–10  
–20  
–30  
–40  
40  
25°C  
20  
VO  
= 10V WITH VS = 15V  
–55°C  
0
VO = 20mV TO 3.5V  
WITH VS = 5V, 0V  
100k  
–20  
1
2
100  
1k  
10k  
0
3
100 1k  
0.01 0.1  
1
10  
10k 100k 1M 10M  
LOAD RESISTANCE TO GROUND (Ω)  
TIME FROM OUTPUT SHORT TO GROUND (MINUTES)  
FREQUENCY (Hz)  
1013/14 TPC20  
1013/14 TPC19  
1013/14 TPC21  
Channel Separation  
vs Frequency  
Gain, Phase vs Frequency  
80  
160  
T
V
C
= 25°C  
CM  
= 100pF  
A
V
T
=
1ꢀV  
S
A
= 0V  
= 2ꢀ°C  
= 20Vp-p to ꢀkHz  
= 2k  
20  
10  
100  
120  
140  
160  
180  
200  
PHASE  
L
V
R
IN  
140  
120  
100  
80  
15V  
L
LIMITED BY  
THERMAL  
INTERACTION  
15V  
GAIN  
R
S
= 100Ω  
R
S
= 1kΩ  
0
5V, 0V  
5V, 0V  
LIMITED BY  
PIN TO PIN  
CAPACITANCE  
–10  
60  
0.1  
0.3  
1
3
10  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (MHz)  
FREQUENCY (Hz)  
1013/14 TPC22  
1013/14 TPC23  
applicaTions inForMaTion  
Single Supply Operation  
The LT1013/LT1014 are fully specified for single supply  
operation, i.e., when the negative supply is 0V. Input  
common mode range includes ground; the output swings  
within a few millivolts of ground. Single supply operation,  
however, can create special difficulties, both at the input  
andattheoutput.TheLT1013/LT1014havespecificcircuitry  
which addresses these problems.  
problems can occur on previous single supply designs,  
such as the LM124, LM158, OP-20, OP-21, OP-220,  
OP-221, OP-420:  
a) When the input is more than a diode drop below  
ground, unlimited current will flow from the substrate  
(V terminal) to the input. This can destroy the unit. On  
the LT1013/LT1014, the 400Ω resistors, in series with the  
input (see Schematic Diagram), protect the devices even  
when the input is 5V below ground.  
At the input, the driving signal can fall below 0V—in-  
advertently or on a transient basis. If the input is more  
than a few hundred millivolts below ground, two distinct  
10134fd  
LT1013/LT1014  
applicaTions inForMaTion  
b) When the input is more than 400mV below ground  
(at 25°C), the input stage saturates (transistors Q3 and  
Q4) and phase reversal occurs at the output. This can  
cause lock-up in servo systems. Due to a unique phase  
reversal protection circuitry (Q21, Q22, Q27, Q28), the  
LT1013/LT1014’s outputs do not reverse, as illustrated  
below, even when the inputs are at –1.5V.  
Thereisonecircumstance,however,underwhichthephase  
reversal protection circuitry does not function: when the  
other op amp on the LT1013, or one specific amplifier of  
the other three on the LT1014, is driven hard into negative  
saturation at the output.  
D when A’s output is negative saturation. B’s and C’s  
outputs have no effect.  
At the output, the aforementioned single supply designs  
either cannot swing to within 600mV of ground (OP-20)  
orcannotsinkmorethanafewmicroampereswhileswing-  
ing to ground (LM124, LM158). The LT1013/LT1014’s  
all-NPNoutputstagemaintainsitslowoutputresistanceand  
high gain characteristics until the output is saturated.  
In dual supply operations, the output stage is crossover  
distortion-free.  
Comparator Applications  
Phase reversal protection does not work on amplifier:  
The single supply operation of the LT1013/LT1014 lends  
itself to its use as a precision comparator with TTL com-  
patible output:  
A when D’s output is in negative saturation. B’s and C’s  
outputs have no effect.  
B when C’s output is in negative saturation. A’s and D’s  
outputs have no effect.  
In systems using both op amps and comparators, the  
LT1013/LT1014 can perform multiple duties; for example,  
on the LT1014, two of the devices can be used as op amps  
and the other two as comparators.  
C when B’s output is in negative saturation. A’s and D’s  
outputs have no effect.  
Voltage Follower with Input Exceeding the Negative Common Mode Range  
4V  
2V  
4V  
2V  
4V  
2V  
0V  
0V  
0V  
6V INPUT, 1.5V TO 4.5V  
P-P  
LM324, LM358, OP-20  
EXHIBIT OUTPUT PHASE  
REVERSAL  
LT1013/LT1014  
NO PHASE REVERSAL  
Comparator Rise Response Time  
10mV, 5mV, 2mV Overdrives  
Comparator Fall Response Time  
to 10mV, 5mV, 2mV Overdrives  
4
2
4
2
0
0
0
100  
100  
0
V
= 5V, 0V  
50µs/DIV  
V
= 5V, 0V  
S
50µs/DIV  
S
10134fd  
ꢀ0  
LT1013/LT1014  
applicaTions inForMaTion  
Test Circuit for Offset Voltage and  
Offset Drift with Temperature  
Low Supply Operation  
The minimum supply voltage for proper operation of the  
LT1013/LT1014 is 3.4V (three Ni-Cad batteries). Typical  
supply current at this voltage is 290µA, therefore power  
dissipation is only one milliwatt per amplifier.  
50k*  
15V  
100Ω*  
50k*  
V
O
+
Noise Testing  
LT1013  
OR LT1014  
–15V  
For applications information on noise testing and calcula-  
tions, please see the LT1007 or LT1008 data sheet.  
*RESISTOR MUST HAVE LOW  
THERMOELECTRIC POTENTIAL.  
THIS CIRCUIT IS ALSO USED AS THE BURN-IN  
CONFIGURATION, WITH SUPPLY VOLTAGES  
INCREASED TO ±±0V.  
**  
V
= 1000V  
LT1013/14 F06  
O
OS  
Typical applicaTions  
50MHz Thermal RMS-to-DC Converter  
5V Single Supply Dual Instrumentation Amplifier  
5V  
100k*  
1/2 LTC1043  
8
5
+INPUT  
6
5
+
5V  
7
1/2 LT1013  
OUTPUT A  
R2  
0.01  
6
2
2
3
4
10k*  
10k*  
10k*  
30k*  
10k  
30k*  
1
LT1014  
1µF  
1µF  
+
3
5V  
4
+
6
5
1µF  
R1  
300Ω*  
7
LT1014  
11  
–INPUT  
+INPUT  
18  
7
15  
8
100k*  
0.01  
10k*  
1/2 LTC1043  
3
2
13  
+
1
14  
1/2 LT1013  
OUTPUT B  
LT1014  
0.01  
10k  
+
12  
1µF  
11  
R2  
INPUT  
300mV–  
1µF  
1µF  
10V  
RMS  
10  
12  
16  
+
BRN RED  
RED BRN  
20k  
8
0V TO 4V  
OUTPUT  
R1  
10k  
LT1014  
OFFSET = 150mV  
R2  
FULL-  
SCALE  
TRIM  
9
–INPUT  
13  
14  
GAIN =  
+ 1.  
R1  
10k*  
T1A T1B  
GRN  
T2B T2A  
GRN  
CMRR = 120dB.  
COMMON MODE RANGE IS 0V TO 5V.  
0.01  
10k*  
1013/14 TA04  
2% ACCURACY, DC–50MHz.  
100:1 CREST FACTOR CAPABILITY.  
0.1% RESISTOR.  
*
T1–T2 = YELLOW SPRINGS INST. CO. THERMISTOR COMPOSITE #44018.  
ENCLOSE T1 AND T2 IN STYROFOAM.  
7.5mW DISSIPATION.  
1013/14 TA03  
10134fd  
ꢀꢀ  
LT1013/LT1014  
Typical applicaTions  
Hot-Wire Anemometer  
+15V  
500pF  
TIE CA3046 PIN 13  
TO –15V. DO NOT USE Q5  
Q5  
Q1–Q4  
CA3046  
Q6  
TIP12O OR  
EQUIVALENT  
13  
–15V  
Q3  
2k  
Q4  
Q1  
220  
13  
1000pF  
150k*  
Q2  
6
A4  
14  
2k  
150k*  
0.01µF  
A2  
7
1µF  
LT1014  
10k*  
LT1014  
33k  
12  
10M  
+
27Ω  
1W  
5
+
0V TO 10V =  
0 TO 1000 FEET/MINUTE  
12k  
15V  
4
RESPONSE  
TIME  
2
3
2M  
4
A1  
LT1014  
1
1k  
ZERO  
FLOW  
ADJUST  
FULL-  
SCALE  
FLOW  
LT1004-1.2  
6, 8  
3.3k  
–15V  
#328  
+
100k  
500k  
11  
–15V  
2k*  
REMOVE LAMP'S GLASS ENVELOPE FROM 328 LAMP.  
A1 SERVOS #328 LAMP TO CONSTANT TEMPERATURE.  
A2-A3 FURNISH LINEAR OUTPUT vs FLOW RATE.  
1% RESISTOR.  
1µF  
A3  
9
*
8
LT1014  
+
10  
1013/14 TA05  
Liquid Flowmeter  
3.2k**  
3.2k*  
1M*  
6
5
10M  
RESPONSE  
TIME  
15V  
1M*  
1M*  
2
3
A2  
LT1014  
7
15Ω  
+
A1  
LT1014  
1
DALE  
6.98k*  
HL-25  
100k  
+
6.25k**  
5k  
FLOW  
CALIB  
6.25k**  
1µF  
1M*  
1k*  
T1  
T2  
15V  
4.7k  
1N4148  
100k  
2N4391  
300pF  
0.1  
OUTPUT  
0Hz TO 300Hz =  
0 TO 300ML/MIN  
LT1004-1.2  
383k*  
9
15V  
4
100k  
12  
13  
A3  
LT1014  
8
+
2.7k  
–15V  
+
10  
A4  
LT1014  
14  
100k  
11  
–15V  
T1  
T2  
15Ω HEATER RESISTOR  
* 1% FILM RESISTOR.  
FLOW  
FLOW  
** SUPPLIED WITH YSI THERMISTOR NETWORK.  
T1, T2 YSI THERMISTOR NETWORK = #44201.  
FLOW IN PIPE IS INVERSELY PROPORTIONAL TO  
RESISTANCE OF T1–T2 TEMPERATURE DIFFERENCE.  
A1–A2 PROVIDE GAIN. A3–A4 PROVIDE LINEARIZED  
FREQUENCY OUTPUT.  
PIPE  
1013/14 TA06  
10134fd  
ꢀꢁ  
LT1013/LT1014  
Typical applicaTions  
5V Powered Precision Instrumentation Amplifier  
9
TO  
8
INPUT  
LT1014  
200k*  
CABLE SHIELDS  
+
10  
+
2
3
5V  
10k*  
10k*  
1
LT1014  
20k  
1µF  
20k  
–INPUT  
5V  
10k  
4
13  
12  
RG (TYP 2k)  
200k*  
14  
OUTPUT  
LT1014  
+
11  
10k  
10k*  
+
6
5
10k*  
7
LT1014  
+INPUT  
*1% FILM RESISTOR. MATCH 10k's 0.05%  
400,000  
5V  
GAIN EQUATION: A =  
+ 1.  
RG  
FOR HIGH SOURCE IMPEDANCES,  
USE 2N2222 AS DIODES.  
1013/14 TA07  
9V Battery Powered Strain Gauge Signal Conditioner  
15k  
9V  
47µF  
9V  
22M  
4.7k  
1N4148  
4
2
3
330Ω  
0.01  
1
0.068  
LT1014  
2N2219  
+
100k  
100k  
15  
11  
TO A/D RATIO  
REFERENCE  
100k  
100k  
6
5
350Ω  
STRAIN GAUGE  
BRIDGE  
9V  
9V  
499  
499  
+
7
8
13  
LT1014  
LT1014  
1
+
14  
15k  
13  
TO A/D  
LT1014  
12  
0.068  
14  
7
74C221  
3k  
+
9
100k  
0.068  
6
9
10  
5
TO A/D  
CONVERT COMMAND  
SAMPLED OPERATION GIVES LOW AVERAGE OPERATING CURRENT ≈ 650µA.  
4.7k-0.01µF RC PROTECTS STRAIN BRIDGE FROM LONG TERM DRIFTS DUE TO  
1013/14 TA08  
HIGH ∆V/∆T STEPS.  
10134fd  
ꢀꢂ  
LT1013/LT1014  
Typical applicaTions  
5V Powered Motor Speed Controller  
No Tachometer Required  
5V  
47  
+
100k  
1k  
82Ω  
Q3  
2N5023  
2
A1  
2k  
1
Q1  
2N3904  
0.47  
330k  
1/2 LT1013  
+
3
1N4001  
1M  
2k  
6.8M  
0.068  
1/4 CD4016  
5V  
8
1N4001  
1N4148  
1N4148  
3.3M  
0.47  
+
6
0.068  
2k  
A2  
7
1/2 LT1013  
5
MOTOR = CANON–FN30–R13N1B.  
A1 DUTY CYCLE MODULATES MOTOR.  
A2 SAMPLES MOTORS BACK EMF.  
Q2  
4
E
IN  
0V TO 3V  
1013/14 TA09  
5V Powered EEPROM Pulse Generator  
5V  
DALE  
#TC-10-04  
1N4148  
1N4148  
1N4148  
2N2222  
10Ω  
5V  
20k  
0.05  
0.1  
2N2222  
0.33  
2N2222  
4.7k  
1N4148  
820  
100k  
100Ω  
270Ω  
820  
4.7M  
2
1N4148  
8
+
1
6
5
1N4148  
LT1013  
TTL INPUT  
1k  
7
+
3
2N2222  
LT1013  
4
0.005  
MEETS ALL V PROGRAMMING SPECS WITH NO TRIMS AND  
PP  
21V  
RUNS OFF 5V SUPPLY—NO EXTERNAL HIGH VOLTAGE SUPPLY REQUIRED.  
SUITABLE FOR BATTERY POWERED USE (600µA QUIESCENT CURRENT).  
1% METAL FILM.  
OUTPUT  
120k  
100k*  
*
600µs RC  
LT1004  
1.2V  
6.19k  
1013/14 TA10  
10134fd  
ꢀꢃ  
LT1013/LT1014  
Typical applicaTions  
Methane Concentration Detector with Linearized Output  
5V  
1
*1% METAL FILM RESISTOR  
SENSOR = CALECTRO-GC ELECTRONICS #J4-807 OR FIGARO #813  
14  
–5V  
CD4016  
LT1004  
1.2V  
0.033  
1N4148 (4)  
390k*  
9
+
100k*  
A3  
LT1014  
13  
8
74C04  
74C04  
A4  
LT1014  
10  
14  
2.7k  
11  
5
12  
+
8
LTC1044  
2
5V  
–5V  
10µF  
4
3
10µF  
470pF  
+
+
470pF  
10k  
5V  
1
74C04  
14  
SENSOR  
1N4148  
CA3046  
–5V  
Q4  
Q1  
OUTPUT  
Q2 Q3  
500ppm TO 10,000ppm  
50Hz TO 1kHz  
1000pF  
5V  
4
2
3
2k  
+
100k*  
A1  
LT1014  
6
5
1
5k  
+
1000ppm  
TRIM  
2k  
150k*  
A2  
LT1014  
7
12k*  
1013/14 TA11  
Low Power 9V to 5V Converter  
L
9V INPUT  
2N2905  
5V  
20mA  
2N5434  
+
1N4148  
47  
10k  
390k  
1%  
HP5082-2811  
V
= 200mV  
+
2
3
D
10k  
9V  
100µA  
1
LT1013  
330k  
8
120k  
1%  
+
5
6
7
LT1013  
4
9V  
LT1004  
1.2V  
47k  
L = DALE TE-3/Q3/TA.  
SHORT CIRCUIT CURRENT = 30mA.  
≈ 75% EFFICIENCY.  
SWITCHING PREREGULATOR CONTROLS DROP ACROSS FET TO 200mV.  
1013/14 TA12  
10134fd  
ꢀꢄ  
LT1013/LT1014  
Typical applicaTions  
5V Powered 4mA to 20mA Current Loop Transmitter†  
5V  
Q3  
2N2905  
820Ω  
T1  
74C04  
(6)  
Q1  
2N2905  
1N4002 (4)  
10µF  
10µF  
+
+
68Ω  
0.002  
10k  
Q2  
2N2905  
820Ω  
10k  
0.33  
100k  
5V  
8
10k*  
10k*  
20mA  
TRIM  
2
2k  
A1  
1/2 LT1013  
Q4  
2N2222  
1
100Ω*  
4k*  
3
+
100pF  
4
80k*  
10k*  
1k  
4mA  
TRIM  
6
5
4mA TO 20mA OUT  
4.3k  
TO LOAD  
2.2kΩ MAXIMUM  
A2  
7
5V  
12-BIT ACCURACY.  
* 1% FILM.  
T1 = PICO-31080.  
1/2 LT1013  
+
LT1004  
1.2V  
INPUT  
0V TO 4V  
1013/14 TA13  
Fully Floating Modification to 4mA-20mA Current Loop†  
T1  
10µF  
1N4002 (4)  
0.1Ω  
5V  
+
3
2
8
100k  
A2  
1/2 LT1013  
6
5
1
A1  
TO INVERTER  
DRIVE  
+
7
1/2 LT1013  
68k*  
+
4mA TO 20mA OUT  
FULLY FLOATING  
4
301Ω*  
1k  
20mA  
TRIM  
4k*  
8-BIT ACCURACY.  
10k*  
4.3k  
5V  
2k  
LT1004  
1.2V  
4mA  
TRIM  
INPUT  
0V TO 4V  
1013/14 TA14  
10134fd  
ꢀꢅ  
LT1013/LT1014  
Typical applicaTions  
5V Powered, Linearized Platinum RTD Signal Conditioner  
2M  
9
OUTPUT  
499Ω  
167Ω  
Q2  
200k  
200k  
A4  
2
8
0V TO 4V =  
0°C TO 400°C  
0ꢀ0ꢁ°C  
1/4 LT1014  
+
1ꢁ0Ω  
A2  
1
10  
Q1  
1/4 LT1014  
+
3
ꢁk  
LINEARITY  
GAIN TRIM  
1k  
2N42ꢁ0  
(2)  
2M  
3ꢀ01k  
SENSOR  
1ꢀꢁk  
6
8ꢀ2ꢁk  
ROSEMOUNT  
118MF  
A3  
1/4 LT1014  
7
ꢁ0k  
ZERO  
TRIM  
+
ꢁV  
2ꢀ4k  
ꢁ%  
274k  
ꢁV  
13  
12  
4
LT1009  
2ꢀꢁV  
A1  
14  
10k  
2ꢁ0k  
1/4 LT1014  
+
11  
ALL RESISTORS ARE TRW-MAR-6 METAL FILMꢀ  
RATIO MATCH 2M–200K 0ꢀ01%ꢀ  
TRIM SEQUENCE:  
SET SENSOR TO 0° VALUEꢀ  
ADJUST ZERO FOR 0V OUTꢀ  
SET SENSOR TO 100°C VALUEꢀ  
ADJUST GAIN FOR 1ꢀ000V OUTꢀ  
SET SENSOR TO 400°Cꢀ  
1013/14 TA1ꢁ  
ADJUST LINEARITY FOR 4ꢀ000V OUT, REPEAT AS REQUIREDꢀ  
Strain Gauge Bridge Signal Conditioner  
5V  
220  
1.2V  
REFERENCE  
OUT  
TO A/D CONVERTER  
FOR RATIOMETRIC OPERATION  
1mA MAXIMUM LOAD  
5V  
LT1004  
1.2V  
10k  
ZERO  
TRIM  
V
REF  
0.1  
8
2
301k  
39k  
1
1/2 LT1013 + 3  
100k  
8
5
6
+
2
4
4
7
A
E
D
+
OUTPUT  
0V TO 3.5V  
0psi TO 350ps  
1/2 LT1013  
0.33  
100µF  
LTC1044  
5
PRESSURE  
TRANSDUCER  
350Ω  
V ≈ –V  
REF  
0.047  
C
100µF  
2k GAIN TRIM  
46k*  
+
*
1% FILM RESISTOR.  
PRESSURE TRANSDUCER–BLH/DHF–350.  
CIRCLED LETTER IS PIN NUMBER.  
100Ω*  
1013/14 TA16  
10134fd  
ꢀꢆ  
LT1013/LT1014  
Typical applicaTions  
LVDT Signal Conditioner  
7
0.005  
30k  
0.005  
8
30k  
5V  
FREQUENCY =  
1.5kHz  
11  
5
6
+
LVDT  
7
YEL-BLK  
RD-  
BLUE  
LT1013  
BLUE  
GRN  
–5V  
10k  
YEL-RD  
BLK  
12  
4.7k  
1N914  
LT1004  
1.2V  
2N4338  
10µF  
100k  
3
2
14  
+
0.01  
1
OUT  
0V TO 3V  
1.2k  
1µF  
LT1013  
13  
7.5k  
+
1/2 LTC1043  
200k  
100k  
5V  
2
3
8
1k  
+
7
10k  
TO PIN 16, LT1043  
LT1011  
100k  
PHASE  
TRIM  
LVDT = SCHAEVITZ E-100.  
4
1
1013/14 TA17  
Triple Op Amp Instrumentation Amplifier with Bias Current Cancellation  
+
3
–INPUT  
R2  
R1  
1
1/4 LT1014  
2
R3  
2R  
10M  
R
G
9
6
5
8
R1  
OUTPUT  
1/4 LT1014  
+
R2  
7
10  
1/4 LT1014  
+
+INPUT  
R3  
+
2R1 R3  
G
V
R
5M  
GAIN = 1 +  
R
R2  
4
+
12  
13  
14  
2R  
1/4 LT1014  
10M  
INPUT BIAS CURRENT TYPICALLY <1nA  
INPUT RESISTANCE = 3R = 15M FOR VALUES SHOWN  
NEGATIVE COMMON MODE LIMIT = V + I s 2R + 30mV  
11  
B
10pF  
= 150mV for V = 0V  
I
B
= 12nA  
100k  
1013/14 TA18  
V
10134fd  
ꢀꢇ  
LT1013/LT1014  
Typical applicaTions  
Low Dropout Regulator for 6V Battery  
12 OUTPUT  
1N914  
10  
100Ω  
3
8
LTC1044  
+
2
4
5
+
10  
2N2219  
5V OUTPUT  
V
BATT  
6V  
100k  
100Ω  
0.01Ω  
0.003µF  
120k  
1M  
8
3
2
+
1
LT1004  
1.2V  
1.2k  
LT1013  
4
6
5
7
A2  
LT1013  
1N914  
30k  
50k  
+
0.009V DROPOUT AT 5mA OUTPUT.  
0.108V DROPOUT AT 100mA OUTPUT.  
I
OUTPUT ADJUST  
= 850µA.  
QUIESCENT  
1013/14 TA19  
Voltage Controlled Current Source with Ground Referred Input and Output  
5V  
8
3
2
0V TO 2V  
+
1
1/2 LT1013  
4
0.68µF  
1k  
1/2 LTC1043  
7
8
11  
1µF  
100Ω  
1µF  
12  
13  
14  
I
= 0mA TO 15mA  
OUT  
V
IN  
100Ω  
I
=
OUT  
FOR BIPOLAR OPERATION,  
RUN BOTH ICs FROM  
A BIPOLAR SUPPLY.  
1013/14 TA20  
10134fd  
ꢀꢈ  
LT1013/LT1014  
Typical applicaTions  
6V to 15V Regulating Converter  
6V  
+
1µF  
6V  
15pF  
10k  
22k  
10k  
2N3906  
2N4391  
–16V  
15V  
OUT  
+V  
Q1  
74C74  
CLK 2  
Q2  
74C00  
16V  
8
100kHz INPUT  
CLK 1  
1.4M  
10  
0.005  
6V  
L1  
+
+
2
3
1MHY  
D1 Q1 D2 Q2  
200k  
16V  
1
V
LT1013  
OUT  
10k  
ADJ  
+
22k  
2N3904  
10  
100k  
4
10k  
–16V  
15pF  
LT1004  
1.2V  
82k  
+
6
5
7
LT1013  
L1 = 24-104 AIE VERNITRON  
= 1N4148  
0.005  
2N5114  
1M  
5ꢀA OUTPUT  
75% EFFICIENCY  
–15V  
OUT  
1013/14 TA21  
Low Power, 5V Driven, Temperature Compensated Crystal Oscillator (TXCO)†  
5V  
8
3
+
1
1/2 LT1013  
OSCILLATOR SUPPLY  
STABILIZATION  
1M*  
2
4
5M*  
4.3k  
3.4k*  
5V  
R
1M*  
6
LT1009  
2.5V  
2.16k*  
T1  
3.2k  
4.22M*  
5V  
TEMPERATURE  
COMPENSATION  
GENERATOR  
100Ω  
3.5MHz  
XTAL  
100k  
20k  
100k  
7
R
6.25k  
2N2222  
T2  
1/2 LT1013  
1M*  
OSCILLATOR  
560k  
5
510pF  
510pF  
+
MV-209  
3.5MHz OUTPUT  
0.03ppm/°C, 0°C TO 70°C  
680Ω  
4.22M*  
R
T
YSI 44201  
*1% FILM  
3.5MHz XTAL = AT CUT – 35°20'  
MOUNT R NEAR XTAL  
T
3mA POWER DRAIN  
THERMISTOR-AMPLIFIER-VARACTOR NETWORK GENERATES  
A TEMPERATURE COEFFICIENT OPPOSITE THE CRYSTAL TO  
MINIMIZE OVERALL OSCILLATOR DRIFT  
1013/14 TA22  
10134fd  
ꢁ0  
LT1013/LT1014  
scheMaTic DiagraM  
1/2 LT1013, 1/4 LT1014  
+
V
9k  
9k  
1.6k  
Q13  
1.6k  
1.6k  
100Ω  
1k  
800Ω  
Q6  
Q16  
Q14  
Q36  
Q5  
Q30  
Q15  
Q32  
Q35  
Q3  
J1  
Q4  
Q37  
Q25  
Q33  
21pF  
Q27  
3.9k  
Q26  
Q1  
2.5pF  
18Ω  
2.4k  
400Ω  
400Ω  
Q38  
Q41  
Q39  
IN  
Q21  
OUTPUT  
14k  
Q28  
Q12  
Q2  
+
IN  
Q18  
Q22  
4pF  
Q31  
Q40  
Q29  
Q10  
Q19  
2k  
100pF  
Q34  
Q11  
10pF  
600Ω  
42k  
Q9  
Q7  
Q17  
2k  
Q24  
Q8  
5k  
Q23  
2k  
Q20  
1.3k  
75pF  
5k  
30Ω  
V
1013/14 SD  
10134fd  
ꢁꢀ  
LT1013/LT1014  
package DescripTion  
H Package  
8-Lead TO-5 Metal Can (.200 Inch PCD)  
(Reference LTC DWG # 05-08-1320)  
.335 – .370  
(8.509 – 9.398)  
DIA  
.027 – .045  
(0.686 – 1.143)  
45o  
PIN 1  
.305 – .335  
(7.747 – 8.509)  
.040  
.028 – .034  
(0.711 – 0.864)  
.200  
(5.080)  
TYP  
.050  
(1.016)  
MAX  
.165 – .185  
(1.270)  
MAX  
(4.191 – 4.699)  
REFERENCE  
PLANE  
SEATING  
PLANE  
GAUGE  
PLANE  
.110 – .160  
.500 – .750  
(2.794 – 4.064)  
INSULATING  
STANDOFF  
(12.700 – 19.050)  
.010 – .045*  
(0.254 – 1.143)  
.016 – .021**  
(0.406 – 0.533)  
*LEAD DIAMETER IS UNCONTROLLED BETWEEN THE REFERENCE PLANE  
AND THE SEATING PLANE  
.016 – .024  
**FOR SOLDER DIP LEAD FINISH, LEAD DIAMETER IS  
(0.406 – 0.610)  
H8(TO-5) 0.200 PCD 0204  
J8 Package  
8-Lead CERDIP (Narrow .300 Inch, Hermetic)  
(Reference LTC DWG # 05-08-1110)  
.405  
(10.287)  
MAX  
.005  
(0.127)  
MIN  
.200  
(5.080)  
MAX  
.300 BSC  
(7.62 BSC)  
CORNER LEADS OPTION  
(4 PLCS)  
6
5
4
8
7
.015 – .060  
(0.381 – 1.524)  
.023 – .045  
.025  
(0.635)  
RAD TYP  
.220 – .310  
(5.588 – 7.874)  
(0.584 – 1.143)  
HALF LEAD  
OPTION  
.008 – .018  
(0.203 – 0.457)  
0o – 15o  
.045 – .068  
(1.143 – 1.650)  
FULL LEAD  
OPTION  
1
2
3
.045 – .065  
(1.143 – 1.651)  
.125  
3.175  
MIN  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE  
OR TIN PLATE LEADS  
.014 – .026  
(0.360 – 0.660)  
.100  
(2.54)  
BSC  
J8 0801  
J Package  
14-Lead CERDIP (Narrow .300 Inch, Hermetic)  
(Reference LTC DWG # 05-08-1110)  
.785  
(19.939)  
MAX  
.005  
(0.127)  
MIN  
.200  
(5.080)  
MAX  
.300 BSC  
(7.62 BSC)  
14  
12  
13  
11  
10  
9
8
.015 – .060  
(0.381 – 1.524)  
.220 – .310  
.025  
(5.588 – 7.874)  
(0.635)  
RAD TYP  
.008 – .018  
(0.203 – 0.457)  
0o – 15o  
J14 0801  
2
3
4
5
6
1
7
.045 – .065  
(1.143 – 1.651)  
.100  
(2.54)  
BSC  
.125  
(3.175)  
MIN  
.014 – .026  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE  
OR TIN PLATE LEADS  
(0.360 – 0.660)  
OBSOLETE PACKAGES  
10134fd  
ꢁꢁ  
LT1013/LT1014  
package DescripTion  
N8 Package  
8-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510)  
.400ꢁ  
(10.160)  
MAX  
8
6
5
4
.255 .015ꢁ  
(6.4ꢀꢀ 0.381)  
1
2
3
.130 .005  
(3.302 0.12ꢀ)  
.300 – .325  
(ꢀ.620 – 8.255)  
.045 – .065  
(1.143 – 1.651)  
.065  
(1.651)  
TYP  
.008 – .015  
(0.203 – 0.381)  
.120  
.020  
(0.508)  
MIN  
(3.048)  
MIN  
+.035  
.325  
–.015  
.018 .003  
(0.45ꢀ 0.0ꢀ6)  
.100  
(2.54)  
BSC  
+0.889  
8.255  
(
)
N8 1002  
–0.381  
NOTE:  
INCHES  
1. DIMENSIONS ARE  
MILLIMETERS  
ꢁTHESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
N Package  
14-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510)  
.ꢀꢀ0ꢁ  
(19.558)  
MAX  
14  
13  
12  
11  
10  
9
8
.255 .015ꢁ  
(6.4ꢀꢀ 0.381)  
1
2
3
5
6
4
.300 – .325  
(ꢀ.620 – 8.255)  
.045 – .065  
(1.143 – 1.651)  
.130 .005  
(3.302 0.12ꢀ)  
.020  
(0.508)  
MIN  
.065  
(1.651)  
TYP  
.008 – .015  
(0.203 – 0.381)  
+.035  
.325  
.005  
(0.12ꢀ)  
MIN  
–.015  
.120  
(3.048)  
MIN  
.018 .003  
.100  
(2.54)  
BSC  
+0.889  
8.255  
(0.45ꢀ 0.0ꢀ6)  
(
)
–0.381  
N14 1103  
NOTE:  
INCHES  
MILLIMETERS  
1. DIMENSIONS ARE  
ꢁTHESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
10134fd  
ꢁꢂ  
LT1013/LT1014  
package DescripTion  
S6 Package  
6-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1636)  
.045 .005  
.050 BSC  
.189 – .197  
(4.801 – 5.004)  
NOTE 3  
.245  
.160 .005  
MIN  
7
5
8
6
.010 – .020  
(0.254 – 0.508)  
s 45°  
.030 .005  
TYP  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
RECOMMENDED SOLDER PAD LAYOUT  
.228 – .244  
(5.791 – 6.197)  
.053 – .069  
.016 – .050  
(0.406 – 1.270)  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
1
2
3
4
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
1. DIMENSIONS IN  
INCHES  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
SW Package  
XX-Lead Plastic Small Outline (Wide .300 Inch)  
(Reference LTC DWG # 05-08-1620)  
.050 BSC .045 .005  
.030 .005  
TYP  
N
.398 – .413  
(10.109 – 10.490)  
NOTE 4  
.325 .005  
.420  
MIN  
15 14  
12  
10  
11  
9
16  
N
13  
.291 – .299  
(7.391 – 7.595)  
NOTE 4  
.010 – .029  
(0.254 – 0.737)  
s 45°  
.005  
(0.127)  
RAD MIN  
1
2
3
N/2  
.394 – .419  
(10.007 – 10.643)  
0° – 8° TYP  
NOTE 3  
RECOMMENDED SOLDER PAD LAYOUT  
.037 – .045  
(0.940 – 1.143)  
.093 – .104  
(2.362 – 2.642)  
N/2  
8
.009 – .013  
(0.229 – 0.330)  
NOTE 3  
.016 – .050  
(0.406 – 1.270)  
2
3
5
7
1
4
6
.050  
(1.270)  
BSC  
.004 – .012  
(0.102 – 0.305)  
NOTE:  
.014 – .019  
INCHES  
(MILLIMETERS)  
1. DIMENSIONS IN  
S16 (WIDE) 0502  
(0.356 – 0.482)  
TYP  
2. DRAWING NOT TO SCALE  
3. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.  
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS  
4. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
10134fd  
ꢁꢃ  
LT1013/LT1014  
revision hisTory (Revision history begins at Rev D)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
D
05/10 Updates to Typical Application “Hot-Wire Anemometer”  
Updated Related Parts  
12  
26  
10134fd  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
ꢁꢄ  
LT1013/LT1014  
Typical applicaTion  
Step-Up Switching Regulator for 6V Battery  
OUTPUT  
INPUT  
15V  
6V  
50mA  
22k  
2N2222  
+
2.2  
200k  
LT1004  
1.2V  
L1  
1MHY  
8
LT1013  
4
5
+
220pF  
7
1N5821  
130k  
100  
6
1M  
220k  
3
2
+
+
300Ω  
1
0.001  
2N5262  
LT1013  
5.6k  
0.1  
5.6k  
LT = AIE–VERNITRON 24–104  
78% EFFICIENCY  
1013/14 TA23  
relaTeD parTs  
PART NUMBER  
LT2078/LT2079  
LT2178/LT2179  
LTC6081/LTC6082  
LTC6078/LTC6079  
DESCRIPTION  
COMMENTS  
50µA Max I , 70µV Max V  
Dual/Quad 50µA Single Supply Precision Amplifier  
Dual/Quad 17µA Single Supply Precision Amplifier  
Dual/Quad 400µA Precision Rail-to-Rail Amplifier  
Dual/Quad 72µA Precision Rail-to-Rail Amplifier  
S
OS  
OS  
17µA Max I , 70µV Max V  
S
V = 2.7V to 6V, 400µA Max I , 70µV V 0.8µV/°C TCV  
S OS  
S
OS  
V = 2.7V to 6V, 72µA Max I , 25µV V 0.7µV/°C TCV  
S OS  
S
OS  
10134fd  
LT 0510 REV D • PRINTED IN USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
ꢁꢅ  
LINEAR TECHNOLOGY CORPORATION 1990  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT1014DNE4

QUAD PRECISION OPERATIONAL AMPLIFIERS
TI

LT1014DS

Quad Precision Op Amp
Linear

LT1014DSW

Quad Precision Op Amp (LT1014) Dual Precision Op Amp (LT1013)
Linear

LT1014DSW#TR

LT1014 - Quad Precision Op Amp; Package: SO; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1014DSW#TRPBF

LT1014 - Quad Precision Op Amp; Package: SO; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1014DW

QUAD PRECISION OPERATIONAL AMPLIFIERS
TI

LT1014FK

QUAD PRECISION OPERATIONAL AMPLIFIERS
TI

LT1014IJ

IC QUAD OP-AMP, CDIP, 0.300 INCH, HERMETIC SEALED, CERDIP, Operational Amplifier
Linear

LT1014IN

Quad Precision Op Amp
Linear

LT1014IN

QUAD PRECISION OPERATIONAL AMPLIFIERS
TI

LT1014IN#PBF

LT1014 - Quad Precision Op Amp; Package: PDIP; Pins: 14; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1014IS

Quad Precision Op Amp
Linear