LT1037CJ8 [Linear]

Low Noise, High Speed Precision Operational Amplifiers; 低噪声,高速精密运算放大器
LT1037CJ8
型号: LT1037CJ8
厂家: Linear    Linear
描述:

Low Noise, High Speed Precision Operational Amplifiers
低噪声,高速精密运算放大器

运算放大器
文件: 总16页 (文件大小:368K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1007/LT1037  
Low Noise, High Speed  
Precision Operational Amplifiers  
U
FEATURES  
DESCRIPTION  
The LT®1007/LT1037 series features the lowest noise  
performance available to date for monolithic operational  
amplifiers: 2.5nV/Hz wideband noise (less than the noise of  
a400resistor),1/fcornerfrequencyof2Hzand60nVpeak-  
to-peak 0.1Hz to 10Hz noise. Low noise is combined with  
outstanding precision and speed specifications: 10µV offset  
voltage, 0.2µV/°C drift, 130dB common mode and power  
supply rejection, and 60MHz gain bandwidth product on the  
decompensated LT1037, which is stable for closed-loop  
gains of 5 or greater.  
Guaranteed 4.5nV/Hz 10Hz Noise  
Guaranteed 3.8nV/Hz 1kHz Noise  
0.1Hz to 10Hz Noise, 60nVP-P Typical  
Guaranteed 7 Million Min Voltage Gain, RL = 2k  
Guaranteed 3 Million Min Voltage Gain, RL = 600Ω  
Guaranteed 25µV Max Offset Voltage  
Guaranteed 0.6µV/°C Max Drift with Temperature  
Guaranteed 11V/µs Min Slew Rate (LT1037)  
Guaranteed 117dB Min CMRR  
U
APPLICATIONS  
The voltage gain of the LT1007/LT1037 is an extremely high  
20 million driving a 2kload and 12 million driving a 600Ω  
load to ±10V.  
Low Noise Signal Processing  
Microvolt Accuracy Threshold Detection  
In the design, processing and testing of the device, particular  
attention has been paid to the optimization of the entire  
distribution of several key parameters. Consequently, the  
specifications of even the lowest cost grades (the LT1007C  
and the LT1037C) have been spectacularly improved com-  
pared to equivalent grades of competing amplifiers.  
Strain Gauge Amplifiers  
Direct Coupled Audio Gain Stages  
Sine Wave Generators  
Tape Head Preamplifiers  
Microphone Preamplifiers  
Thesinewavegeneratorapplicationshownbelowutilizesthe  
low noise and low distortion characteristics of the LT1037.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATION  
0.1Hz to 10Hz Noise  
Ultrapure 1kHz Sine Wave Generator  
430Ω  
2
6
OUTPUT  
LT1037  
R
+
3
1
f =  
2πRC  
C
#327 LAMP  
R = 1591.5±0.1%  
C = 0.1µF ±0.1%  
C
R
TOTAL HARMONIC DISTORTION = < 0.0025%  
NOISE = < 0.0001%  
AMPLITUDE = ±8V  
OUTPUT FREQUENCY = 1.000kHz FOR VALUES GIVEN ±0.4%  
1007/37 TA01  
0
2
4
6
8
10  
TIME (SEC)  
1007/37 TA02  
1
LT1007/LT1037  
W W U W  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage ...................................................... ±22V  
Input Voltage ............................ Equal to Supply Voltage  
Output Short-Circuit Duration .......................... Indefinite  
Differential Input Current (Note 8) ..................... ±25mA  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec.)................. 300°C  
Operating Temperature Range  
LT1007/LT1037AC, C ............................. 0°C to 70°C  
LT1007/LT1037I ............................... 40°C to 85°C  
LT1007/LT1037AM, M ..................... 55°C to 125°C  
U
W U  
PACKAGE/ORDER INFORMATION  
TOP VIEW  
TOP VIEW  
TOP VIEW  
V
TRIM  
8
OS  
V
V
OS  
V
V
OS  
OS  
OS  
1
2
3
4
1
2
3
4
8
7
6
5
8
7
6
5
V
TRIM  
–IN  
TRIM  
OS  
TRIM  
+
TRIM  
–IN  
V
1
3
7
5
+
TRIM  
–IN  
+IN  
+
+
V
+
V
+
2
6
OUT  
+IN  
OUT  
NC  
OUT  
NC  
+IN  
V
V
NC  
4
S8 PACKAGE  
8-LEAD PLASTIC SO  
J8 PACKAGE  
8-LEAD CERDIP  
N8 PACKAGE  
8-LEAD PDIP  
V
(CASE)  
H PACKAGE  
8-LEAD TO-5 METAL CAN  
TJMAX = 150°C, θJA = 100°C/ W (J8)  
JMAX = 100°C, θJA = 130°C/ W (N8)  
TJMAX = 150°C, θJA = 190°C/ W  
T
TJMAX = 150°C, θJA = 150°C/ W, θJC = 45°C/ W  
ORDER PART NUMBER  
ORDER PART NUMBER  
ORDER PART NUMBER  
LT1037CS8  
LT1037IS8  
LT1007ACJ8  
LT1037ACJ8  
LT1037ACN8  
LT1037AMJ8  
LT1037CJ8  
LT1037CN8  
LT1037IN8  
LT1007ACH  
LT1007AMH  
LT1007CH  
LT1007MH  
LT1037ACH  
LT1037AMH  
LT1037CH  
LT1037MH  
LT1007CS8  
LT1007IS8  
LT1007ACN8  
LT1007AMJ8  
LT1007CJ8  
LT1007CN8  
LT1007IN8  
LT1007MJ8  
S8 PART MARKING  
1037  
1037I  
1007  
1007I  
LT1037MJ8  
VS = ±15V, TA = 25°C, unless otherwise noted.  
ELECTRICAL CHARACTERISTICS  
LT1007AC/AM  
LT1037AC/AM  
LT1007C/I/M  
LT1037C/I/M  
TYP  
SYMBOL  
PARAMETER  
CONDITIONS  
(Note 1)  
MIN  
TYP  
MAX  
MIN  
MAX  
UNITS  
µV  
V
OS  
Input Offset Voltage  
10  
25  
20  
60  
V  
Time  
Long Term Input Offset  
Voltage Stability  
(Notes 2, 3)  
0.2  
1.0  
0.2  
1.0  
µV/Mo  
OS  
I
I
Input Offset Current  
Input Bias Current  
7
30  
12  
50  
nA  
nA  
OS  
B
±10  
0.06  
±35  
0.13  
±15  
0.06  
±55  
0.13  
e
Input Noise Voltage  
Input Noise Voltage Density  
0.1Hz to 10Hz (Notes 3, 5)  
µV  
P-P  
n
f = 10Hz (Notes 3, 4)  
2.8  
2.5  
4.5  
3.8  
2.8  
2.5  
4.5  
3.8  
nV/Hz  
nV/Hz  
O
f = 1000Hz (Note 3)  
O
i
n
Input Noise Current Density  
f = 10Hz (Notes 3, 6)  
f = 1000Hz (Notes 3, 6)  
O
1.5  
0.4  
4.0  
0.6  
1.5  
0.4  
4.0  
0.6  
pA/Hz  
pA/Hz  
O
2
LT1007/LT1037  
VS = ±15V, TA = 25°C, unless otherwise noted.  
ELECTRICAL CHARACTERISTICS  
LT1007AC/AM  
LT1037AC/AM  
LT1007C/I/M  
LT1037C/I/M  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
GΩ  
V
Input Resistance, Common Mode  
Input Voltage Range  
7
5
±11.0 ±12.5  
±11.0 ±12.5  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
= ±11V  
117  
110  
130  
130  
110  
106  
126  
126  
dB  
CM  
V = ±4V to ±18V  
S
dB  
A
VOL  
R 2k, V = ±12V  
R 1k, V = ±10V  
R 600, V = ±10V  
7.0  
5.0  
3.0  
20.0  
16.0  
12.0  
5.0  
3.5  
2.0  
20.0  
16.0  
12.0  
V/µV  
V/µV  
V/µV  
L
O
L
O
L
O
V
OUT  
Maximum Output Voltage Swing R 2k  
±13.0 ±13.8  
±11.0 ±12.5  
±12.5 ±13.5  
±10.5 ±12.5  
V
V
L
R 600Ω  
L
SR  
Slew Rate  
LT1007  
LT1037  
R 2k  
1.7  
11  
2.5  
15  
1.7  
11  
2.5  
15  
V/µs  
V/µs  
L
A
VCL  
5  
GBW  
Gain Bandwidth  
Product  
LT1007  
LT1037  
f = 100kHz (Note 7)  
f = 10kHz (Note 7) (A  
O
5.0  
45  
8.0  
60  
5.0  
45  
8.0  
60  
MHz  
MHz  
O
5)  
VCL  
Z
O
Open-Loop Output Resistance  
V = 0V, I = 0  
70  
70  
O
O
P
D
Power Dissipation  
LT1007  
LT1037  
80  
80  
120  
130  
80  
85  
140  
140  
mW  
mW  
VS = ±15V, 0°C TA 70°C, unless otherwise noted.  
LT1007AC  
LT1037AC  
TYP  
LT1007C  
LT1037C  
TYP  
SYMBOL  
PARAMETER  
CONDITIONS  
(Note 1)  
MIN  
MAX  
50  
MIN  
MAX  
110  
1.0  
UNITS  
µV  
V
OS  
Input Offset Voltage  
Average Input Offset Drift  
20  
35  
V  
(Note 9)  
0.2  
0.6  
0.3  
µV/°C  
OS  
Temp  
I
I
Input Offset Current  
10  
40  
15  
70  
nA  
nA  
V
OS  
B
Input Bias Current  
±14  
±45  
±20  
±75  
Input Voltage Range  
±10.5 ±11.8  
±10.5 ±11.8  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
= ±10.5V  
114  
106  
126  
126  
106  
102  
120  
120  
dB  
dB  
CM  
V = ±4.5V to ±18V  
S
A
R 2k, V = ±10V  
R 1k, V = ±10V  
4.0  
2.5  
18.0  
14.0  
2.5  
2.0  
18.0  
14.0  
V/µV  
V/µV  
VOL  
L
O
L
O
V
P
Maximum Output Voltage Swing R 2k  
±12.5 ±13.6  
±12.0 ±13.6  
V
OUT  
L
Power Dissipation  
90  
144  
90  
160  
mW  
D
3
LT1007/LT1037  
VS = ±15V, 40°C TA 85°C, unless otherwise noted.  
ELECTRICAL CHARACTERISTICS  
LT1007I/LT1037I  
SYMBOL  
PARAMETER  
CONDITIONS  
(Note 1)  
MIN  
TYP  
MAX  
125  
1.0  
UNITS  
µV  
V
OS  
Input Offset Voltage  
Average Input Offset Drift  
40  
V  
(Note 9)  
0.3  
µV/°C  
OS  
Temp  
I
I
Input Offset Current  
20  
80  
nA  
nA  
V
OS  
B
Input Bias Current  
±25  
±90  
Input Voltage Range  
±10 ±11.7  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
= ±10.5V  
105  
101  
120  
120  
dB  
dB  
CM  
V = ±4.5V to ±18V  
S
A
R 2k, V = ±10V  
R 1k, V = ±10V  
2.0  
1.5  
15.0  
12.0  
V/µV  
V/µV  
VOL  
L
O
L
O
V
P
Maximum Output Voltage Swing  
Power Dissipation  
R 2k  
L
±12.0 ±13.6  
V
OUT  
95  
165  
mW  
D
VS = ±15V, 55°C TA 125°C, unless otherwise noted.  
LT1007AM/LT1037AM  
LT1007M/LT1037M  
SYMBOL  
PARAMETER  
CONDITIONS  
(Note 1)  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
160  
1.0  
UNITS  
µV  
V
OS  
Input Offset Voltage  
Average Input Offset Drift  
25  
60  
50  
V  
(Note 9)  
0.2  
0.6  
0.3  
µV/°C  
OS  
Temp  
I
I
Input Offset Current  
15  
50  
20  
85  
nA  
nA  
V
OS  
B
Input Bias Current  
±20  
±60  
±35  
±95  
Input Voltage Range  
±10.3 ±11.5  
±10.3 ±11.5  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
= ±10.3V  
112  
104  
126  
126  
104  
100  
120  
120  
dB  
dB  
CM  
V = ±4.5V to ±18V  
S
A
R 2k, V = ±10V  
R 1k, V = ±10V  
3.0  
2.0  
14.0  
10.0  
2.0  
1.5  
14.0  
10.0  
V/µV  
V/µV  
VOL  
L
O
L
O
V
P
Maximum Output Voltage Swing  
Power Dissipation  
R 2k  
L
±12.5 ±13.5  
±12.0 ±13.5  
V
OUT  
100  
150  
100  
170  
mW  
D
The  
denotes the specifications which apply over the full operating  
Note 4: 10Hz noise voltage density is sample tested on every lot. Devices  
100% tested at 10Hz are available on request.  
temperature range.  
For MIL-STD components, please refer to LTC 883C data sheet for test  
listing and parameters.  
Note 5: See the test circuit and frequency response curve for 0.1Hz to  
10Hz tester in the Applications Information section.  
Note 1: Input Offset Voltage measurements are performed by automatic  
test equipment approximately 0.5 seconds after application of power. AM  
and AC grades are guaranteed fully warmed up.  
Note 6: See the test circuit for current noise measurement in the  
Applications Information section.  
Note 7: This parameter is guaranteed by design and is not tested.  
Note 2: Long Term Input Offset Voltage Stability refers to the average  
trend line of Offset Voltage vs Time over extended periods after the first 30  
days of operation. Excluding the initial hour of operation, changes in V  
during the first 30 days are typically 2.5µV. Refer to typical performance  
Note 8: The inputs are protected by back-to-back diodes. Current limiting  
resistors are not used in order to achieve low noise. If differential input  
voltage exceeds ±0.7V, the input current should be limited to 25mA.  
Note 9: The Average Input Offset Drift performance is within the  
specifications unnulled or when nulled with a pot having a range of 8kto  
20k.  
OS  
curve.  
Note 3: This parameter is tested on a sample basis only.  
4
LT1007/LT1037  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
0.02Hz to 10Hz RMS Noise. Gain = 50,000  
(Measured on HP3582 Spectrum Analyzer)  
10Hz Voltage Noise Distribution  
Voltage Noise vs Frequency  
100  
140  
120  
100  
80  
V
= ±15V  
= 25°C  
V
T
= ±15V  
= 25°C  
S
A
S
A
T
497 UNITS MEASURED  
FROM SIX RUNS  
30  
10  
60  
MAXIMUM  
TYPICAL  
40  
3
1
20  
1/f CORNER = 2Hz  
1
0
179µV/Hz  
50,000  
nV  
MARKER AT 2Hz ( = 1/f CORNER) =  
= 3.59  
0.1  
10  
100  
1000  
0
3
5
6
7
8
9
10  
1
2
4
Hz  
FREQUENCY (Hz)  
VOLTAGE NOISE DENSITY (nV/Hz)  
1007/37 G03  
1007/37 G02  
1007/37 G01  
0.01Hz to 1Hz Peak-to-Peak Noise  
Total Noise vs Source Resistance  
Voltage Noise vs Temperature  
5
4
3
2
1
0
1000  
100  
10  
R
V
= ±15V  
= 25°C  
V
= ±15V  
S
S
A
T
R
SOURCE RESISTANCE = 2R  
AT 10Hz  
AT 1kHz  
AT 1kHz  
AT 10Hz  
RESISTOR  
NOISE ONLY  
1
0
20  
40  
60  
80  
100  
0.1  
1
10  
100  
–50  
0
25  
50  
75 100 125  
–25  
SOURCE RESISTANCE (k)  
TEMPERATURE (°C)  
TIME (SEC)  
1007/37 G04  
1007/37 G05  
1007/37 G06  
Wideband Voltage Noise  
(0.1Hz to Frequency Indicated)  
Current Noise vs Frequency  
Voltage Noise vs Supply Voltage  
10  
5
4
3
2
1
0
10  
1
T
A
= 25°C  
3
1
AT 10Hz  
AT 1kHz  
MAXIMUM  
0.1  
0.01  
TYPICAL  
0.3  
0.1  
1/f CORNER = 120Hz  
100  
0
5
10  
15  
20  
25  
10  
1k  
10k  
0.1  
1
10  
100  
FREQUENCY (Hz)  
BANDWIDTH (kHz)  
SUPPLY VOLTAGE (±V)  
1007/37 G07  
1007/37 G08  
1007/37 G09  
5
LT1007/LT1037  
TYPICAL PERFORMANCE CHARACTERISTICS  
W
U
Voltage Gain vs Frequency  
Voltage Gain, RL = 2k and 600Ω  
Voltage Gain vs Supply Voltage  
180  
160  
140  
120  
100  
80  
25  
20  
15  
10  
5
V
T
= ±15V  
= 25°C  
= 2k  
S
T
= 25°C  
A
R
L
= 2k  
A
–1  
0
R
L
R
= 2k  
L
R
L
= 600Ω  
–1  
0
1
LT1037  
LT1007  
60  
40  
20  
1
R
L
= 600Ω  
V
= ±15V  
= 25°C  
S
A
0
T
0
–20  
–15  
–10  
–5  
OUTPUT VOLTAGE (V)  
MEASURED ON TEKTRONIX 178 LINEAR IC TESTER  
0
5
10  
15  
0.01 0.1  
1
10 100 1k 10k 100k 1M 10M 100M  
FREQUENCY (Hz)  
0
5
10  
15  
20  
25  
SUPPLY VOLTAGE (±V)  
1007/37 G10  
1007/37 G11  
1007/37 G12  
Voltage Gain vs Load Resistance  
Warm-Up Drift  
Voltage Gain vs Temperature  
25  
20  
15  
10  
5
10  
8
25  
20  
15  
10  
5
V
= ±15V  
= 25°C  
S
A
V
= ±15V  
= 25°C  
S
A
T
T
R
R
= 2k  
= 1k  
L
L
6
METAL CAN (H) PACKAGE  
R
= 600Ω  
L
4
V
V
V
A
R
= ±15V  
S
= ±10V  
DUAL-IN-LINE PACKAGE  
PLASTIC (N8) OR CERDIP (J8)  
OUT  
OUT  
2
= ±8V FOR  
T
100°C AND  
= 600Ω  
L
0
–50  
0
0
0
1
2
3
4
5
0.1  
0.3  
1
3
10  
0
25  
50  
75 100 125  
–25  
LOAD RESISTANCE (k)  
TEMPERATURE (°C)  
TIME AFTER POWER ON (MINUTES)  
1007/37 G13  
1007/37 G15  
1007/37 G14  
Long Term Stability of Four  
Representative Units  
Offset Voltage Drift with Temperature  
of Representative Units  
Supply Current vs Supply Voltage  
50  
40  
4
3
2
1
0
10  
5
V
S
= ±15V  
LT1007/LT1037  
LT1007A/LT1037A  
30  
125°C  
25°C  
20  
10  
0.2µV/MONTH  
–55°C  
0
0
–10  
–20  
–30  
–40  
–50  
–5  
–10  
0.2µV/MONTH  
TREND LINE  
10  
SUPPLY VOLTAGE (±V)  
50  
75 100 125  
0
5
15  
20  
–50  
0
25  
–25  
0
2
4
6
8
10  
TEMPERATURE (°C)  
TIME (MONTHS)  
1007/37 G18  
1007/37 G17  
1007/37 G16  
6
LT1007/LT1037  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Common Mode Rejection vs  
Frequency  
Common Mode Limit vs  
Temperature  
Input Bias Current Over the  
Common Mode Range  
+
V
140  
120  
100  
80  
20  
15  
V
V
T
= ±15V  
= ±10V  
S
CM  
A
–1  
–2  
–3  
–4  
DEVICE WITH POSITIVE  
INPUT CURRENT  
+
= 25°C  
V
= 3V TO 20V  
10  
5
V
T
= ±15V  
= 25°C  
S
A
20V  
3nA  
R
CM  
=
7G  
0
LT1037  
LT1007  
+4  
+3  
+2  
+1  
–5  
–10  
–15  
–20  
DEVICE WITH NEGATIVE  
INPUT CURRENT  
V
= –3V TO –20V  
60  
40  
V
3
4
5
6
7
10  
10  
10  
FREQUENCY (Hz)  
10  
10  
–50  
0
25  
50  
75 100 125  
–15  
–10  
–5  
0
5
10  
15  
–25  
COMMON MODE INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
1007/37 G19  
1007/37 G20  
1007/37 G21  
Input Bias Current vs  
Temperature  
Input Offset Current vs  
Temperature  
Output Swing vs Load Resistance  
15  
12  
9
60  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
V
= ±15V  
V
S
= ±15V  
S
POSITIVE  
SWING  
NEGATIVE  
SWING  
LT1007M  
LT1037M  
6
LT1007M  
LT1037M  
3
V
= ±15V  
= 25°C  
S
A
LT1007AM  
LT1037AM  
LT1007AM  
LT1037AM  
T
0
–25  
25  
100  
125  
–75 –50  
0
50 75  
100  
300  
1k  
3k  
10k  
–50  
–25  
25 50 75 100  
125  
0
TEMPERATURE (°C)  
LOAD RESISTANCE ()  
TEMPERATURE (°C)  
1007/37 G24  
1007/37 G23  
1007/37 G22  
Output Short-Circuit Current  
vs Time  
PSRR vs Frequency  
Closed-Loop Output Impedance  
100  
10  
50  
40  
160  
140  
120  
100  
80  
T
= 25°C  
V
= ±15V  
= 25°C  
= 1mA  
A
S
A
T
I
55°C  
30  
OUT  
25°C  
20  
A
V
= 1000  
A
V
= 1000  
125°C  
1
10  
NEGATIVE  
SUPPLY  
V
S
= ±15V  
0
0.1  
–10  
–20  
–30  
–40  
–50  
60  
A
= 1  
A
V
= 5  
V
125°C  
POSITIVE  
40  
SUPPLY  
0.01  
0.001  
25°C  
LT1007  
LT1037  
20  
55°C  
0
3
5
7
2
4
6
8
10  
10  
10  
10  
100  
1k  
10k  
100k  
1M  
1
10 10  
10  
10  
10  
0
1
2
3
FREQUENCY (Hz)  
TIME FROM OUTPUT SHORT TO GROUND (MINUTES)  
FREQUENCY (Hz)  
1007/37 G26  
1195 G25  
1007/37 G27  
7
LT1007/LT1037  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
LT1037 Phase Margin, Gain  
Bandwidth Product, Slew Rate vs  
Temperature  
LT1037 Small-Signal  
Transient Response  
LT1037 Large-Signal Response  
70  
60  
50  
20  
15  
10  
V
C
= ±15V  
= 100pF  
S
L
10V  
0V  
50mV  
0V  
70  
60  
50  
PHASE MARGIN  
GBW  
10V  
50mV  
SLEW  
0
AVCL = 5  
AVCL = 5  
V
S = ±15V  
VS = ±15V  
1007/37 G29  
CL = 15pF  
1007/37 G28  
–50  
25  
50  
75 100 125  
–25  
TEMPERATURE (°C)  
1007/37 G30  
LT1007 Phase Margin, Gain  
Bandwidth Product, Slew Rate vs  
Temperature  
LT1037 Gain, Phase Shift  
vs Frequency  
LT1007 Gain, Phase Shift  
vs Frequency  
90  
70  
60  
50  
3
50  
40  
30  
20  
10  
0
90  
40  
30  
20  
10  
0
V
= ±15V  
= 25°C  
= 100pF  
V
= ±15V  
= 25°C  
= 100pF  
V
C
= ±15V  
= 100pF  
S
A
L
S
A
L
S
L
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
T
T
C
C
PHASE MARGIN  
9
8
7
PHASE  
PHASE  
GBW  
GAIN  
GAIN  
SLEW  
A
= 5  
V
2
1
–10  
0.1  
1
10  
100  
50  
–50  
0
25  
75 100 125  
–25  
0.1  
1
10  
100  
FREQUENCY (MHz)  
TEMPERATURE (°C)  
FREQUENCY (MHz)  
1007/37 G31  
1007/37 G32  
1007/37 G33  
LT1007 Small-Signal  
Transient Response  
Maximum Undistorted Output  
vs Frequency  
LT1007 Large-Signal Response  
28  
V
= ±15V  
= 25°C  
S
A
T
24  
20  
16  
12  
8
5V  
0V  
50mV  
0V  
LT1007  
LT1037  
5V  
50mV  
AVCL = 1  
AVCL = 1  
4
V
S = ±15V  
1007/37 G35  
V
S = ±15V  
CL = 15pF  
1007/37 G34  
0
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
1007/37 G36  
8
LT1007/LT1037  
U
W U U  
APPLICATIONS INFORMATION  
Offset Voltage and Drift  
General  
Thermocouple effects, caused by temperature gradients  
across dissimilar metals at the contacts to the input  
terminals, can exceed the inherent drift of the amplifier  
unless proper care is exercised. Air currents should be  
minimized, package leads should be short, the two input  
leadsshouldbeclosetogetherandmaintainedatthesame  
temperature.  
The LT1007/LT1037 series devices may be inserted  
directly into OP-07, OP-27, OP-37 and 5534 sockets with  
or without removal of external compensation or nulling  
components. In addition, the LT1007/LT1037 may be  
fitted to 741 sockets with the removal or modification of  
external nulling components.  
Offset Voltage Adjustment  
The circuit shown to measure offset voltage is also used  
as the burn-in configuration for the LT1007/LT1037, with  
the supply voltages increased to ±20V (Figure 3).  
TheinputoffsetvoltageoftheLT1007/LT1037anditsdrift  
with temperature, are permanently trimmed at wafer  
testing to a low level. However, if further adjustment of  
V
OS is necessary, the use of a 10knulling potentiometer  
50k*  
15V  
will not degrade drift with temperature. Trimming to a  
value other than zero creates a drift of (VOS/300)µV/°C,  
e.g., if VOS is adjusted to 300µV, the change in drift will be  
1µV/°C (Figure 1).  
2
7
6
LT1007  
LT1037  
100*  
V
OUT  
+
3
V
= 1000V  
OS  
OUT  
4
The adjustment range with a 10kpot is approximately  
±2.5mV.Iflessadjustmentrangeisneeded,thesensitivity  
and resolution of the nulling can be improved by using a  
smaller pot in conjunction with fixed resistors. The ex-  
ample has an approximate null range of ±200µV  
(Figure 2).  
*RESISTORS MUST HAVE LOW  
THERMOELECTRIC POTENTIAL  
50k*  
–15V  
1007/37 F03  
Figure 3. Test Circuit for Offset Voltage and  
Offset Voltage Drift with Temperature  
10k  
15V  
Unity-Gain Buffer Application (LT1007 Only)  
1
When RF 100and the input is driven with a fast, large-  
signal pulse (>1V), the output waveform will look as  
shown in the pulsed operation diagram (Figure 4).  
2
3
8
7
6
LT1007  
LT1037  
OUTPUT  
INPUT  
+
4
During the fast feedthrough-like portion of the output, the  
input protection diodes effectively short the output to the  
inputandacurrent, limitedonlybytheoutputshort-circuit  
protection, will be drawn by the signal generator. With  
RF 500, the output is capable of handling the current  
requirements (IL 20mA at 10V) and the amplifier stays  
in its active mode and a smooth transition will occur.  
–15V  
1007/37 F01  
Figure 1. Standard Adjustment  
1k  
15V  
4.7k  
4.7k  
1
R
F
2
3
8
7
6
+
LT1007  
LT1037  
OUTPUT  
+
2.8V/µs  
OUTPUT  
4
LT1007  
–15V  
1007/37 F02  
1007/37 F04  
Figure 2. Improved Sensitivity Adjustment  
Figure 4. Pulsed Operation  
9
LT1007/LT1037  
U
W U U  
APPLICATIONS INFORMATION  
As with all operational amplifiers when RF > 2k, a pole will  
be created with RF and the amplifier’s input capacitance,  
creating additional phase shift and reducing the phase  
margin.Asmallcapacitor(20pFto50pF)inparallelwithRF  
will eliminate this problem.  
electric effects in excess of a few nanovolts, which  
would invalidate the measurements.  
3. Sudden motion in the vicinity of the device can also  
“feedthrough” to increase the observed noise.  
A noise voltage density test is recommended when mea-  
suring noise on a large number of units. A 10Hz noise  
voltage density measurement will correlate well with a  
0.1Hz to 10Hz peak-to-peak noise reading since both  
results are determined by the white noise and the location  
of the 1/f corner frequency.  
Noise Testing  
The 0.1Hz to 10Hz peak-to-peak noise of the LT1007/  
LT1037 is measured in the test circuit shown (Figure 5a).  
The frequency response of this noise tester (Figure 5b)  
indicates that the 0.1Hz corner is defined by only one zero.  
The test time to measure 0.1Hz to 10Hz noise should not  
exceed ten seconds, as this time limit acts as an additional  
zero to eliminate noise contributions from the frequency  
band below 0.1Hz.  
Current noise is measured in the circuit shown in Figure 6  
and calculated by the following formula:  
1/2  
2
)
2
)
130nV  
(
e
101  
Measuring the typical 60nV peak-to-peak noise perfor-  
mance of the LT1007/LT1037 requires special test  
precautions:  
(
no  
i =  
n
1M101  
(
)(  
)
1. The device should be warmed up for at least five  
minutes. As the op amp warms up, its offset voltage  
changes typically 3µV due to its chip temperature  
increasing 10°C to 20°C from the moment the power  
suppliesareturnedon. Intheten-secondmeasurement  
interval these temperature-induced effects can easily  
exceed tens of nanovolts.  
100k  
100Ω  
500k  
500k  
+
LT1007  
LT1037  
e
no  
1007/37 F06  
2. For similar reasons, the device must be well shielded  
from air currents to eliminate the possibility of thermo-  
Figure 6  
0.1µF  
100  
90  
80  
70  
60  
50  
40  
30  
100k  
10Ω  
*
2k  
LT1007  
+
22µF  
LT1037  
SCOPE  
4.3k  
+
LT1001  
× 1  
4.7µF  
R
IN  
= 1M  
110k  
2.2µF  
VOLTAGE GAIN  
= 50,000  
100k  
0.1µF  
*DEVICE UNDER TEST  
NOTE: ALL CAPACITOR VALUES ARE FOR  
NONPOLARIZED CAPACITORS ONLY  
24.3k  
0.01  
0.1  
1
10  
100  
1007/37 F05a  
FREQUENCY (Hz)  
1007/37F05b  
Figure 5b. 0.1Hz to 10Hz Peak-to-  
Peak Noise Tester Frequency  
Response  
Figure 5a. 0.1Hz to 10Hz Noise Test Circuit  
10  
LT1007/LT1037  
U
W U U  
APPLICATIONS INFORMATION  
Three regions can be identified as a function of source  
resistance:  
The LT1007/LT1037 achieve their low noise, in part, by  
operatingtheinputstageat120µAversusthetypical10µA  
of most other op amps. Voltage noise is inversely propor-  
tional while current noise is directly proportional to the  
square root of the input stage current. Therefore, the  
LT1007/LT1037’s current noise will be relatively high. At  
low frequencies, the low 1/f current noise corner fre-  
quency(120Hz)minimizescurrentnoisetosomeextent.  
(i) RS 400. Voltage noise dominates  
(ii) 400Ω ≤ RS 50k at 1kHz  
Resistor noise  
dominates  
}
400Ω ≤ RS 8k at 10Hz  
(iii) RS > 50k at 1kHz  
RS > 8k at 10Hz  
Current noise  
dominates  
}
In most practical applications, however, current noise will  
not limit system performance. This is illustrated in the  
Total Noise vs Source Resistance plot in the Typical  
Performance Characteristics section, where:  
Clearly the LT1007/LT1037 should not be used in region  
(iii), where total system noise is at least six times higher  
than the voltage noise of the op amp, i.e., the low voltage  
noise specification is completely wasted.  
Total Noise = [(voltage noise)2 + (current noise • RS)2 +  
(resistor noise)2]1/2  
U
TYPICAL APPLICATIONS  
Gain Error vs Frequency  
Closed-Loop Gain = 1000  
Gain 1000 Amplifier with 0.01% Accuracy, DC to 5Hz  
15k  
20k  
340k  
1%  
5% TRIM  
1
TYPICAL  
PRECISION  
OP AMP  
15V  
7
365Ω  
1%  
2
3
0.1  
0.01  
LT1007  
6
OUTPUT  
LT1037  
+
4
RN60C FILM RESISTORS  
LT1037  
INPUT  
–15V  
THE HIGH GAIN AND WIDE BANDWIDTH OF THE LT1037 (AND LT1007) IS  
USEFUL IN LOW FREQUENCY, HIGH CLOSED-LOOP GAIN AMPLIFIER  
APPLICATIONS. A TYPICAL PRECISION OP AMP MAY HAVE AN OPEN-LOOP  
GAIN OF ONE MILLION WITH 500kHz BANDWIDTH. AS THE GAIN ERROR  
PLOT SHOWS, THIS DEVICE IS CAPABLE OF 0.1% AMPLIFYING ACCURACY  
UP TO 0.3Hz ONLY. EVEN INSTRUMENTATION RANGE SIGNALS CAN VARY  
AT A FASTER RATE. THE LT1037’S “GAIN PRECISION-BANDWIDTH  
PRODUCT” IS 200 TIMES HIGHER AS SHOWN.  
CLOSED-LOOP GAIN  
OPEN-LOOP GAIN  
GAIN ERROR =  
1
0.001  
0.1  
10  
100  
FREQUENCY (Hz)  
1007/37 TA03  
11  
LT1007/LT1037  
U
TYPICAL APPLICATIONS  
Microvolt Comparator with Hysteresis  
Precision Amplifier Drives 300Load to ±10V  
20k  
5%  
10k  
TRIM  
340k  
1%  
15V  
365Ω  
1%  
100M  
5%  
7
15k  
1%  
3
2
+
2
3
INPUT  
+
8
6
6
OUTPUT  
LT1007  
4
LT1007  
365Ω  
1%  
15Ω  
5%  
+
2
3
15Ω  
5%  
6
OUTPUT  
±10V  
–15V  
LT1037  
POSITIVE FEEDBACK TO ONE OF THE NULLING TERMINALS  
CREATES APPROXIMATELY 5µV OF HYSTERESIS.  
OUTPUT CAN SINK 16mA.  
R
L
300Ω  
INPUT OFFSET VOLTAGE IS TYPICALLY CHANGED LESS  
INPUT  
THAN 5µV DUE TO THE FEEDBACK.  
1007/37 TA04  
THE ADDITION OF THE LT1007 DOUBLES THE AMPLIFIER’S OUTPUT DRIVE  
TO ±33mA. GAIN ACCURACY IS 0.02%, SLIGHTLY DEGRADED COMPARED  
TO ABOVE BECAUSE OF SELF-HEATING OF THE LT1037 UNDER LOAD.  
1007/37 TA05  
Infrared Detector Preamplifier  
15V  
+
10Ω  
10µF  
100µF  
1k  
+
33Ω  
CHOPPED DETECTOR  
OUTPUT  
2N2219A  
+
100µF  
15V  
7
267*  
50mA  
100µF  
3
2
+
+
6
OUTPUT TO  
DEMODULATOR  
LT1007  
392*  
PHOTOCONDUCTIVE  
INFRARED DETECTOR  
HgCdTe type  
IR RADIATION  
4
392k*  
INFRA-RED ASSOCIATES, INC.  
SYNCHRONOUS  
–15V  
OPTICAL  
CHOPPER  
13AT 77°K  
392*  
*1% METAL FILM  
1007/37 TA08  
12  
LT1007/LT1037  
U
TYPICAL APPLICATIONS  
Phono Preamplifier  
Tape Head Amplifier  
0.01µF  
4.99k  
7.87k  
6
0.01µF  
316k  
15V  
100k  
100Ω  
+
2
3
7
0.033µF  
100Ω  
2
3
100pF  
OUTPUT  
LT1037  
4
6
OUTPUT  
LT1037  
+
TAPE HEAD  
INPUT  
ALL RESISTORS METAL FILM  
ALL RESISTORS METAL FILM  
47k  
–15V  
1007/37 TA07  
MAG PHONO  
INPUT  
1007/37 TA06  
W
W
SI PLIFIED SCHE ATIC  
8
1
+
V
7
Q4  
450µA  
750µA  
Q3  
Q5  
240µA  
Q7  
Q9  
3.4k  
17k  
3.4k  
17k  
Q28  
Q8  
1.2k 1.2k  
130pF  
C1  
Q6 V  
Q18  
Q27  
Q17  
Q10  
20Ω  
750Ω  
200Ω  
Q19  
Q20  
Q25  
V
OUTPUT  
6
NONINVERTING  
Q26  
Q1A  
INPUT (+)  
Q2A  
20Ω  
3
Q1B Q2B  
+
V
80pF  
20pF  
Q13  
Q30  
+
2
Q22  
V
Q11  
INVERTING  
INPUT (–)  
Q15  
Q12  
Q16  
Q23  
Q29  
Q24  
500µA  
240µA  
120µA  
200Ω  
200Ω  
6k  
6k 50Ω  
C1 = 110pF FOR LT1007  
C1 = 12pF FOR LT1037  
V
4
1007/37 SD  
13  
LT1007/LT1037  
U
PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.  
H Package  
8-Lead TO-5 Metal Can (0.200 PCD)  
(LTC DWG # 05-08-1320)  
0.335 – 0.370  
(8.509 – 9.398)  
DIA  
0.305 – 0.335  
(7.747 – 8.509)  
0.040  
(1.016)  
MAX  
0.050  
(1.270)  
MAX  
0.165 – 0.185  
(4.191 – 4.699)  
REFERENCE  
PLANE  
SEATING  
PLANE  
GAUGE  
PLANE  
0.500 – 0.750  
(12.700 – 19.050)  
0.010 – 0.045*  
(0.254 – 1.143)  
0.016 – 0.021**  
(0.406 – 0.533)  
0.027 – 0.045  
(0.686 – 1.143)  
45°TYP  
0.027 – 0.034  
(0.686 – 0.864)  
0.200  
(5.080)  
TYP  
0.110 – 0.160  
*LEAD DIAMETER IS UNCONTROLLED BETWEEN THE REFERENCE PLANE  
AND 0.045" BELOW THE REFERENCE PLANE  
0.016 – 0.024  
**FOR SOLDER DIP LEAD FINISH, LEAD DIAMETER IS  
(0.406 – 0.610)  
(2.794 – 4.064)  
INSULATING  
STANDOFF  
H8(TO-5) 0.200 PCD 0595  
J8 Package  
8-Lead CERDIP (Narrow 0.300, Hermetic)  
(LTC DWG # 05-08-1110)  
0.405  
(10.287)  
MAX  
CORNER LEADS OPTION  
(4 PLCS)  
0.005  
(0.127)  
MIN  
6
5
4
8
7
0.023 – 0.045  
(0.584 – 1.143)  
HALF LEAD  
OPTION  
0.025  
(0.635)  
RAD TYP  
0.220 – 0.310  
(5.588 – 7.874)  
0.045 – 0.068  
(1.143 – 1.727)  
FULL LEAD  
OPTION  
1
2
3
0.200  
(5.080)  
MAX  
0.300 BSC  
(0.762 BSC)  
0.015 – 0.060  
(0.381 – 1.524)  
0.008 – 0.018  
(0.203 – 0.457)  
0° – 15°  
0.045 – 0.068  
(1.143 – 1.727)  
0.385 ± 0.025  
(9.779 ± 0.635)  
0.125  
3.175  
MIN  
0.100 ± 0.010  
0.014 – 0.026  
(2.540 ± 0.254)  
(0.360 – 0.660)  
J8 0694  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE OR TIN PLATE LEADS.  
14  
LT1007/LT1037  
U
PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.  
N8 Package  
8-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
0.400*  
(10.160)  
MAX  
8
7
6
5
4
0.255 ± 0.015*  
(6.477 ± 0.381)  
1
2
3
0.130 ± 0.005  
0.300 – 0.325  
0.045 – 0.065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
(3.175)  
MIN  
0.005  
(0.127)  
MIN  
0.015  
+0.025  
–0.015  
(0.380)  
MIN  
0.325  
+0.635  
8.255  
(
)
–0.381  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
(0.457 ± 0.076)  
N8 0695  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
7
5
8
6
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
1
3
4
2
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
SO8 0695  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT1007/LT1037  
TYPICAL APPLICATIONS  
U
Strain Gauge Signal Conditioner with Bridge Excitation  
7.5V  
5k  
7
2.5V  
3
2
+
6
LT1007  
4
LT1009  
–7.5V  
REFERENCE  
OUT  
350Ω  
BRIDGE  
15V  
7
3
2
+
6
OUTPUT  
0V TO 10V  
LT1007  
301k*  
ZERO  
TRIM  
10k  
4
1µF  
301k*  
–15V  
7.5V  
7
GAIN  
TRIM  
50k  
2
499*  
6
THE LT1007 IS CAPABLE OF PROVIDING EXCITATION CURRENT  
DIRECTLY TO BIAS THE 350BRIDGE AT 5V. WITH ONLY 5V ACROSS  
THE BRIDGE (AS OPPOSED TO THE USUAL 10V) TOTAL POWER  
DISSIPATION AND BRIDGE WARM-UP DRIFT IS REDUCED. THE BRIDGE  
OUTPUT SIGNAL IS HALVED, BUT THE LT1007 CAN AMPLIFY THE  
REDUCED SIGNAL ACCURATELY.  
*RN60C FILM RESISTOR  
LT1007  
4
3
+
–7.5V  
1007/37 TA09  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1028  
Ultralow Noise Precision Op Amp  
Lowest Noise 0.85mV/Hz  
0.002% THD, Max Noise 1.2mV/Hz  
Similar to LT1007  
LT1115  
Ultralow Noise, Low distortion Audio Op Amp  
LT1124/LT1125  
LT1126/LT1127  
LT1498/LT1499  
Dual/Quad Low Noise, High Speed Precision Op Amps  
Dual/Quad Decompensated Low Noise, High Speed Precision Op Amps  
Similar to LT1037  
10MHz, 5V/µs, Dual/Quad Rail-to-Rail Input and Output  
Precision C-LoadTM Op Amps  
C-Load is a trademark of Linear Technology Corporation.  
100737fa LT/TP 0297 5K REV A • PRINTED IN USA  
16 Linear Technology Corporation  
1630McCarthyBlvd., Milpitas, CA95035-7417 (408)432-1900  
FAX: (408) 434-0507 TELEX: 499-3977 www.linear-tech.com  
LINEAR TECHNOLOGY CORPORATION 1985  

相关型号:

LT1037CJG

Voltage-Feedback Operational Amplifier
ETC

LT1037CL

Voltage-Feedback Operational Amplifier
ETC

LT1037CN8

Low Noise, High Speed Precision Operational Amplifiers
Linear

LT1037CP

LOW-NOISE, HIGH-SPEED, PRECISION OPERATIONAL AMPLIFIERS
TI

LT1037CS

Voltage-Feedback Operational Amplifier
ETC

LT1037CS8

Low Noise, High Speed Precision Operational Amplifiers
Linear

LT1037CS8#PBF

LT1037 - Low Noise, High Speed Precision Operational Amplifiers; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1037CS8#TRPBF

LT1037 - Low Noise, High Speed Precision Operational Amplifiers; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1037IJ8

IC OP-AMP, CDIP8, HERMETIC SEALED, CERDIP-8, Operational Amplifier
Linear

LT1037IN8

Low Noise, High Speed Precision Operational Amplifiers
Linear

LT1037IN8#PBF

LT1037 - Low Noise, High Speed Precision Operational Amplifiers; Package: PDIP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1037IS8

Low Noise, High Speed Precision Operational Amplifiers
Linear