LT1056MH#TR [Linear]

IC OP-AMP, 1250 uV OFFSET-MAX, 5.5 MHz BAND WIDTH, MBCY8, METAL CAN, TO-5, 8 PIN, Operational Amplifier;
LT1056MH#TR
型号: LT1056MH#TR
厂家: Linear    Linear
描述:

IC OP-AMP, 1250 uV OFFSET-MAX, 5.5 MHz BAND WIDTH, MBCY8, METAL CAN, TO-5, 8 PIN, Operational Amplifier

文件: 总16页 (文件大小:266K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1055/LT1056  
Precision, High Speed,  
JFET Input Operational Amplifiers  
U
DESCRIPTIO  
FEATURES  
The LT®1055/LT1056 JFET input operational amplifiers  
combineprecisionspecificationswithhighspeedperfor-  
mance.  
Guaranteed Offset Voltage: 150µV Max  
–55°C to 125°C: 500µV Max  
Guaranteed Drift: 4µV/°C Max  
Guaranteed Bias Current  
For the first time, 16V/µs slew rate and 6.5MHz gain  
bandwidth product are simultaneously achieved with off-  
set voltage of typically 50µV, 1.2µV/°C drift, bias currents  
of 40pA at 70°C and 500pA at 125°C.  
70°C: 150pA Max  
125°C: 2.5nA Max  
Guaranteed Slew Rate: 12V/µs Min  
Available in 8-Pin PDIP and SO Packages  
The 150µV maximum offset voltage specification is the  
best available on any JFET input operational amplifier.  
U
APPLICATIO S  
The LT1055 and LT1056 are differentiated by their operat-  
ingcurrents.ThelowerpowerdissipationLT1055achieves  
lower bias and offset currents and offset voltage. The  
additional power dissipation of the LT1056 permits higher  
slew rate, bandwidth and faster settling time with a slight  
sacrifice in DC performance.  
Precision, High Speed Instrumentation  
Logarithmic Amplifiers  
D/A Output Amplifiers  
Photodiode Amplifiers  
Voltage-to-Frequency Converters  
Frequency-to-Voltage Converters  
Thevoltage-to-frequencyconvertershownbelowisoneof  
the many applications which utilize both the precision and  
high speed of the LT1055/LT1056.  
Fast, Precision Sample-and-Hold  
ForaJFETinputopampwith23V/µsguaranteedslewrate,  
refer to the LT1022 data sheet.  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
U
TYPICAL APPLICATIO  
Distribution of Input Offset Voltage  
1Hz to 10kHz Voltage-to-Frequency Converter  
(H Package)  
4.7k  
3M  
140  
120  
15V  
V
= ±15V  
= 25°C  
50% TO ± 60µV  
S
A
T
0.001 (POLYSTYRENE)  
634 UNITS TESTED  
FROM THREE RUNS  
10kHZ  
TRIM  
5k  
100  
OUTPUT  
15V  
2
75k  
1Hz TO 10kHz  
0.005%  
0V TO 10V  
INPUT  
7
80  
60  
40  
20  
1.5k  
6
LINEARITY  
LT1056  
0.1µF  
22k  
3
4
+
–15V  
33pF  
LM329  
3.3M  
2N3906  
0.1µF  
= 1N4148  
0
–200  
0
200  
400  
–400  
*1% FILM  
THE LOW OFFSET VOLTAGE OF LT1056  
CONTRIBUTES ONLY 0.1Hz OF ERROR  
WHILE ITS HIGH SLEW RATE PERMITS  
10kHz OPERATION.  
–15V  
INPUT OFFSET VOLTAGE (µV)  
LT1055/56 TA02  
LT1055/56 TA01  
10556fc  
1
LT1055/LT1056  
ABSOLUTE MAXIMUM RATINGS  
W W U W  
(Note 1)  
Supply Voltage ...................................................... ±20V  
Differential Input Voltage ....................................... ±40V  
Input Voltage ......................................................... ±20V  
Output Short-Circuit Duration.......................... Indefinite  
Operating Temperature Range  
LT1055AC/LT1055C/LT1056AC/  
LT1056C................................................ 0°C to 70°C  
Storage Temperature Range  
All Devices ...................................... 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
LT1055AM/LT1055M/LT1056AM/  
LT1056M (OBSOLETE) .............. –55°C to 125°C  
U
W U  
PACKAGE/ORDER INFORMATION  
ORDER PART  
ORDER PART  
TOP VIEW  
TOP VIEW  
NUMBER  
NUMBER  
BAL  
–IN  
+IN  
1
2
3
4
N/C  
8
7
6
5
BAL  
–IN  
+IN  
1
2
3
4
8
7
6
5
N/C  
+
+
LT1055CN8  
LT1056CN8  
LT1055S8  
LT1056S8  
V
V
OUT  
BAL  
OUT  
BAL  
V
V
S8 PART  
MARKING  
N8 PACKAGE  
8-LEAD PDIP  
TJMAX = 150°C, θJA = 130°C/ W  
S8 PACKAGE  
8-LEAD PLASTIC SO  
1055  
1056  
TJMAX = 150°C, θJA = 150°C/ W  
ORDER PART  
NUMBER  
TOP VIEW  
NC  
8
+
V
6
BALANCE  
1
3
7
5
LT1055ACH  
LT1055CH  
LT1055AMH  
LT1055MH  
LT1056ACH  
LT1056CH  
LT1056AMH  
LT1056MH  
2
–IN  
OUT  
BALANCE  
+IN  
4
V
H PACKAGE  
8-LEAD TO-5 METAL CAN  
OBSOLETE PACKAGE  
TJMAX = 150°C, θJA = 150°C/ W, θJC = 45°C/ W  
Consider the N8 Package for Alternate Source  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
T = 25°C. V = ±15V, V = 0V unless otherwise noted.  
ELECTRICAL CHARACTERISTICS  
A
S
CM  
LT1055M/LT1056M  
LT1055CH/LT1056CH  
LT1055CN8/LT1056CN8  
LT1055AM/LT1056AM  
LT1055AC/LT1056AC  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage (Note 2)  
LT1055 H Package  
LT1056 H Package  
LT1055 N8 Package  
LT1056 N8 Package  
50  
50  
150  
180  
70  
70  
120  
140  
400  
450  
700  
800  
µV  
µV  
µV  
µV  
OS  
I
Input Offset Current  
Fully Warmed Up  
2
10  
2
20  
pA  
OS  
10556fc  
2
LT1055/LT1056  
ELECTRICAL CHARACTERISTICS T = 25°C. V = ±15V, V = 0V unless otherwise noted.  
A
S
CM  
LT1055M/LT1056M  
LT1055CH/LT1056CH  
LT1055CN8/LT1056CN8  
LT1055AM/LT1056AM  
LT1055AC/LT1056AC  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX MIN  
TYP  
MAX  
UNITS  
I
Input Bias Current  
Fully Warmed Up  
±10  
30  
±50  
130  
±10  
30  
±50  
150  
pA  
pA  
B
V
CM  
= 10V  
12  
12  
Input Resistance:Differential  
10  
10  
10  
10  
12  
12  
Common Mode V = –11V to 8V  
10  
CM  
11  
11  
V
= 8V to 11V  
10  
CM  
Input Capacitance  
Input Noise Voltage  
4
4
pF  
e
0.1Hz to 10Hz LT1055  
LT1056  
1.8  
2.5  
2.0  
2.8  
µV  
µV  
n
P-P  
P-P  
Input Noise Voltage Density  
f = 10Hz (Note 3)  
f = 1kHz (Note 4)  
0
28  
14  
50  
20  
30  
15  
60  
22  
nV/Hz  
nV/Hz  
0
I
Input Noise Current Density  
Large-Signal Voltage Gain  
f = 10Hz, 1kHz (Note 5)  
1.8  
4
1.8  
4
fA/Hz  
n
0
A
V = ±10V  
R = 2k  
R = 1k  
150  
130  
400  
300  
120  
100  
400  
300  
V/mV  
V/mV  
VOL  
0
L
L
Input Voltage Range  
±11  
86  
±12  
100  
±11  
83  
±12  
98  
V
dB  
dB  
V
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Output Voltage Swing  
Slew Rate  
V
= ±11V  
CM  
V = ±10V to ±18V  
S
90  
106  
88  
104  
V
R = 2k  
±12  
±13.2  
±12  
±13.2  
OUT  
L
SR  
LT1055  
LT1056  
10  
12  
13  
16  
7.5  
9.0  
12  
14  
V/µs  
V/µs  
GBW  
Gain Bandwidth Product  
Supply Current  
f = 1MHz  
LT1055  
LT1056  
5.0  
6.5  
4.5  
5.5  
MHz  
MHz  
I
LT1055  
LT1056  
2.8  
5.0  
4.0  
6.5  
2.8  
5.0  
4.0  
7.0  
mA  
mA  
S
Offset Voltage Adjustment Range  
R
POT  
= 100k  
±5  
±5  
mV  
The  
S
denotes the specifications which apply over the temperature range 0°C T 70°C.  
A
V = ±15V, V = 0V unless otherwise noted.  
CM  
LT1055AC  
LT1056AC  
TYP  
LT1055CH/LT1056CH  
LT1055CN8/LT1056CN8  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage (Note 2)  
LT1055 H Package  
LT1056 H Package  
LT1055 N8 Package  
LT1056 N8 Package  
100  
100  
330  
360  
140  
140  
250  
280  
750  
800  
1250  
1350  
µV  
µV  
µV  
µV  
OS  
Average Temperature  
Coefficient of Input Offset  
Voltage  
H Package (Note 6)  
N8 Package (Note 6)  
1.2  
4.0  
1.6  
3.0  
8.0  
12.0  
µV/°C  
µV/°C  
I
I
Input Offset Current  
Warmed Up  
T = 70°C  
A
LT1055  
LT1056  
10  
14  
50  
70  
16  
18  
80  
100  
pA  
pA  
OS  
Input Bias Current  
Warmed Up  
T = 70°C  
A
LT1055  
LT1056  
±30  
±40  
±150  
±80  
±40  
±50  
±200  
±240  
pA  
pA  
B
A
Large-Signal Voltage Gain  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Output Voltage Swing  
V = ±10V, R = 2k  
80  
85  
250  
100  
60  
82  
250  
98  
V/mV  
dB  
VOL  
O
L
CMRR  
PSRR  
V
CM  
= ±10.5V  
V = ±10V to ±18V  
S
89  
105  
87  
103  
dB  
V
R = 2k  
L
±12  
±13.1  
±12  
±13.1  
V
OUT  
10556fc  
3
LT1055/LT1056  
ELECTRICAL CHARACTERISTICS The  
denotes the specifications which apply over the temperature range  
–55°C T 125°C. V = ±15V, V = 0V, unless otherwise noted.  
A
S
CM  
LT1055AM  
LT1056AM  
TYP  
LT1055M  
LT1056M  
TYP  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX MIN  
MAX  
UNITS  
V
Input Offset Voltage (Note 2)  
LT1055  
LT1056  
180  
180  
500  
550  
250  
250  
1200  
1250  
µV  
µV  
OS  
Average Temperature  
Coefficient of Input Offset  
Voltage  
(Note 6)  
1.3  
4.0  
1.8  
8.0  
µV/°C  
I
I
Input Offset Current  
Warmed Up  
T = 125°C  
A
LT1055  
LT1056  
0.20  
0.25  
1.2  
1.5  
0.25  
0.30  
1.8  
2.4  
nA  
nA  
OS  
Input Bias Current  
Warmed Up  
T = 125°C  
A
LT1055  
LT1056  
±0.4  
±0.5  
±2.5  
±3.0  
±0.5  
±0.6  
±4.0  
±5.0  
nA  
nA  
B
A
Large-Signal Voltage Gain  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Output Voltage Swing  
V = ±10V, R = 2k  
40  
85  
120  
100  
35  
82  
120  
98  
V/mV  
dB  
VOL  
O
L
CMRR  
PSRR  
V
CM  
= ±10.5V  
V = ±10V to ±17V  
S
88  
104  
86  
102  
dB  
V
R = 2k  
L
±12  
±12.9  
±12  
±12.9  
V
OUT  
T = 25°C. V = ±15V, V = 0V unless otherwise noted.  
A
S
CM  
LT1055CS8/LT1056CS8  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
500  
5
MAX  
UNITS  
µV  
V
Input Offset Voltage (Note 2)  
Input Offset Current  
1500  
30  
OS  
I
I
Fully Warmed Up  
Fully Warmed Up  
pA  
OS  
Input Bias Current  
± 30  
30  
±100  
150  
pA  
pA  
B
V
= 10V  
CM  
Input Resistance Differential  
0.4  
0.4  
0.05  
TΩ  
TΩ  
TΩ  
Common Mode  
V
V
= –11V to 8V  
= 8V to 11V  
CM  
CM  
Input Capacitance  
Input Noise Voltage  
4
pF  
e
0.1Hz to 10Hz  
f = 10Hz (Note 4)  
LT1055  
LT1056  
2.5  
3.5  
µV  
µV  
n
P-P  
P-P  
Input Noise Voltage Density  
35  
15  
70  
22  
nV/Hz  
nV/Hz  
O
f = 1kHz (Note 4)  
O
i
Input Noise Current Density  
Large-Signal Voltage Gain  
f = 10Hz, 1kHz (Note 5)  
2.5  
10  
fA/Hz  
n
O
A
V = ±10V  
R = 2k  
R = 1k  
120  
100  
400  
300  
V/mV  
V/mV  
VOL  
O
L
L
Input Voltage Range  
±11  
83  
±12  
98  
V
dB  
dB  
V
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Output Voltage Swing  
Slew Rate  
V
= ±11V  
CM  
V = ±10V to ±18V  
88  
104  
S
V
R = 2K  
±12  
±13.2  
OUT  
L
SR  
LT1055  
LT1056  
7.5  
9.0  
12  
14  
V/µs  
V/µs  
GBW  
Gain Bandwidth Product  
Supply Current  
f = 1MHz  
LT1055  
LT1056  
4.5  
5.5  
MHz  
MHz  
I
LT1055  
LT1056  
2.8  
5.0  
4.0  
7.0  
mA  
mA  
S
Offset Voltage Adjustment Range  
R
POT  
= 100k  
±5  
mV  
10556fc  
4
LT1055/LT1056  
ELECTRICAL CHARACTERISTICS The  
denotes the specifications which apply over the temperature range  
0°C T 70°C. V = ±15V, V = 0V, unless otherwise noted.  
A
S
CM  
LT1055CS8/LT1056CS8  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
800  
4
MAX  
2200  
15  
UNITS  
µV  
V
Input Offset Voltage (Note 2)  
Average Temperature Coefficient of Input Offset Voltage  
Input Offset Current  
OS  
µV/°C  
pA  
I
I
Warmed Up, T = 70°C  
18  
150  
OS  
A
Input Bias Current  
Warmed Up, T = 70°C  
± 60  
250  
98  
±400  
pA  
B
A
A
Large-Signal Voltage Gain  
V = ±10V, R = 2k  
60  
82  
V/mV  
dB  
VOL  
O
L
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Output Voltage Swing  
V
= ±10.5V  
CM  
V = ±10V to ±18V  
S
87  
103  
±13.1  
dB  
V
R = 2K  
L
±12  
V
OUT  
For MIL-STD components, please refer to LTC883 data sheet for test  
listing and parameters.  
Note 3: 10Hz noise voltage density is sample tested on every lot of A  
grades. Devices 100% tested at 10Hz are available on request.  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 4: This parameter is tested on a sample basis only.  
1/2  
Note 5: Current noise is calculated from the formula: i = (2ql ) , where  
n
B
–19  
q = 1.6 • 10  
coulomb. The noise of source resistors up to 1Gswamps  
the contribution of current noise.  
Note 2: Offset voltage is measured under two different conditions:  
Note 6: Offset voltage drift with temperature is practically unchanged  
(a) approximately 0.5 seconds after application of power; (b) at T = 25°C  
A
when the offset voltage is trimmed to zero with a 100k potentiometer  
+
only, with the chip heated to approximately 38°C for the LT1055 and to  
45°C for the LT1056, to account for chip temperature rise when the device  
is fully warmed up.  
between the balance terminals and the wiper tied to V . Devices tested to  
tighter drift specifications are available on request.  
10556fc  
5
LT1055/LT1056  
TYPICAL PERFORMANCE CHARACTERISTICS  
W
U
Input Bias Current Over the  
Common Mode Range  
Input Bias and Offset Currents  
vs Temperature  
Distribution of Input Offset  
Voltage (N8 Package)  
1200  
800  
120  
80  
1000  
300  
100  
30  
160  
140  
120  
100  
80  
V
V
= ±15V  
V
= ±15V  
S
V
= ±15V  
= 25°C  
S
S
A
50% YIELD  
TO ±140µV  
= 0V  
WARMED UP  
CM  
T
WARMED UP  
550 UNITS  
TESTED FROM  
TWO RUNS  
(LT1056)  
T
A
= 125°C  
BIAS OR OFFSET CURRENTS  
MAY BE POSITIVE OR NEGATIVE  
T
A
= 70°C  
400  
40  
A
A
T
A
= 25°C  
BIAS CURRENT  
0
0
60  
400  
–800  
–1200  
40  
–80  
–120  
T
A
= 70°C  
T
A
= 125°C  
40  
10  
B
B
OFFSET CURRENT  
A = POSITIVE INPUT CURRENT  
B = NEGATIVE INPUT CURRENT  
20  
3
0
–15  
–5  
0
5
10  
15  
–10  
0
25  
50  
75  
100  
125  
0
200  
400 600 800  
–800 –600 –400 –200  
COMMON MODE INPUT VOLTAGE (V)  
AMBIENT TEMPERATURE (°C)  
INPUT OFFSET VOLTAGE (µV)  
LT1055/56 G01  
LT1055/56 G02  
LT1055/56 G03  
Distribution of Offset Voltage Drift  
with Temperature (H Package)*  
Long Term Drift of  
Representative Units  
Warm-Up Drift  
100  
80  
60  
40  
20  
0
50  
40  
140  
120  
50% TO  
V
= ±15V  
V
T
= ±15V  
= 25°C  
S
V
T
= ±15V  
= 25°C  
S
A
S
A
±1.5µV/°C  
634 UNITS TESTED  
FROM THREE RUNS  
30  
20  
100  
10  
80  
60  
40  
20  
LT1056CN8  
0
–10  
–20  
LT1055CN8  
LT1056 H PACKAGE  
LT1055 H PACKAGE  
–30  
–40  
–50  
0
0
1
2
3
4
5
1
2
3
4
5
–10  
–4  
2
4
6
8
10  
0
–8 –6  
–2  
0
TIME AFTER POWER ON (MINUTES)  
OFFSET VOLTAGE DRIFT WITH TEMPERATURE (µV/°C)  
TIME (MONTHS)  
LT1055/56 G05  
LT1055/56 GO6  
*DISTRIBUTION IN THE PLASTIC (N8) PACKAGE  
IS SIGNIFICANTLY WIDER.  
LT1055/56 G04  
0.1Hz to 10Hz Noise  
Noise vs Chip Temperature  
Voltage Noise vs Frequency  
10  
7
100  
1000  
300  
100  
30  
V
= ±15V  
= 25°C  
S
A
T
70  
50  
LT1056  
PEAK-TO-PEAK  
NOISE  
5
3
2
30  
20  
LT1056  
f
= 10kHz  
0
1/f CORNER = 28HZ  
LT1055  
f
= 1kHz  
60  
0
LT1055  
1/f CORNER  
= 20HZ  
1
10  
80  
10  
3
10  
100  
10  
20  
30  
1
300 1000  
40  
50  
70  
30  
0
2
4
6
8
10  
CHIP TEMPERATURE (°C)  
FREQUENCY (Hz)  
TIME (SECONDS)  
LT1055/56 G08  
LT1055/56 G09  
LT1055/56 GO7  
10556fc  
6
LT1055/LT1056  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
LT1056 Large-Signal Response  
Small-Signal Response  
LT1055 Large-Signal Response  
AV = 1, CL = 100pF, 0.5µs/DIV  
AV = 1, CL = 100pF, 0.5µs/DIV  
LT1055/56 G10  
LT1055/56 G12  
AV = 1, CL = 100pF, 0.2µs/DIV  
LT1055/56 G11  
Undistorted Output Swing vs  
Frequency  
Slew Rate, Gain Bandwidth vs  
Temperature  
Output Impedence vs Frequency  
10  
8
30  
20  
100  
10  
1
30  
24  
V
= ±15V  
= 25°C  
S
A
V
= ±15V  
= 25°C  
S
A
A = 100  
V
T
T
LT1056 GBW  
LT1055 GBW  
LT1055  
LT1056  
= 10  
6
18  
12  
6
A
V
4
2
LT1055  
LT1056  
LT1055  
LT1056  
LT1056 SLEW  
LT1055 SLEW  
10  
0
LT1055  
LT1056  
= 1  
A
V
V
0
= ±15V  
S
f
= 1MHz FOR GBW  
0.1  
0
125  
–25  
25  
75  
1
10  
FREQUENCY (kHz)  
100  
1000  
0.1  
1
10  
FREQUENCY (MHz)  
TEMPERATURE (˚C)  
LT1055/56 G15  
LT1055/56 G13  
LT1055/56 G14  
Gain vs Frequency  
Gain, Phase Shift vs Frequency  
Voltage Gain vs Temperature  
100  
120  
140  
160  
1000  
140  
120  
100  
80  
V
V
= ±15V  
= ±10V  
V
T
= ±15V  
= 25°C  
S
O
S
A
20  
10  
R
= 2k  
L
PHASE  
300  
100  
LT1056  
LT1055  
R
= 1k  
L
GAIN  
60  
LT1056  
LT1055  
LT1056  
LT1055  
40  
0
20  
30  
10  
V
= ±15V  
= 25°C  
S
A
0
T
–10  
–20  
4
6
1
2
8
10  
–75  
–25  
25  
125  
10k 100k  
75  
1
10 100 1k  
1M 10M 100M  
TEMPERATURE (°C)  
FREQUENCY (MHz)  
FREQUENCY (Hz)  
LT1055/56 G17  
LT1055/56 G18  
LT1055/56 G16  
10556fc  
7
LT1055/LT1056  
TYPICAL PERFORMANCE CHARACTERISTICS  
W
U
Common Mode Range vs  
Temperature  
LT1055 Settling Time  
LT1056 Settling Time  
10  
5
10  
5
15  
14  
2mV  
10mV  
2mV  
10mV  
0.5mV  
0.5mV  
13  
12  
11  
5mV  
5mV  
1mV  
5mV  
1mV  
V
= ±15V  
S
A
0
0
±10  
–11  
–12  
–13  
–14  
–15  
T
= 25°C  
5mV 2mV  
–5  
–10  
–5  
–10  
10mV  
10mV  
0.5mV  
2mV 1mV  
0.5mV  
2
1mV  
V
= ±15V  
= 25°C  
S
A
T
V
= ±15V  
S
1
2
0
3
1
0
3
–50  
0
50  
100  
SETTLING TIME (µS)  
SETTLING TIME (µS)  
TEMPERATURE (°C)  
LT1055/56 G20  
LT1055/56 G19  
LT1055/56 G21  
Common Mode and Power Supply  
Rejections vs Temperature  
Common Mode Rejection Ratio  
vs Frequency  
Power Supply Rejection Ratio vs  
Frequency  
120  
110  
120  
100  
80  
60  
40  
20  
0
140  
120  
100  
80  
V
S
V
S
= ±10V TO ±17V FOR PSRR  
V
T
= ±15V  
= 25°C  
T = 25°C  
A
S
A
= ±15V, V = ±10.5V FOR CMRR  
CM  
POSITIVE  
SUPPLY  
PSRR  
CMRR  
NEGATIVE  
SUPPLY  
60  
100  
90  
40  
20  
0
125  
–25  
25  
75  
10  
1k  
10k 100k  
1M  
10M  
100  
100k  
FREQUENCY (Hz)  
10M  
10  
100  
1k  
10k  
1M  
FREQUENCY (Hz)  
TEMPERATURE (˚C)  
LT1055/56 G22  
LT1055/56 G23  
LT1055/56 G24  
Supply Current vs Supply Voltage  
Output Swing vs Load Resistance  
Short-Circuit Current vs Time  
8
50  
15  
T
T
= 55°C  
= 25°C  
A
A
A
T
= 55°C  
A
40  
30  
12  
9
6
4
2
0
T
= 125°C  
T
= –25°C  
A
T
= 55°C  
A
20  
6
LT1056  
LT1055  
10  
3
T
= –125°C  
A
25°C  
25°C  
T
= 125°C  
= 55°C  
A
0
V
= ± 15V  
V = ± 15V  
S
0
S
T
SINKING  
A
–10  
–20  
–30  
–40  
–50  
–3  
–6  
–9  
–12  
–15  
T
= –25°C  
A
T
= 125°C  
= 25°C  
A
T
= 125°C  
A
T
A
T
= –125°C  
A
T
= 55°C  
A
T
= 55°C  
A
±10  
±15  
0
±20  
±5  
0
1
2
3
0.1  
0.3  
1
3
10  
SUPPLY VOLTAGE (V)  
TIME FROM OUTPUT SHORT TO GROUND  
(MINUTES)  
LOAD RESISTANCE (k)  
LT1055/56 G25  
LT1055/56 G26  
LT1055/56 G27  
10556fc  
8
LT1055/LT1056  
U
W U U  
APPLICATIONS INFORMATION  
TheLT1055/LT1056maybeinserteddirectlyintoLF155A/  
LT355A, LF156A/LT356A, OP-15 and OP-16 sockets. Off-  
set nulling will be compatible with these devices with the  
wiper of the potentiometer tied to the positive supply.  
N/C  
8
OFFSET  
TRIM  
+
V
OUTPUT  
7
1
6
Offset Nulling  
+
V
2
5
OFFSET  
TRIM  
1
R
P
4
3
2
3
5
7
6
LT1055  
LT1056  
OUT  
V
+
4
GUARD  
V
LT1055/56 AI2  
LT1055/56 AI1  
Noappreciablechangeinoffsetvoltagedriftwithtempera-  
ture will occur when the device is nulled with a potentiom-  
eter, RP, ranging from 10k to 200k.  
The LT1055/LT1056 has the lowest offset voltage of any  
JFET input op amp available today. However, the offset  
voltage and its drift with time and temperature are still not  
as good as on the best bipolar amplifiers because the  
transconductance of FETs is considerably lower than that  
of bipolar transistors. Conversely, this lower transcon-  
ductance is the main cause of the significantly faster  
speed performance of FET input op amps.  
The LT1055/LT1056 can also be used in LF351, LF411,  
AD547, AD611, OPA-111, and TL081 sockets, provided  
thatthenullingcicuitryisremoved.BecauseoftheLT1055/  
LT1056’s low offset voltage, nulling will not be necessary  
in most applications.  
Offset voltage also changes somewhat with temperature  
cycling. The AM grades show a typical 20µV hysteresis  
(30µV on the M grades) when cycled over the –55°C to  
125°C temperature range. Temperature cycling from 0°C  
to 70°C has a negligible (less than 10µV) hysteresis  
effect.  
Achieving Picoampere/Microvolt Performance  
In order to realize the picoampere-microvolt level accu-  
racy of the LT1055/LT1056 proper care must be exer-  
cised. For example, leakage currents in circuitry external  
totheopampcansignificantlydegradeperformance.High  
quality insulation should be used (e.g. Teflon™, Kel-F);  
cleaning of all insulating surfaces to remove fluxes and  
other residues will probably be required. Surface coating  
may be necessary to provide a moisture barrier in high  
humidity environments.  
The offset voltage and drift performance are also affected  
by packaging. In the plastic N8 package the molding  
compound is in direct contact with the chip, exerting  
pressure on the surface. While NPN input transistors are  
largely unaffected by this pressure, JFET device matching  
and drift are degraded. Consequently, for best DC perfor-  
mance, as shown in the typical performance distribution  
plots, the TO-5 H package is recommended.  
Board leakage can be minimized by encircling the input  
circuitry with a guard ring operated at a potential close to  
that of the inputs: in inverting configurations the guard  
ringshouldbetiedtoground,innoninvertingconnnections  
to the inverting input at pin 2. Guarding both sides of the  
printed circuit board is required. Bulk leakage reduction  
depends on the guard ring width.  
Noise Performance  
The current noise of the LT1055/LT1056 is practically  
immeasurable at 1.8fA/Hz. At 25°C it is negligible up to  
1G of source resistance, RS (compound to the noise of  
RS). Even at 125°C it is negligible to 100M of RS.  
Teflon is a trademark of Dupont.  
10556fc  
9
LT1055/LT1056  
U
W U U  
APPLICATIONS INFORMATION  
The voltage noise spectrum is characterized by a low 1/f  
corner in the 20Hz to 30Hz range, significantly lower than  
on other competitive JFET input op amps. Of particular  
interest is the fact that with any JFET IC amplifier, the  
frequency location of the 1/f corner is proportional to the  
square root of the internal gate leakage currents and,  
therefore, noise doubles every 20°C. Furthermore, as  
illustrated in the noise versus chip temperature curves,  
the 0.1Hz to 10Hz peak-to-peak noise is a strong function  
of temperature, while wideband noise (f0 = 1kHz) is  
practically unaffected by temperature.  
capacitance is isolated from the “false summing” node,  
and (2) it does not require a “flat top” input pulse since the  
input pulse is merely used to steer current through the  
diode bridges. For more details, please see Application  
Note 10.  
As with most high speed amplifiers, care should be  
taken with supply decoupling, lead dress and component  
placement.  
When the feedback around the op amp is resistive (RF), a  
pole will be created with RF, the source resistance and  
capacitance (RS, CS), and the amplifier input capacitance  
(CIN 4pF). In low closed-loop gain configurations and  
with RS and RF in the kilohm range, this pole can create  
excess phase shift and even oscillation. A small capacitor  
(CF) in parallel with RF eliminates this problem. With RS  
(CS + CIN) = RFCF, the effect of the feedback pole is  
completely removed.  
Consequently, for optimum low frequency noise, chip  
temperatureshouldbeminimized. Forexample, operating  
an LT1056 at ±5V supplies or with a 20°C/W case-to-  
ambient heat sink reduces 0.1Hz to 10Hz noise from  
typically 2.5µVP-P (±15V, free-air) to 1.5µVP-P. Similiarly,  
the noise of an LT1055 will be 1.8µVP-P typically because  
of its lower power dissipation and chip temperature.  
C
F
R
F
High Speed Operation  
Settling time is measured in the test circuit shown. This  
test configuration has two features which eliminate prob-  
lems common to settling time measurments: (1) probe  
+
C
IN  
OUTPUT  
R
C
S
S
LT1055/56 AI03  
Settling Time Test Circuit  
10pF (TYPICAL)  
15V  
15k  
+
10µF  
10k  
0.01 DISC  
SOLID  
TANTALUM  
LT1055  
LT1056  
–15V  
AUT OUTPUT  
15V  
15k  
4.7k  
+
10µF  
SOLID  
TANTALUM  
AMPLIFIER  
UNDER  
TEST  
0.01 DISC  
10k  
+
2N3866  
2k  
50  
15V  
2N160  
1/2  
U440  
PULSE GEN  
INPUT  
(5V MIN STEP)  
15V  
2W  
15k  
3Ω  
HP5082-8210  
HEWLETT  
PACKARD  
10µF  
–15V  
15V  
+
50Ω  
OUTPUT  
TO SCOPE  
0.01 DISC  
SOLID  
+
2k  
TANTALUM  
3Ω  
1/2  
U440  
2N3866  
–15V  
100Ω  
2N5160  
15k  
10µF  
DC ZERO  
4.7k  
0.01 DISC  
+
SOLID TANTALUM  
= 1N4148  
–15V  
LT1055/56 AI04  
–15V  
10556fc  
10  
LT1055/LT1056  
U
W U U  
APPLICATIONS INFORMATION  
Phase Reversal Protection  
Voltage Follower with Input Exceeding the Negative  
Common Mode Range  
Most industry standard JFET input op amps (e.g., LF155/  
LF156, LF351, LF411, OP15/16) exhibit phase reversal at  
the output when the negitive common mode limit at the  
input is exceeded (i.e., from –12V to –15V with ±15V  
supplies). This can cause lock-up in servo systems. As  
shown below, the LT1055/LT1056 does not have this  
problem due to unique phase reversal protection circuitry  
(Q1 on simplified schematic).  
15V  
7
2
3
6
LT1055/56  
OUTPUT  
2k  
INPUT  
±15V  
SINE WAVE  
+
4
–15V  
LT1055/56 AI05  
Output  
Output  
LT1055/LT1056  
Input  
(LF155/LF56, LF441, OP-15/OP-16)  
0.5ms/DIV  
0.5ms/DIV  
0.5ms/DIV  
LT1055/56 AI06  
LT1055/56 AI07  
LT1055/56 AI08  
U
TYPICAL APPLICATIONS†  
Exponential Voltage-to-Frequency Converter for Music Synthesizers  
INPUT  
0V TO 10V  
EXPONENT  
11.3k*  
TRIM  
500pF  
2N3906  
2500*  
POLYSTYRENE  
15V  
5
2N3904  
2
6
4
7
500*  
6
LT1055  
3.57k*  
ZERO TRIM  
500k  
3
+
SAWTOOTH  
OUTPUT  
–15V  
1.1k  
4.7k  
1k*  
562*  
15V  
LM329  
4.7k  
15V  
10k*  
10k*  
1k*  
15V  
7
2
+
9
3k  
6
8
LM301A  
13  
14  
8
3
7
1N148  
1
1
4
2
33Ω  
3
15  
0.01µF  
2.2k  
SCALE FACTOR  
–15V  
TEMPERATURE CONTROL LOOP  
For ten additional applications utilizing the  
LT1055 and LT1056, please see the LTC1043  
data sheet and Application Note 3.  
1V IN OCTAVE OUT  
*1% METAL FILM RESISTOR  
PIN NUMBERED TRANSISTORS = CA3096 ARRAY  
LT1055/56 TA03  
10556fc  
11  
LT1055/LT1056  
U
TYPICAL APPLICATIO S  
12-Bit Charge Balance A/D Converter  
74C00  
0.003µF  
28k  
14k  
0.01  
CLK OUTPUT (B)  
15V  
7
10k  
2
3
OUTPUT  
(A)  
+
CLK  
74C74  
1N4148  
Q
Q
6
LT1055  
D
P
CL  
4
10k  
–15V  
2N3904  
1N4148  
1N4148  
LM329  
249k*  
15V  
0V TO 10V INPUT  
33k  
10k  
15V  
COUPLE  
THERMALLY  
15V  
7
2
3
CIRCUIT OUTPUT  
6
LT1001  
f
f
(A)  
(B)  
OUT  
RATIO  
CLK  
4
+
33k  
–15V  
1N4148  
LT1055/56 TA04  
Fast “No Trims” 12-Bit Multiplying CMOS DAC Amplifier  
Fast, 16-Bit Current Comparator  
R
FEEDBACK  
DELAY = 250ns  
REFERENCE  
IN  
HP5082-2810  
I
OUT1  
TYPICAL 12-BIT  
CMOS DAC  
* = 1% FILM RESISTOR  
15V  
15V  
7
50k*  
100k*  
4.7k  
2
3
OUTPUT  
15V  
INPUT  
LT1055  
3k  
2
6
I
8
OUT2  
LT1056  
+
+
7
4
OUTPUT  
+
LT1011  
4
LT1009  
2.5V  
3
1
–15V  
LT1055/56 TA05  
–15V  
LT1055/56 TA06  
10556fc  
12  
LT1055/LT1056  
U
TYPICAL APPLICATIO S  
Temperature-to-Frequency Converter  
560  
1k*  
1k*  
15V  
15V  
10k  
2N2222  
2N2907  
TTL OUTPUT  
6.2k*  
0.01µF  
POLYSTYRENE  
0kHz TO 1kHz =  
LM329  
510pF  
0°C TO 100°C  
2.7k  
2N2222  
4.7k  
2k  
100°C  
ADJ  
500Ω  
0°C ADJ  
15V  
10k  
2
3
7
6
LT1055  
6.2k*  
820*  
+
4
–15V  
LM134  
510Ω  
2V  
137*  
*1% FILM RESISTOR  
LT1055/56 TA07  
100kHz Voltage Controlled Oscillator  
15V  
7
2
3
*1% FILM RESISTOR  
=1N4148  
6
X1  
X2  
U1  
+V  
CC  
W
+15V  
SINE OUT  
LT1056  
FREQUENCY LINEARITY = 0.1%  
FREQUENCY STABILITY = 150ppm/°C  
SETTLING TIME = 1.7µs  
DISTORTION = 0.25% AT 100kHz,  
0.07% AT 10zHz  
+
4
2V  
RMS  
0kHs TO 100kHs  
22.1k  
4.5k  
U2 AD639 Z1  
–15V  
1k  
COM  
Z2  
68k  
VR  
Y1  
Y2  
GT  
UP  
–V  
15V  
50k  
10Hz  
FINE  
DISTORTION  
TRIMS  
100kHz  
DISTORTION  
10k  
–15  
DISTORTION  
TRIM  
TRIM  
2k  
5k  
9.09k*  
15V  
68k  
–15V  
POLYSTYRENE  
500pF  
22M  
–15V  
FREQUENCY  
TRIM  
15pF  
10k*  
2
3
0V TO 10V  
INPUT  
15V  
7
4
+
15V  
7
10k  
5k*  
2N4391  
2N4391  
6
2
3
10k*  
2
LT1056  
–15V  
22k  
6
1k  
8
LT1056  
+
2.5k*  
1k  
7
HP5082-  
2810  
LT1011  
4
+
4
3
2N4391  
1
–15V  
20pF  
0.01µF  
–15V  
10k  
LM329  
4.7k  
4.7k  
15V  
–15V  
LT1055/56 TA08  
10556fc  
13  
LT1055/LT1056  
TYPICAL APPLICATIO S  
U
12-Bit Voltage Output D/A Converter  
12-BIT CURRENT OUTPUT D/A  
CONVERTER (e.g., 6012,565  
OR DAC-80)  
C
2
F
15V  
7
+
6
0 TO 2  
LT1056  
OR 4mA  
OUTPUT  
0V TO 10V  
3
4
C
F
= 15pF TO 33pF  
–15V  
SETTLING TIME TO 2mV  
(0.8 LSB) = 1.5µs TO 2µs  
LT1055/56 TA09  
W
W
SI PLIFIED SCHE ATIC  
NULL  
5
+
7
V
Q8  
7k  
7k  
Q7  
NULL  
1
J5 J6  
J7  
7.5pF  
2
3
–INPUT  
300  
Q9  
+INPUT  
J1  
J2  
Q15  
Q12  
Q10  
20Ω  
Q11  
6
OUTPUT  
J3  
J4  
J8  
Q13  
Q14  
Q2  
Q1  
Q5  
8k  
Q3  
200Ω  
Q16  
120µA*  
(160)  
120µA*  
(160)  
800µA*  
(1000)  
400µA*  
(1100)  
9pF  
14k  
14k  
3k  
50Ω  
4
Q4  
V
*CURRENTS AS SHOWN FOR LT1055. (X) = CURRENTS FOR LT1056.  
LT1055/56 SCHM  
10556fc  
14  
LT1055/LT1056  
U
PACKAGE DESCRIPTIO  
H Package  
8-Lead TO-5 Metal Can (.200 Inch PCD)  
(Reference LTC DWG # 05-08-1320)  
0.335 – 0.370  
(8.509 – 9.398)  
DIA  
0.305 – 0.335  
(7.747 – 8.509)  
0.040  
0.050  
(1.016)  
MAX  
0.165 – 0.185  
(1.270)  
MAX  
(4.191 – 4.699)  
REFERENCE  
PLANE  
SEATING  
PLANE  
GAUGE  
PLANE  
0.500 – 0.750  
(12.700 – 19.050)  
0.010 – 0.045*  
(0.254 – 1.143)  
0.016 – 0.021**  
(0.406 – 0.533)  
0.027 – 0.045  
(0.686 – 1.143)  
45°TYP  
PIN 1  
0.028 – 0.034  
(0.711 – 0.864)  
0.200  
(5.080)  
TYP  
0.110 – 0.160  
*LEAD DIAMETER IS UNCONTROLLED BETWEEN THE REFERENCE PLANE  
AND 0.045" BELOW THE REFERENCE PLANE  
0.016 – 0.024  
**FOR SOLDER DIP LEAD FINISH, LEAD DIAMETER IS  
(0.406 – 0.610)  
(2.794 – 4.064)  
INSULATING  
STANDOFF  
H8(TO-5) 0.200 PCD 1197  
OBSOLETE PACKAGE  
N8 Package  
8-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510)  
.400*  
(10.160)  
MAX  
8
7
6
5
4
.255 ± .015*  
(6.477 ± 0.381)  
1
2
3
.130 ± .005  
.300 – .325  
.045 – .065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
.065  
(1.651)  
TYP  
.008 – .015  
(0.203 – 0.381)  
.120  
.020  
(0.508)  
MIN  
(3.048)  
MIN  
+.035  
.325  
–.015  
.018 ± .003  
(0.457 ± 0.076)  
.100  
(2.54)  
BSC  
+0.889  
8.255  
(
)
N8 1002  
–0.381  
NOTE:  
INCHES  
1. DIMENSIONS ARE  
MILLIMETERS  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
10556fc  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT1055/LT1056  
U
TYPICAL APPLICATIO  
±120V Output Precision Op Amp  
125V  
1µF  
± 25mA OUTPUT  
HEAT SINK OUTPUT  
TRANSISTORS  
330  
510Ω  
10k  
2N5415  
1N965  
100pF  
10k  
2N3440  
50k  
50k  
1k  
1k  
1M  
2N2222  
2
27Ω  
27Ω  
1N4148  
7
4
6
OUTPUT  
LT1055  
10k  
3
INPUT  
+
1N4148  
2N2907  
1M  
2N5415  
2N3440  
1N965  
10k  
510Ω  
330Ω  
1µF  
33pF  
100k  
–125V  
LT1055/56 TA10  
U
PACKAGE DESCRIPTIO  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
NOTE 3  
.045 ±.005  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 ±.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 ±.005  
TYP  
1
2
3
4
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
340ns Settling Time, GBW = 14MHz, SR = 60V/µs  
e = 6nV/Hz Max at f = 1kHz  
LT1122  
Fast Settling JFET Op Amp  
Low Noise JFET Op Amp  
LT1792  
n
10556fc  
LT 0406 REV C • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 1994  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY