LT1028CS8#TR [Linear]

LT1028 - Ultra Low Noise Precision High Speed Op Amps; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C;
LT1028CS8#TR
型号: LT1028CS8#TR
厂家: Linear    Linear
描述:

LT1028 - Ultra Low Noise Precision High Speed Op Amps; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C

放大器 光电二极管
文件: 总28页 (文件大小:368K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1028/LT1128  
Ultralow Noise Precision  
High Speed Op Amps  
FeaTures  
DescripTion  
n
Voltage Noise  
The LT®1028(gain of –1 stable)/LT1128(gain of +1 stable)  
achieveanewstandardofexcellenceinnoiseperformance  
with 0.85nV/√Hz 1kHz noise, 1.0nV/√Hz 10Hz noise. This  
ultralow noise is combined with excellent high speed  
specifications (gain-bandwidth product is 75MHz for  
LT1028, 20MHz for LT1128), distortion-free output, and  
true precision parameters (0.1µV/°C drift, 10µV offset  
voltage, 30 million voltage gain). Although the LT1028/  
LT1128 input stage operates at nearly 1mA of collector  
current to achieve low voltage noise, input bias current  
is only 25nA.  
1.1nV/√Hz Max at 1kHz  
0.85nV/√Hz Typ at 1kHz  
1.0nV/√Hz Typ at 10Hz  
35nV Typ, 0.1Hz to 10Hz  
P-P  
n
n
Voltage and Current Noise 100% Tested  
Gain-Bandwidth Product  
LT1028: 50MHz Min  
LT1128: 13MHz Min  
Slew Rate  
n
LT1028: 11V/µs Min  
LT1128: 5V/µs Min  
Offset Voltage: 40µV Max  
Drift with Temperature: 0.8µV/°C Max  
Voltage Gain: 7 Million Min  
Available in 8-Lead SO Package  
The LT1028/LT1128’s voltage noise is less than the noise  
of a 50Ω resistor. Therefore, even in very low source  
impedance transducer or audio amplifier applications,  
the LT1028/LT1128’s contribution to total system noise  
will be negligible.  
n
n
n
n
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
applicaTions  
n
Low Noise Frequency Synthesizers  
n
High Quality Audio  
n
Infrared Detectors  
n
Accelerometer and Gyro Amplifiers  
n
350Ω Bridge Signal Conditioning  
n
Magnetic Search Coil Amplifiers  
n
Hydrophone Amplifiers  
Typical applicaTion  
Ultralow Noise 1M TIA Photodiode Amplifier  
Voltage Noise vs Frequency  
10  
V
T
= 15V  
S
0.1µF  
4.32k  
= 25°C  
+
A
V
S
MAXIMUM  
1M  
1/f CORNER = 14Hz  
D
S
JFET  
NXP  
0.5pF  
TYPICAL  
1
BF862  
PHOTO  
DIODE  
SFH213  
+
1/f CORNER = 3.5Hz  
V
= ~0.4V + I • 1M  
PD  
OUT  
LT1028  
1028 TA01  
4.99k  
V
S
V
= ±15V  
S
V
S
0.1  
0.1  
1
10  
1k  
100  
FREQUENCY (Hz)  
1028 TA02  
1028fb  
1
LT1028/LT1128  
absoluTe MaxiMuM raTings  
(Note 1)  
Supply Voltage  
Operating Temperature Range  
–55°C to 105°C.................................................. 22V  
105°C to 125°C.................................................. 16V  
Differential Input Current (Note 9) ....................... 25mA  
Input Voltage..............................Equal to Supply Voltage  
Output Short-Circuit Duration.......................... Indefinite  
LT1028/LT1128AM, M (OBSOLETE)... –55°C to 125°C  
LT1028/LT1128AC, C (Note 11) ............–40°C to 85°C  
Storage Temperature Range  
All Devices......................................... –65°C to 150°C  
Lead Temperature (Soldering, 10 sec.)..................300°C  
pin conFiguraTion  
TOP VIEW  
V
TRIM  
OS  
8
TOP VIEW  
+
1
3
V
V
TRIM  
7
5
OS  
V
OS  
V
OS  
1
2
3
4
8
7
6
5
TRIM  
TRIM  
6
OUT  
–IN  
2
+
+
–IN  
V
+
OVER-  
COMP  
+IN  
+IN  
OUT  
OVER-  
COMP  
4
V
V
(CASE)  
S8 PACKAGE  
8-LEAD PLASTIC SOIC  
H PACKAGE  
8-LEAD TO-5 METAL CAN  
= 175°C, θ = 140°C/W, θ = 40°C/W  
T
= 135°C, θ = 140°C/W  
JMAX  
JA  
T
JMAX  
JA  
JC  
OBSOLETE PACKAGE  
TOP VIEW  
TOP VIEW  
V
V
NC  
NC  
1
2
3
4
5
6
7
8
16  
15  
14  
NC  
OS  
OS  
1
2
3
4
8
7
6
5
TRIM  
TRIM  
V+  
NC  
+
–IN  
TRIM  
–IN  
TRIM  
OUT  
+IN  
+
13  
V
OVER-  
COMP  
V
+
+IN  
12  
OUT  
OVER-  
COMP  
NC  
NC  
N8 PACKAGE  
8-LEAD PLASTIC DIP  
V
11  
10  
9
NC  
NC  
J8 PACKAGE  
8-LEAD CERAMIC DIP  
= 175°C, θ = 140°C/W, θ = 40°C/W  
JA JC  
SW PACKAGE  
16-LEAD PLASTIC SOL  
T
JMAX  
T
= 140°C, θ = 130°C/W  
JA  
JMAX  
OBSOLETE PACKAGE  
NOTE: THIS DEVICE IS NOT RECOMMENDED FOR NEW DESIGNS  
1028fb  
2
LT1028/LT1128  
orDer inForMaTion  
LEAD FREE FINISH  
LT1028ACN8#PBF  
LT1028CN8#PBF  
LT1128ACN8#PBF  
LT1128CN8#PBF  
LT1028CS8#PBF  
LT1128CS8#PBF  
LT1028CSW#PBF  
TAPE AND REEL  
PART MARKING*  
LT1028ACN8  
LT1028CN8  
LT1128ACN8  
LT1128CN8  
1028  
PACKAGE DESCRIPTION  
8-Lead PDIP  
SPECIFIED TEMPERATURE RANGE  
0°C to 70°C  
N/A  
N/A  
8-Lead PDIP  
0°C to 70°C  
N/A  
8-Lead PDIP  
0°C to 70°C  
N/A  
8-Lead PDIP  
0°C to 70°C  
LT1028CS8#TRPBF  
LT1128CS8#TRPBF  
LT1028CSW#TRPBF  
8-Lead Plastic Small Outline  
8-Lead Plastic Small Outline  
16-Lead Plastic SOIC (Wide)  
0°C to 70°C  
1128  
0°C to 70°C  
LT1028CSW  
0°C to 70°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on nonstandard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
elecTrical characTerisTics VS = 1ꢀVꢁ TA = 2ꢀ°C unless otherwise noted.  
LT1028AM/AC  
LT1128AM/AC  
LT1028M/AC  
LT1128M/AC  
SYMBOL  
PARAMETER  
CONDITIONS  
(Note 2)  
MIN  
TYP  
10  
MAX  
MIN  
TYP  
20  
MAX  
UNITS  
µV  
V
Input Offset Voltage  
40  
80  
OS  
∆V  
Long Term Input Offset  
Voltage Stability  
(Note 3)  
0.3  
0.3  
µV/Mo  
OS  
∆Time  
I
I
Input Offset Current  
Input Bias Current  
V
V
= 0V  
= 0V  
12  
25  
35  
50  
90  
75  
18  
30  
35  
100  
180  
90  
nA  
nA  
OS  
B
CM  
CM  
e
Input Noise Voltage  
Input Noise Voltage Density  
0.1Hz to 10Hz (Note 4)  
nV  
P-P  
n
f = 10Hz (Note 5)  
1.00  
0.85  
1.7  
1.1  
1.0  
0.9  
1.9  
1.2  
nV/√Hz  
nV/√Hz  
O
f = 1000Hz, 100% Tested  
O
I
n
Input Noise Current Density  
f = 10Hz (Notes 4 and 6)  
O
4.7  
1.0  
10.0  
1.6  
4.7  
1.0  
12.0  
1.8  
pA/√Hz  
pA/√Hz  
O
f = 1000Hz, 100% Tested  
Input Resistance  
Common Mode  
Differential Mode  
300  
20  
300  
20  
MΩ  
kΩ  
Input Capacitance  
5
5
pF  
V
Input Voltage Range  
11.0  
114  
117  
12.2  
126  
133  
11.0  
110  
110  
12.2  
126  
132  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
=
11V  
dB  
dB  
CM  
V = 4V to 18V  
S
A
R ≥ 2k, V = 12V  
7.0  
5.0  
3.0  
30.0  
20.0  
15.0  
5.0  
3.5  
2.0  
30.0  
20.0  
15.0  
V/µV  
V/µV  
V/µV  
VOL  
L
L
L
O
O
R ≥ 1k, V = 10V  
R ≥ 600Ω, V = 10V  
O
V
Maximum Output Voltage Swing  
Slew Rate  
R ≥ 2k  
L
12.3  
11.0  
13.0  
12.2  
12.0  
10.5  
13.0  
12.2  
V
V
OUT  
L
R ≥ 600Ω  
SR  
A
VCL  
A
VCL  
= –1  
= –1  
LT1028  
LT1128  
11.0  
5.0  
15.0  
6.0  
11.0  
4.5  
15.0  
6.0  
V/µs  
V/µs  
GBW  
Gain-Bandwidth Product  
f = 20kHz (Note 7)  
O
LT1028  
LT1128  
50  
13  
75  
20  
50  
11  
75  
20  
MHz  
MHz  
O
f = 200kHz (Note 7)  
Z
Open-Loop Output Impedance  
Supply Current  
V = 0, I = 0  
80  
80  
Ω
O
O
O
I
S
7.4  
9.5  
7.6  
10.5  
mA  
1028fb  
3
LT1028/LT1128  
elecTrical characTerisTics  
The l denotes the specifications which apply over the operating  
temperature range –ꢀꢀ°C ≤ TA ≤ 12ꢀ°C. VS = 1ꢀVꢁ unless otherwise noted.  
LT1028AM  
LT1128AM  
LT1028M  
LT1128M  
SYMBOL  
PARAMETER  
CONDITIONS  
(Note 2)  
MIN  
TYP  
30  
MAX  
120  
0.8  
MIN  
TYP  
45  
MAX  
180  
1.0  
UNITS  
µV  
l
l
V
Input Offset Voltage  
Average Input Offset Drift  
OS  
∆V  
(Note 8)  
0.2  
0.25  
µV/°C  
OS  
∆Temp  
l
l
l
l
l
l
I
I
Input Offset Current  
V
V
= 0V  
= 0V  
25  
90  
30  
180  
300  
nA  
nA  
V
OS  
B
CM  
Input Bias Current  
40  
150  
50  
CM  
Input Voltage Range  
10.3  
106  
110  
11.7  
122  
130  
10.3  
100  
104  
11.7  
120  
130  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
=
10.3V  
dB  
dB  
CM  
V = 4.5V to 16V  
S
A
R ≥ 2k, V = 10V  
R ≥ 1k, V = 10V  
3.0  
2.0  
14.0  
10.0  
2.0  
1.5  
14.0  
10.0  
V/µV  
V/µV  
VOL  
L
L
O
O
l
l
V
Maximum Output Voltage Swing  
Supply Current  
R ≥ 2k  
L
10.3  
11.6  
8.7  
10.3  
11.6  
9.0  
V
OUT  
I
11.5  
13.0  
mA  
S
The l denotes the specifications which apply over the operating temperature range 0°C ≤ TA ≤ 70°C. VS = 1ꢀVꢁ unless otherwise  
noted.  
LT1028AC  
LT1128AC  
LT1028C  
LT1128C  
SYMBOL  
PARAMETER  
CONDITIONS  
(Note 2)  
MIN  
TYP  
15  
MAX  
80  
MIN  
TYP  
30  
MAX  
125  
1.0  
UNITS  
µV  
l
l
V
OS  
Input Offset Voltage  
Average Input Offset Drift  
∆V  
(Note 8)  
0.1  
0.8  
0.2  
µV/°C  
OS  
∆Temp  
l
l
l
l
l
l
I
I
Input Offset Current  
V
V
= 0V  
= 0V  
15  
65  
22  
130  
240  
nA  
nA  
V
OS  
B
CM  
Input Bias Current  
30  
120  
40  
CM  
Input Voltage Range  
10.5  
110  
114  
12.0  
124  
132  
10.5  
106  
107  
12.0  
124  
132  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
CM  
=
10.5V  
dB  
dB  
V = 4.5V to 18V  
S
A
R ≥ 2k, V = 10V  
R ≥ 1k, V = 10V  
5.0  
4.0  
25.0  
18.0  
3.0  
2.5  
25.0  
18.0  
V/µV  
V/µV  
VOL  
L
L
O
O
l
l
V
Maximum Output Voltage Swing  
Supply Current  
R ≥ 2k  
L
11.5  
9.5  
12.7  
11.0  
11.5  
9.0  
12.7  
10.5  
V
V
OUT  
L
R ≥ 600Ω (Note 10)  
I
8.0  
10.5  
8.2  
11.5  
mA  
S
1028fb  
4
LT1028/LT1128  
elecTrical characTerisTics  
The l denotes the specifications which apply over the operating  
temperature range –40°C ≤ TA ≤ 8ꢀ°C. VS = 1ꢀVꢁ unless otherwise noted. (Note 11)  
LT1028AC  
LT1128AC  
LT1028C  
LT1128C  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
95  
MIN  
TYP  
35  
MAX  
150  
1.0  
UNITS  
µV  
l
l
V
OS  
Input Offset Voltage  
Average Input Offset Drift  
20  
∆V  
(Note 8)  
0.2  
0.8  
0.25  
µV/°C  
OS  
∆Temp  
l
l
l
l
l
l
I
I
Input Offset Current  
V
V
= 0V  
= 0V  
20  
80  
28  
160  
280  
nA  
nA  
V
OS  
B
CM  
Input Bias Current  
35  
140  
45  
CM  
Input Voltage Range  
10.4  
108  
112  
11.8  
123  
131  
10.4  
102  
106  
11.8  
123  
131  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
=
10.5V  
dB  
dB  
CM  
V = 4.5V to 18V  
S
A
R ≥ 2k, V = 10V  
R ≥ 1k, V = 10V  
4.0  
3.0  
20.0  
14.0  
2.5  
2.0  
20.0  
14.0  
V/µV  
V/µV  
VOL  
L
L
O
O
l
l
V
Maximum Output Voltage Swing  
Supply Current  
R ≥ 2k  
L
11.0  
12.5  
8.5  
11.0  
12.5  
8.7  
V
OUT  
I
11.0  
12.5  
mA  
S
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 6: Current noise is defined and measured with balanced source  
resistors. The resultant voltage noise (after subtracting the resistor noise  
on an RMS basis) is divided by the sum of the two source resistors to  
obtain current noise. Maximum 10Hz current noise can be inferred from  
100% testing at 1kHz.  
Note 2: Input Offset Voltage measurements are performed by automatic  
test equipment approximately 0.5 sec. after application of power. In  
Note 7: Gain-bandwidth product is not tested. It is guaranteed by design  
and by inference from the slew rate measurement.  
addition, at T = 25°C, offset voltage is measured with the chip heated  
A
to approximately 55°C to account for the chip temperature rise when the  
device is fully warmed up.  
Note 3: Long Term Input Offset Voltage Stability refers to the average  
Note 8: This parameter is not 100% tested.  
Note 9: The inputs are protected by back-to-back diodes. Current-limiting  
resistors are not used in order to achieve low noise. If differential input  
voltage exceeds 1.8V, the input current should be limited to 25mA.  
Note 10: This parameter guaranteed by design, fully warmed up at T  
= 70°C. It includes chip temperature increase due to supply and load  
currents.  
trend line of Offset Voltage vs Time over extended periods after the first 30  
days of operation. Excluding the initial hour of operation, changes in V  
during the first 30 days are typically 2.5µV.  
OS  
A
Note 4: This parameter is tested on a sample basis only.  
Note ꢀ: 10Hz noise voltage density is sample tested on every lot with the  
exception of the S8 and S16 packages. Devices 100% tested at 10Hz are  
available on request.  
Note 11: The LT1028/LT1128 are designed, characterized and expected to  
meet these extended temperature limits, but are not tested at –40°C and  
85°C. Guaranteed I-grade parts are available. Consult factory.  
1028fb  
5
LT1028/LT1128  
Typical perForMance characTerisTics  
Wideband Voltage Noise  
(0.1Hz to Frequency Indicated)  
10Hz Voltage Noise Distribution  
Wideband Noiseꢁ DC to 20kHz  
180  
160  
140  
120  
100  
80  
10  
1
V
T
=
1ꢀV  
V
T
= 15V  
S
A
S
A
158  
148  
= 2ꢀ°C  
= 25°C  
500 UNITS  
MEASURED  
FROM 4 RUNS  
70  
57  
0.1  
0.01  
60  
40  
28  
1028 G02  
VERTICAL SCALE = 0.5µV/DIV  
HORIZONTAL SCALE = 0.5ms/DIV  
20  
8
7
4
3
3
2
2
2
2
2
1
1
1
1
0
100  
1k  
10k  
100k  
1M  
10M  
0.8 1.0 1.2  
1.4 1.6 1.8 2.0 2.2  
VOLTAGE NOISE DENSITY (nV/√Hz)  
0.6  
BANDWIDTH (Hz)  
1028 G03  
1028 G01  
Total Noise vs Matched Source  
Resistance  
Total Noise vs Unmatched Source  
Resistance  
Current Noise Spectrum  
100  
10  
1
100  
10  
1
100  
10  
1
R
S
R
S
R
S
+
MAXIMUM  
1/f CORNER = 800Hz  
AT 10Hz  
AT 1kHz  
AT 1kHz  
AT 10Hz  
TYPICAL  
2 R NOISE ONLY  
S
2 R NOISE ONLY  
S
1/f CORNER = 250Hz  
V
=
1ꢀV  
V
=
15V  
S
A
S
A
T
= 2ꢀ°C  
T
= 25°C  
0.1  
0.1  
0.1  
1
3
10 30 100 300 1k 3k 10k  
1
3
10 30 100 300 1k 3k 10k  
10  
100  
1k  
10k  
UNMATCHED SOURCE RESISTANCE (Ω)  
FREQUENCY (Hz)  
MATCHED SOURCE RESISTANCE (Ω)  
1028 G05  
1028 G04  
1028 G06  
0.1Hz to 10Hz Voltage Noise  
0.01Hz to 1Hz Voltage Noise  
Voltage Noise vs Temperature  
2.0  
1.6  
1.2  
0.8  
O.4  
0
V
T
=
1ꢀV  
V
T
=
1ꢀV  
S
A
V
= 15V  
S
A
S
= 2ꢀ°C  
= 2ꢀ°C  
AT 10Hz  
AT 1kHz  
10nV  
10nV  
0
2
4
6
8
10  
0
20  
40  
60  
80  
100  
50  
TEMPERATURE (°C)  
125  
–50  
0
25  
75 100  
–25  
TIME (SEC)  
TIME (SEC)  
1028 G07  
1028 G08  
1028 G09  
1028fb  
6
LT1028/LT1128  
Typical perForMance characTerisTics  
Distribution of Input Offset  
Voltage  
Offset Voltage Drift with Temperature  
of Representative Units  
Long-Term Stability of Five  
Representative Units  
20  
18  
16  
14  
12  
10  
8
50  
40  
10  
8
V
T
=
15V  
V
T
=
15V  
V
= 15V  
S
A
S
A
S
= 25°C  
= 25°C  
800 UNITS TESTED  
FROM FOUR RUNS  
t = 0 AFTER 1 DAY PRE-WARM UP  
30  
6
20  
4
10  
2
0
0
–10  
–20  
–30  
–40  
–50  
–2  
–4  
–6  
–8  
–10  
6
4
2
0
–50 –40 –30 –20 –10  
0
10 20 30 40 50  
–50  
0
25  
50  
75 100 125  
–25  
0
1
3
4
5
2
OFFSET VOLTAGE (µV)  
TEMPERATURE (°C)  
TIME (MONTHS)  
1028 G10  
1028 G11  
1028 G12  
Input Bias and Offset Currents  
Over Temperature  
Bias Current Over the Common  
Mode Range  
Warm-Up Drift  
60  
50  
40  
30  
24  
20  
100  
80  
V
V
=
CM  
15V  
= 0V  
V
T
=
15V  
S
S
A
20V  
65nA  
V
S
T
A
=
15V  
R
CM  
=
ª 300MΩ  
= 25°C  
= 25°C  
60  
POSITIVE INPUT CURRENT  
(UNDERCANCELLED) DEVICE  
40  
16  
12  
METAL CAN (H) PACKAGE  
20  
0
BIAS CURRENT  
20  
10  
0
8
4
0
–20  
–40  
–60  
DUAL-IN-LINE PACKAGE  
PLASTIC (N) OR CERDIP (J)  
NEGATIVE INPUT CURRENT  
(OVERCANCELLED) DEVICE  
OFFSET CURRENT  
–80  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
0
1
2
3
4
5
–15  
5
10  
15  
–10  
–5  
0
TIME AFTER POWER ON (MINUTES)  
COMMON MODE INPUT VOLTAGE (V)  
1028 G14  
1028 G13  
1028 G15  
Output Short-Circuit Current  
vs Time  
Voltage Noise vs Supply Voltage  
Supply Current vs Temperature  
10  
9
8
7
6
5
4
3
2
1
0
50  
40  
1.5  
1.25  
1.0  
V
S
= 15V  
T
= 25°C  
A
–50°C  
25°C  
V
V
=
=
15V  
5V  
S
S
30  
125°C  
20  
10  
AT 10Hz  
AT 1kHz  
0
–10  
–20  
–30  
–40  
–50  
125°C  
25°C  
0.75  
0.5  
–50°C  
0
5
10  
15  
20  
50  
–50  
0
25  
75 100 125  
0
2
3
–25  
1
TEMPERATURE (°C)  
TIME FROM OUTPUT SHORT TO GROUND (MINUTES)  
SUPPLY VOLTAGE (V)  
1028 G16  
1028 G17  
1028 G18  
1028fb  
7
LT1028/LT1128  
Typical perForMance characTerisTics  
LT1028  
Gainꢁ Phase vs Frequency  
LT1028  
Capacitance Load Handling  
Voltage Gain vs Frequency  
70  
60  
50  
40  
30  
20  
70  
60  
50  
40  
30  
20  
160  
140  
120  
100  
80  
80  
70  
60  
50  
40  
30  
20  
10  
0
30pF  
V
= 1ꢀV  
= 2ꢀ°C  
= 2k  
S
A
L
PHASE  
T
2k  
R
R
S
+
C
L
LT1128  
LT1028  
A
= –1, R = 2k  
S
V
60  
GAIN  
A
S
= –10  
V
40  
R
= 200Ω  
10  
0
10  
0
20  
A
= –100  
= 20Ω  
V
R
V
T
= 15V  
= 25°C  
= 10pF  
S
A
L
S
V
T
=
15V  
0
S
A
C
= 25°C  
–10  
10k  
–10  
100M  
–20  
100k  
1M  
10M  
10  
100  
1000  
10000  
0.01 0.1  
1
10 100 1k 10k 100k 1M 10M 100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
CAPACITIVE LOAD (pF)  
1028 G20  
1028 G21  
1028 G19  
LT1128  
Gain Phase vs Frequency  
Gain Error vs Frequency  
Closed-Loop Gain = 1000  
LT1128  
Capacitance Load Handling  
1
0.1  
70  
60  
50  
40  
30  
20  
70  
60  
50  
40  
30  
20  
80  
70  
60  
50  
40  
30  
20  
10  
0
30pF  
TYPICAL  
PRECISION  
OP AMP  
2k  
PHASE  
R
S
+
LT1128  
C
L
A
V
= –1, R = 2k  
S
V
LT1028  
A
S
= –10  
V
0.01  
0.001  
GAIN  
R
= 200Ω  
10  
0
10  
0
V
=
15V  
= 25°C  
= 10mV  
S
A
O
V
T
= 15V  
= 25°C  
= 10pF  
S
A
L
T
CLOSED-LOOP GAIN  
OPEN-LOOP GAIN  
GAIN ERROR =  
1
V
P-P  
C
A
= –100, R = 20Ω  
S
–10  
–10  
100M  
0.1  
10  
100  
10k  
100k  
1M  
10M  
10  
100  
1000  
10000  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
CAPACITIVE LOAD (pF)  
1028 G22  
1028 G23  
1028 G24  
Maximum Undistorted Output  
vs Frequency  
Voltage Gain vs Supply Voltage  
Voltage Gain vs Load Resistance  
100  
10  
1
30  
25  
20  
15  
10  
5
100  
10  
1
V
=
15V  
T
= 25°C  
V
=
1ꢀV  
S
A
L
A
S
T
= 25°C  
= 2k  
R
R
L
= 2k  
T
= 2ꢀ°C  
A
T
= –ꢀꢀ°C  
A
T
= 12ꢀ°C  
A
R
= 600Ω  
L
LT1128  
LT1028  
I
= 3ꢀmA AT –ꢀꢀ°C  
= 27mA AT 2ꢀ°C  
= 16mA AT 12ꢀ°C  
LMAX  
10k  
100k  
1M  
10M  
0.1  
1
10  
0
5
10  
20  
15  
FREQUENCY (Hz)  
LOAD RESISTANCE (kΩ)  
SUPPLY VOLTAGE (V)  
1028 G26  
1028 G27  
1028 G25  
1028fb  
8
LT1028/LT1128  
Typical perForMance characTerisTics  
LT1028  
Slew Rateꢁ Gain-Bandwidth  
Product Over Temperature  
LT1028  
LT1028  
Large-Signal Transient Response  
Small-Signal Transient Response  
18  
17  
16  
15  
90  
80  
70  
60  
V
= 15V  
S
10V  
50mV  
GBW  
FALL  
RISE  
5V/DIV  
20mV/DIV  
–10V  
–50mV  
14  
13  
12  
50  
40  
30  
1028 G28  
1028 G29  
1µs/DIV  
0.2µs/DIV  
A = –1, R = R = 2k,  
C = 15pF, C = 80pF  
A
= –1, R = R = 2k, C = 15pF  
V
S
F
F
V S F  
F
L
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
1028 G30  
LT1128  
Slew Rateꢁ Gain-Bandwidth  
Product Over Temperature  
LT1128  
LT1128  
Large-Signal Transient Response  
Small-Signal Transient Response  
9
8
7
6
5
4
3
2
1
FALL  
10V  
0V  
50mV  
0V  
RISE  
GBW  
30  
20  
10  
–10V  
–50mV  
1028 G31  
1028 G32  
2µs/DIV  
0.2µs/DIV  
A
= –1, R = R = 2k, C = 30pF  
A = –1, C = 10pF  
V L  
V
S
F
F
0
–50  
50  
75 100 125  
–25  
0
25  
TEMPERATURE (°C)  
1028 G33  
LT1128  
LT1028  
Slew Rateꢁ Gain-Bandwidth Product  
vs Over-Compensation Capacitor  
Slew Rateꢁ Gain-Bandwidth Product  
vs Over-Compensation Capacitor  
Closed-Loop Output Impedance  
100  
10  
1
1k  
100  
10  
1
10k  
100  
10  
I
= 1mA  
O
S
A
V
=
1ꢀV  
LT1128  
T
= 2ꢀ°C  
LT1028  
SLEW  
GBW  
GBW  
A
= 1000  
100  
10  
1
1k  
V
1
SLEW RATE  
0.1  
100  
10  
LT1128  
A
= ꢀ  
V
0.01  
0.001  
C
V
FROM PIN 5 TO PIN 6  
OC  
S
A
LT1028  
=
15V  
T
= 25°C  
0.1  
0.1  
10  
100  
1k  
10k  
100k  
1M  
1
10  
100  
1000  
10000  
1
10  
100  
1000  
10000  
OVER-COMPENSATION CAPACITOR (pF)  
FREQUENCY (Hz)  
OVER-COMPENSATION CAPACITOR (pF)  
1028 G35  
1028 G36  
1028 G34  
1028fb  
9
LT1028/LT1128  
Typical perForMance characTerisTics  
Power Supply Rejection Ratio  
vs Frequency  
Common Mode Limit Over  
Temperature  
Common Mode Rejection Ratio  
vs Frequency  
+
140  
120  
100  
80  
V
160  
140  
120  
100  
80  
V
T
=
1ꢀV  
S
A
V
=
1ꢀV  
S
A
= 2ꢀ°C  
–1  
–2  
–3  
–4  
T
= 2ꢀ°C  
V
=
5V  
S
=
V
15V  
S
NEGATIVE  
SUPPLY  
LT1128  
LT1028  
POSITIVE  
SUPPLY  
60  
4
3
2
1
60  
40  
V
=
5V TO 15V  
40  
S
20  
20  
0
V
0
100k  
FREQUENCY (Hz)  
10M  
10  
100  
1k  
10k  
1M  
100 1k  
0.1  
1
10  
10k 100k 1M 10M  
–50  
0
25  
50  
75 100 125  
–25  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
1028 G38  
1028 G39  
1028 G37  
LT1028  
Total Harmonic Distortion vs  
Frequency and Load Resistance  
LT1028  
High Frequency Voltage Noise  
vs Frequency  
Total Harmonic Distortion vs  
Closed-Loop Gain  
0.1  
0.01  
0.1  
10  
1.0  
0.1  
V
= 20V  
P-P  
O
A
= 1000  
L
V
f = 1kHz  
R
= 2k  
NON-INVERTING  
GAIN  
V
= 1ꢀV  
= 2ꢀ°C  
= 10k  
S
A
A
L
= 1000  
= 600Ω  
T
V
R
R
L
0.01  
A
= –1000  
= 2k  
V
L
R
INVERTING  
GAIN  
0.001  
0.0001  
A
= 1000  
= 600Ω  
V
L
R
V
V
= 20V  
P-P  
O
S
A
MEASURED  
EXTRAPOLATED  
=
1ꢀV  
T
= 2ꢀ°C  
0.001  
1
10  
100  
10k  
100k  
1M  
10  
100  
1k  
10k 100k  
FREQUENCY (kHz)  
FREQUENCY (Hz)  
CLOSED LOOP GAIN  
1028 G40  
1028 G41  
1028 G42  
LT1128  
LT1128  
Total Harmonic Distortion vs  
Total Harmonic Distortion vs  
Closed-Loop Gain  
Frequency and Load Resistance  
0.1  
1.0  
0.1  
V
= 20V  
P-P  
O
NON-INVERTING  
GAIN  
f = 1kHz  
V
= 1ꢀV  
= 2ꢀ°C  
= 10k  
S
A
A
L
= 1000  
= 600Ω  
V
T
R
R
L
A
V
R
= 1000  
L
0.01  
0.001  
= 2k  
A
= –1000  
= 2k  
V
L
R
INVERTING  
GAIN  
A
= 1000  
= 609Ω  
V
L
0.01  
R
V
V
T
= 20V  
P-P  
O
S
A
=
1ꢀV  
MEASURED  
EXTRAPOLATED  
= 2ꢀ°C  
0.001  
0.0001  
1.0  
10  
FREQUENCY (kHz)  
100  
10  
100  
1k  
10k 100k  
CLOSED LOOP GAIN  
1028 G43  
1028 G44  
1028fb  
10  
LT1028/LT1128  
applicaTions inForMaTion – noise  
Voltage Noise vs Current Noise  
the largest term, asin the example above, andthe LT1028/  
LT1128’s voltage noise becomes negligible. As R is  
eq  
The LT1028/LT1128’s less than 1nV/√Hz voltage noise is  
threetimesbetterthanthelowestvoltagenoiseheretofore  
available(ontheLT1007/1037). Anecessaryconditionfor  
suchlowvoltagenoiseisoperatingtheinputtransistorsat  
nearly 1mA of collector currents, because voltage noise is  
inversely proportional to the square root of the collector  
current. Current noise, however, is directly proportional  
to the square root of the collector current. Consequently,  
the LT1028/LT1128’s current noise is significantly higher  
than on most monolithic op amps.  
further increased, current noise becomes important. At  
1kHz, when R is in excess of 20k, the current noise  
eq  
component is larger than the resistor noise. The total  
noise versus matched source resistance plot illustrates  
the above calculations.  
The plot also shows that current noise is more dominant  
at low frequencies, such as 10Hz. This is because resistor  
noise is flat with frequency, while the 1/f corner of current  
noise is typically at 250Hz. At 10Hz when R > 1k, the  
eq  
current noise term will exceed the resistor noise.  
Therefore, to realize truly low noise performance it is  
important to understand the interaction between voltage  
When the source resistance is unmatched, the total noise  
versus unmatched source resistance plot should be con-  
sulted. Note that total noise is lower at source resistances  
below 1k because the resistor noise contribution is less.  
noise (e ), current noise (I ) and resistor noise (r ).  
n
n
n
Total Noise vs Source Resistance  
The total input referred noise of an op amp is given by:  
When R > 1k total noise is not improved, however. This  
S
is because bias current cancellation is used to reduce  
input bias current. The cancellation circuitry injects two  
correlated current noise components into the two inputs.  
With matched source resistors the injected current noise  
creates a common-mode voltage noise and gets rejected  
by the amplifier. With source resistance in one input only,  
the cancellation noise is added to the amplifier’s inherent  
noise.  
2
2
2 1/2  
e = [e + r + (I R ) ]  
t
n
n
n eq  
where R is the total equivalent source resistance at the  
eq  
two inputs, and  
r = 4kTR = 0.13√Req in nV/√Hz at 25°C  
n
eq  
As a numerical example, consider the total noise at 1kHz  
of the gain 1000 amplifier shown in Figure 1.  
100Ω  
100k  
In summary, the LT1028/LT1128 are the optimum am-  
plifiers for noise performance, provided that the source  
resistanceiskeptlow.Thefollowingtabledepictswhichop  
amp manufactured by Linear Technology should be used  
to minimize noise, as the source resistance is increased  
beyond the LT1028/LT1128’s level of usefulness.  
LT1028  
LT1128  
+
100Ω  
1028 F01  
Table 1. Best Op Amp for Lowest Total Noise vs Source Resistance  
Figure 1  
BEST OP AMP  
SOURCE RESIS-  
TANCE (Ω) (Note 1) AT LOW FREQ (10Hz)  
WIDEBAND (1kHz)  
LT1028/LT1128  
LT1028/LT1128  
LT1007/LT1037  
LT1001  
R
= 100Ω + 100Ω || 100k ≈ 200Ω  
r = 0.13√200 = 1.84nV√Hz  
eq  
0 to 400  
400 to 4k  
4k to 40k  
40k to 500k  
500k to 5M  
>5M  
LT1028/LT1128  
LT1007/1037  
LT1001  
n
n
e = 0.85nV√Hz  
I = 1.0pA/√Hz  
n
LT1012  
2
2
2 1/2  
e = [0.85 + 1.84 + (1.0 × 0.2) ] = 2.04nV/√Hz  
t
LT1012 or LT1055  
LT1055  
LT1012  
LT1055  
Output noise = 1000 e = 2.04µV/√Hz  
t
Note 1: Source resistance is defined as matched or unmatched, e.g.,  
R = 1k means: 1k at each input, or 1k at one input and zero at the other.  
At very low source resistance (R < 40Ω) voltage noise  
dominates. As R is increased resistor noise becomes  
eq  
S
eq  
1028fb  
11  
LT1028/LT1128  
applicaTions inForMaTion – noise  
Noise Testing – Voltage Noise  
Measuring the typical 35nV peak-to-peak noise per-  
formance of the LT1028/LT1128 requires special test  
precautions:  
The LT1028/LT1128’s RMS voltage noise density can be  
accurately measured using the Quan Tech Noise Analyzer,  
Model 5173 or an equivalent noise tester. Care should be  
taken,however,tosubtractthenoiseofthesourceresistor  
used. Prefabricated test cards for the Model 5173 set the  
device under test in a closed-loop gain of 31 with a 60Ω  
source resistor and a 1.8k feedback resistor. The noise  
of this resistor combination is 0.13√58 = 1.0nV/√Hz. An  
(a) The device should be warmed up for at least five  
minutes. As the op amp warms up, its offset voltage  
changes typically 10µV due to its chip temperature  
increasing 30°C to 40°C from the moment the power  
suppliesareturnedon. Inthe10secondmeasurement  
interval these temperature-induced effects can easily  
exceed tens of nanovolts.  
2
LT1028/LT1128 with 0.85nV/√Hz noise will read (0.85 +  
2 1/2  
1.0 ) = 1.31nV/√Hz. For better resolution, the resistors  
(b) For similar reasons, the device must be well shielded  
from air current to eliminate the possibility of ther-  
moelectric effects in excess of a few nanovolts, which  
would invalidate the measurements.  
should be replaced with a 10Ω source and 300Ω feedback  
resistor. Even a 10Ω resistor will show an apparent noise  
which is 8% to 10% too high.  
The 0.1Hz to 10Hz peak-to-peak noise of the LT1028/  
LT1128 is measured in the test circuit shown. The fre-  
quency response of this noise tester indicates that the  
0.1Hz corner is defined by only one zero. The test time  
to measure 0.1Hz to 10Hz noise should not exceed 10  
seconds, as this time limit acts as an additional zero to  
eliminate noise contributions from the frequency band  
below 0.1Hz.  
(c) Sudden motion in the vicinity of the device can also  
feedthrough to increase the observed noise.  
Anoise-voltagedensitytestisrecommendedwhenmeasur-  
ing noise on a large number of units. A 10Hz noise-voltage  
density measurement will correlate well with a 0.1Hz to  
10Hz peak-to-peak noise reading since both results are  
determined by the white noise and the location of the 1/f  
corner frequency.  
0.1µF  
100k  
100  
90  
80  
2k  
70  
22µF  
+
10Ω  
*
SCOPE  
4.3k  
× 1  
+
LT1001  
60  
4.7µF  
R
IN  
= 1M  
2.2µF  
110k  
50  
40  
30  
100k  
VOLTAGE GAIN = 50,000  
* DEVICE UNDER TEST  
0.1µF  
24.3k  
0.01  
0.1  
1.0  
10  
100  
NOTE ALL CAPACITOR VALUES ARE FOR  
NONPOLARIZED CAPACITORS ONLY  
1028 F02  
FREQUENCY (Hz)  
1028 F03  
Figure 2. 0.1Hz to 10Hz Noise Test Circuit  
Figure 3. 0.1Hz to 10Hz Peak-to-Peak  
Noise Tester Frequency Response  
1028fb  
12  
LT1028/LT1128  
applicaTions inForMaTion – noise  
Noise Testing – Current Noise  
10Hz voltage noise density is sample tested on every lot.  
Devices 100% tested at 10Hz are available on request for  
an additional charge.  
Current noise density (I ) is defined by the following for-  
n
mula,andcanbemeasuredinthecircuitshowninFigure4.  
10Hz current noise is not tested on every lot but it can be  
inferred from 100% testing at 1kHz. A look at the current  
noise spectrum plot will substantiate this statement. The  
only way 10Hz current noise can exceed the guaranteed  
limits is if its 1/f corner is higher than 800Hz and/or its  
white noise is high. If that is the case then the 1kHz test  
will fail.  
1/2  
2
)
eno2 3118.4nV/ Hz  
(
ln =  
20k 31  
1.8k  
10k  
LT1028  
60Ω  
e
no  
LT1128  
+
10k  
10  
0
1028 F04  
Figure 4  
–10  
–20  
If the Quan Tech Model 5173 is used, the noise reading is  
input-referred, therefore the result should not be divided  
by 31; the resistor noise should not be multiplied by 31.  
CURRENT  
NOISE  
VOLTAGE  
NOISE  
–30  
–40  
–50  
100% Noise Testing  
100  
1k  
10k  
100k  
The 1kHz voltage and current noise is 100% tested on  
the LT1028/LT1128 as part of automated testing; the  
approximate frequency response of the filters is shown.  
The limits on the automated testing are established by  
extensive correlation tests on units measured with the  
Quan Tech Model 5173.  
FREQUENCY (Hz)  
1028 F05  
Figure ꢀ. Automated Tester Noise Filter  
1028fb  
13  
LT1028/LT1128  
applicaTions inForMaTion  
General  
10k*  
15V  
7
TheLT1028/LT1128seriesdevicesmaybeinserteddirectly  
into OP-07, OP-27, OP-37, LT1007 and LT1037 sockets  
withorwithoutremovalofexternalnullingcomponents.In  
addition,theLT1028/LT1128maybefittedto5534sockets  
with the removal of external compensation components.  
2
3
6
LT1028  
LT1128  
V
200Ω*  
10k*  
O
+
4
–15V  
V
= 100V  
O
OS  
* RESISTORS MUST HAVE LOW  
THERMOELECTRIC POTENTIAL  
Offset Voltage Adjustment  
1028 F07  
TheinputoffsetvoltageoftheLT1028/LT1128anditsdrift  
with temperature, are permanently trimmed at wafer test-  
Figure 7. Test Circuit for Offset Voltage  
and Offset Voltage Drift with Temperature  
ing to a low level. However, if further adjustment of V is  
OS  
necessary, the use of a 1k nulling potentiometer will not  
degrade drift with temperature. Trimming to a value other  
Unity-Gain Buffer Applications (LT1128 Only)  
When R ≤ 100Ω and the input is driven with a fast, large-  
F
than zero creates a drift of (V /300)µV/°C, e.g., if V  
OS  
OS  
signalpulse(>1V),theoutputwaveformwilllookasshown  
is adjusted to 300µV, the change in drift will be 1µV/°C.  
in the pulsed operation diagram (Figure 8).  
The adjustment range with a 1k pot is approximately  
1.1mV.  
R
F
1k  
15V  
1
OUTPUT  
6V/µs  
2
3
8
7
+
6
LT1028  
LT1128  
1028 F08  
INPUT  
OUTPUT  
+
4
Figure 8  
1028 F06  
–15V  
During the fast feedthrough-like portion of the output, the  
input protection diodes effectively short the output to the  
inputandacurrent, limitedonlybytheoutputshort-circuit  
protection, will be drawn by the signal generator. With  
Figure 6  
Offset Voltage and Drift  
Thermocouple effects, caused by temperature gradients  
across dissimilar metals at the contacts to the input termi-  
nals, can exceed the inherent drift of the amplifier unless  
proper care is exercised. Air currents should be minimized,  
package leads should be short, the two input leads should  
be close together and maintained at the same temperature.  
R
≥ 500Ω, the output is capable of handling the current  
F
requirements (I ≤ 20mA at 10V) and the amplifier stays  
L
in its active mode and a smooth transition will occur.  
As with all operational amplifiers when R > 2k, a pole will  
F
be created with RF and the amplifier’s input capacitance,  
creating additional phase shift and reducing the phase  
margin. A small capacitor (20pF to 50pF) in parallel with  
The circuit shown in Figure 7 to measure offset voltage  
is also used as the burn-in configuration for the LT1028/  
LT1128.  
R will eliminate this problem.  
F
1028fb  
14  
LT1028/LT1128  
applicaTions inForMaTion  
Frequency Response  
C1  
TheLT1028’sGain, PhasevsFrequencyplotindicatesthat  
the device is stable in closed-loop gains greater than +2 or  
1becausephasemarginisabout50°atanopen-loopgain  
of6dB. Inthevoltagefollowerconfigurationphasemargin  
seems inadequate. This is indeed true when the output is  
shorted to the inverting input and the noninverting input  
is driven from a 50Ω source impedance. However, when  
R1  
R
S1  
LT1028  
R
S2  
+
1028 F10  
Figure 10  
feedback is through a parallel R-C network (provided C  
F
< 68pF), the LT1028 will be stable because of interaction  
between the input resistance and capacitance and the  
feedback network. Larger source resistance at the non-  
inverting input has a similar effect. The following voltage  
follower configurations are stable:  
If C is only used to cut noise bandwidth, a similar effect  
F
can be achieved using the over-compensation terminal.  
The Gain, Phase plot also shows that phase margin is  
about45°atgainof10(20dB).Thefollowingconfiguration  
has a high (≈70%) overshoot without the 10pF capacitor  
because of additional phase shift caused by the feedback  
resistorinputcapacitancepole.Thepresenceofthe10pF  
capacitor cancels this pole and reduces overshoot to 5%.  
33pF  
2k  
+
+
10pF  
LT1028  
LT1028  
500Ω  
50Ω  
10k  
1.1k  
50Ω  
LT1028  
1028 F09  
+
Figure 9  
50Ω  
Another configuration which requires unity-gain stability  
1028 F11  
is shown below. When C is large enough to effectively  
F
short the output to the input at 15MHz, oscillations can  
Figure 11  
occur.TheinsertionofR ≥500ΩwillpreventtheLT1028  
S2  
Over-Compensation  
from oscillating. When R ≥ 500Ω, the additional noise  
S1  
contribution due to the presence of R will be minimal.  
The LT1028/LT1128 are equipped with a frequency over-  
compensation terminal (Pin 5). A capacitor connected  
between Pin 5 and the output will reduce noise bandwidth.  
DetailsareshownontheSlewRate,Gain-BandwidthProd-  
uct vs Over-Compensation Capacitor plot. An additional  
benefit is increased capacitive load handling capability.  
S2  
When R ≤ 100Ω, R is not necessary, because R  
S1  
S2  
S1  
F
represents a heavy load on the output through the C  
short. When 100Ω < R < 500Ω, R should match R .  
S1  
S2  
S1  
For example, R = R = 300Ω will be stable. The noise  
S1  
S2  
increase due to R is 40%.  
S2  
1028fb  
15  
LT1028/LT1128  
Typical applicaTions  
Strain Gauge Signal Conditioner with Bridge Excitation  
15V  
7
330Ω  
3
5.0V  
+
LT1021-5  
6
LT1128  
2
4
–15V  
REFERENCE  
OUTPUT  
15V  
7
350Ω  
BRIDGE  
3
6
0V TO 10V  
OUTPUT  
LT1028  
301k*  
10k  
ZERO  
TRIM  
2
+
1µF  
4
30.1k*  
–15V  
15V  
7
5k  
GAIN  
TRIM  
3
2
49.9Ω*  
*RN60C FILM RESISTORS  
6
LT1028  
+
330Ω  
4
THE LT1028’s NOISE CONTRIBUTION IS NEGLIGIBLE  
COMPARED TO THE BRIDGE NOISE.  
–15V  
1028 TA03  
Low Noise Voltage Regulator  
28V  
10  
+
121Ω  
2.3k  
LT317A  
10  
PROVIDES PRE-REG  
AND CURRENT  
LIMITING  
28V  
1k  
+
LT1021-10  
330Ω  
LT1028  
2N6387  
1000pF  
20V OUTPUT  
2k  
2k  
1028 TA04  
1028fb  
16  
LT1028/LT1128  
Typical applicaTions  
Paralleling Amplifiers to Reduce Voltage Noise  
+
1.5k  
A1  
LT1028  
7.5Ω  
470Ω  
4.7k  
+
1.5k  
1.5k  
A2  
LT1028  
+
OUTPUT  
LT1028  
7.5Ω  
470Ω  
+
An  
LT1028  
7.5Ω  
470Ω  
1. ASSUME VOLTAGE NOISE OF LT1028 AND 7.5Ω SOURCE RESISTOR = 0.9nV/√Hz.  
2. GAIN WITH n LT1028s IN PARALLEL = n • 200.  
3. OUTPUT NOISE = √n • 200 • 0.9nV/√Hz.  
0.9  
n  
OUTPUT NOISE  
4. INPUT REFERRED NOISE =  
=
nV/√Hz.  
n • 200  
5. NOISE CURRENT AT INPUT INCREASES √n TIMES.  
2µV  
5  
6. IF n = 5, GAIN = 1000, BANDWIDTH = 1MHz, RMS NOISE, DC TO 1MHz =  
= 0.9µV.  
1028 TA05  
1028fb  
17  
LT1028/LT1128  
Typical applicaTions  
Phono Preamplifier  
10Ω  
787Ω  
15V  
0.1µF  
10k  
2
3
7
0.33µF  
+
6
OUTPUT  
100pF  
47k  
LT1028  
4
–15V  
ALL RESISTORS METAL FILM  
MAG PHONO  
INPUT  
1028 TA06  
Tape Head Amplifier  
0.1µF  
499Ω  
31.6k  
10Ω  
2
6
OUTPUT  
LT1028  
3
TAPE HEAD  
INPUT  
+
1028 TA07  
ALL RESISTORS METAL FILM  
1028fb  
18  
LT1028/LT1128  
Typical applicaTions  
Low Noiseꢁ Wide Bandwidth Instrumentation Amplifier  
–INPUT  
+
300Ω  
10k  
LT1028  
820Ω  
68pF  
50Ω  
10Ω  
+
68pF  
300Ω  
820Ω  
OUTPUT  
LT1028  
+
LT1028  
+INPUT  
10k  
GAIN = 1000, BANDWIDTH = 1MHz  
INPUT REFERRED NOISE = 1.5nV/√Hz AT 1kHz  
WIDEBAND NOISE –DC to 1MHz = 3µV  
RMS  
IF BW LIMITED TO DC TO 100kHz = 0.55µV  
1028 TA08  
RMS  
Gyro Pick-Off Amplifier  
GYRO TYPICAL–  
NORTHROP CORP.  
GR-F5AH7-5B  
SINE  
DRIVE  
+
OUTPUT TO SYNC  
DEMODULATOR  
LT1028  
1k  
100Ω  
1028 TA09  
1028fb  
19  
LT1028/LT1128  
Typical applicaTions  
Super Low Distortion Variable Sine Wave Oscillator  
R1  
C2  
C1  
0.047  
0.047  
20Ω  
2k  
1V  
OUTPUT  
20Ω  
RMS  
+
1.5kHz TO 15kHz  
2k  
1
f =  
LT1028  
(
)
2πRC  
R2  
WHERE R1C1 = R2C2  
4.7k  
15V  
5.6k  
2.4k  
LT1004-1.2V  
10pF  
22k  
15µF  
MOUNT 1N4148s  
IN CLOSE PROXIMITY  
+
10k  
2N4338  
100k  
LT1055  
560Ω  
TRIM FOR  
LOWEST  
DISTORTION  
20k  
10k  
<0.0018% DISTORTION AND NOISE.  
MEASUREMENT LIMITED BY RESOLUTION OF  
HP339A DISTORTION ANALYZER  
1028 TA10  
Chopper-Stabilized Amplifier  
15V  
1N758  
3
2
7
+
6
LT1052  
8
4
1
0.1  
0.1  
0.01  
1N758  
15V  
–15V  
130Ω  
3
68Ω  
30k  
100k  
1
7
INPUT  
+
8
LT1028  
OUTPUT  
10k  
2
4
–15V  
10Ω  
1028 TA11  
1028fb  
20  
LT1028/LT1128  
scheMaTic DiagraM  
NULL  
8
+
V
7
R5  
130Ω  
R6  
130Ω  
NULL  
1
Q4  
1.1mA  
2.3mA  
400µA  
R2  
3k  
R1  
3k  
C1  
257pF  
500µA  
R10  
400Ω  
R11  
400Ω  
Q17  
Q16  
Q19  
Q18  
R10  
500Ω  
900µA  
900µA  
C2  
Q26  
Q6  
Q5  
1
3
3
1
Q11  
R11  
100Ω  
Q22  
NON-  
INVERTING  
INPUT  
Q9  
Q8  
Q7  
C3  
250pF  
4.5µA  
3
Q10  
4.5µA  
OUTPUT  
6
Q24  
4.5µA  
4.5µA  
Q25  
Q2  
Q1  
1.5µA  
Q12  
C4  
35pF  
R12  
240Ω  
Q13  
Q14  
Q27  
1.5µA  
INVERTING  
INPUT  
0
2
1.8mA  
300µA  
Q3  
Q15  
Q23  
BIAS  
Q21  
R8  
480Ω  
600µA  
R7  
80Ω  
Q20  
V
4
1028 TA12  
OVER-COMP  
5
C2 = 50pF for LT1028  
C2 = 275pF for LT1128  
1028fb  
21  
LT1028/LT1128  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
J8 Package  
3-Lead CERDIP (Narrow .300 Inch, Hermetic)  
(Reference LTC DWG # 05-08-1110)  
.405  
(10.287)  
MAX  
CORNER LEADS OPTION  
(4 PLCS)  
.005  
(0.127)  
MIN  
6
5
4
8
7
2
.023 – .045  
(0.584 – 1.143)  
HALF LEAD  
OPTION  
.025  
(0.635)  
RAD TYP  
.220 – .310  
(5.588 – 7.874)  
.045 – .068  
(1.143 – 1.650)  
FULL LEAD  
OPTION  
1
3
.200  
.300 BSC  
(5.080)  
MAX  
(7.62 BSC)  
.015 – .060  
(0.381 – 1.524)  
.008 – .018  
(0.203 – 0.457)  
0° – 15°  
.045 – .065  
(1.143 – 1.651)  
.125  
3.175  
MIN  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE  
OR TIN PLATE LEADS  
.014 – .026  
(0.360 – 0.660)  
.100  
(2.54)  
BSC  
J8 0801  
OBSOLETE PACKAGE  
1028fb  
22  
LT1028/LT1128  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
N Package  
8-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510 Rev I)  
.400*  
(10.160)  
MAX  
8
7
6
5
4
.255 ±.015*  
(6.477 ±0.381)  
1
2
3
.130 ±.005  
.300 – .325  
.045 – .065  
(3.302 ±0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
.065  
(1.651)  
TYP  
.008 – .015  
(0.203 – 0.381)  
.120  
.020  
(0.508)  
MIN  
(3.048)  
MIN  
+.035  
.325  
–.015  
.018 ±.003  
(0.457 ±0.076)  
.100  
(2.54)  
BSC  
+0.889  
8.255  
N8 REV I 0711  
(
)
–0.381  
NOTE:  
INCHES  
1. DIMENSIONS ARE  
MILLIMETERS  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
1028fb  
23  
LT1028/LT1128  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610 Rev G)  
.189 – .197  
(4.801 – 5.004)  
.045 ±.005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 ±.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 ±.005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
4. PIN 1 CAN BE BEVEL EDGE OR A DIMPLE  
SO8 REV G 0212  
1028fb  
24  
LT1028/LT1128  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
S Package  
16-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610 Rev G)  
.386 – .394  
(9.804 – 10.008)  
.045 .005  
NOTE 3  
.050 BSC  
16  
N
15  
14  
13  
12  
11  
10  
9
N
1
.245  
MIN  
.160 .005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
2
3
N/2  
N/2  
8
.030 .005  
TYP  
RECOMMENDED SOLDER PAD LAYOUT  
2
3
5
6
7
1
4
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0° – 8° TYP  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
.016 – .050  
(0.406 – 1.270)  
S16 REV G 0212  
NOTE:  
1. DIMENSIONS IN  
INCHES  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
4. PIN 1 CAN BE BEVEL EDGE OR A DIMPLE  
1028fb  
25  
LT1028/LT1128  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
H Package  
8-Lead TO-5 Metal Can (.230 Inch PCD)  
(Reference LTC DWG # 05-08-1321)  
.335 – .370  
(8.509 – 9.398)  
DIA  
.305 – .335  
(7.747 – 8.509)  
.040  
(1.016)  
MAX  
.050  
(1.270)  
MAX  
.165 – .185  
(4.191 – 4.699)  
REFERENCE  
PLANE  
SEATING  
PLANE  
GAUGE  
PLANE  
.500 – .750  
(12.700 – 19.050)  
.010 – .045*  
(0.254 – 1.143)  
.016 – .021**  
(0.406 – 0.533)  
.027 – .045  
(0.686 – 1.143)  
45°  
PIN 1  
.028 – .034  
(0.711 – 0.864)  
.230  
(5.842)  
TYP  
.110 – .160  
(2.794 – 4.064)  
INSULATING  
STANDOFF  
*LEAD DIAMETER IS UNCONTROLLED BETWEEN THE REFERENCE PLANE  
AND THE SEATING PLANE  
.016 – .024  
(0.406 – 0.610)  
**FOR SOLDER DIP LEAD FINISH, LEAD DIAMETER IS  
H8 (TO-5) 0.230 PCD 0204  
OBSOLETE PACKAGE  
1028fb  
26  
LT1028/LT1128  
revision hisTory (Revision history begins at Rev B)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
B
10/12 Replaced the Typical Application.  
1
1028fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
27  
LT1028/LT1128  
Typical applicaTion  
Low Noise Infrared Detector  
5V  
10Ω  
+
100µF  
1k  
33Ω  
SYNCHRONOUS  
DEMODULATOR  
+
100µF  
10k*  
10k*  
OPTICAL  
CHOPPER  
WHEEL  
267Ω  
5V  
7
5V  
1000µF  
2
3
2
7
5V  
+
+
IR  
1/4 LTC1043  
6
2
3
7
6
LM301A  
RADIATION  
+
13  
LT1028  
39Ω  
8
3
6
8
12  
16  
1M  
DC OUT  
LT1012  
PHOTO-  
ELECTRIC  
PICK-OFF  
1
4
10k  
8
4
1
–5V  
14  
–5V  
30pF  
4
INFRA RED ASSOCIATES, INC.  
HgCdTe IR DETECTOR  
13Ω AT 77°K  
–5V  
10Ω  
1028 TA13  
relaTeD parTs  
PART NUMBER  
DESCRIPTION  
325MHz, 3.5nV/√Hz Single and Dual Op Amps  
COMMENTS  
Slew Rate = 140V/µs, Low Distortion at 5MHz: –80dBc  
LT1806/LT1807  
1028fb  
LT 1012 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
28  
LINEAR TECHNOLOGY CORPORATION 1992  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY