LT1056S8#PBF [Linear]

LT1056 - Precision, High Speed, JFET Input Operational Amplifiers; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C;
LT1056S8#PBF
型号: LT1056S8#PBF
厂家: Linear    Linear
描述:

LT1056 - Precision, High Speed, JFET Input Operational Amplifiers; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C

放大器 光电二极管
文件: 总20页 (文件大小:316K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1055/LT1056  
Precision, High Speed,  
JFET Input Operational Amplifiers  
FEATURES  
DESCRIPTION  
The LT®1055/LT1056 JFET input operational amplifiers  
combine precision specifications with high speed per-  
formance.  
n
Guaranteed Offset Voltage: 150µV Max  
–55°C to 125°C: 500µV Max  
n
Guaranteed Drift: 4µV/°C Max  
n
Guaranteed Bias Current  
For the first time, 16V/µs slew rate and 6.5MHz gain  
bandwidthproductaresimultaneouslyachievedwithoffset  
voltage of typically 50µV, 1.2µV/°C drift, bias currents of  
40pA at 70°C and 500pA at 125°C.  
70°C: 150pA Max  
125°C: 2.5nA Max  
n
Guaranteed Slew Rate: 12V/µs Min  
n
Available in 8-Pin PDIP and SO Packages  
The 150µV maximum offset voltage specification is the  
best available on any JFET input operational amplifier.  
APPLICATIONS  
TheLT1055andLT1056aredifferentiatedbytheiroperating  
currents. The lower power dissipation LT1055 achieves  
lower bias and offset currents and offset voltage. The ad-  
ditional power dissipation of the LT1056 permits higher  
slew rate, bandwidth and faster settling time with a slight  
sacrifice in DC performance.  
n
Precision, High Speed Instrumentation  
n
Logarithmic Amplifiers  
n
D/A Output Amplifiers  
Photodiode Amplifiers  
n
n
Voltage-to-Frequency Converters  
n
Frequency-to-Voltage Converters  
The voltage-to-frequency converter shown below is one  
of the many applications which utilize both the precision  
and high speed of the LT1055/LT1056.  
n
Fast, Precision Sample-and-Hold  
For a JFET input op amp with 23V/µs guaranteed slew  
rate, refer to the LT1022 data sheet.  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
Distribution of Input Offset Voltage  
1Hz to 10kHz Voltage-to-Frequency Converter  
(H Package)  
4.7k  
3M  
140  
120  
15V  
V
=
15V  
50% TO 60µV  
S
A
T
= 25°C  
0.001 (POLYSTYRENE)  
634 UNITS TESTED  
FROM THREE RUNS  
10kHz  
TRIM  
5k  
100  
OUTPUT  
15V  
2
75k  
1Hz TO 10kHz  
0.005%  
0V TO 10V  
INPUT  
7
80  
60  
40  
20  
1.5k  
6
LINEARITY  
LT1056  
0.1µF  
22k  
3
4
+
–15V  
33pF  
LM329  
3.3M  
0.1µF  
2N3906  
= 1N4148  
0
–200  
0
200  
400  
–400  
*1% FILM  
THE LOW OFFSET VOLTAGE OF LT1056  
CONTRIBUTES ONLY 0.1Hz OF ERROR  
WHILE ITS HIGH SLEW RATE PERMITS  
10kHz OPERATION.  
–15V  
INPUT OFFSET VOLTAGE (µV)  
LT1055/56 TA02  
LT1055/56 TA01  
10556fd  
1
For more information www.linear.com/LT1055  
LT1055/LT1056  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
Supply Voltage ....................................................... 20V  
Differential Input Voltage ........................................ 40V  
Input Voltage .......................................................... 20V  
Output Short-Circuit Duration.......................... Indefinite  
Operating Temperature Range  
LT1055AC/LT1055C/LT1056AC/  
LT1056C .................................................. 0°C to 70°C  
Storage Temperature Range  
All Devices......................................... –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)...................300°C  
LT1055AM/LT1055M/LT1056AM/  
LT1056M (OBSOLETE) ...................... –55°C to 125°C  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
BAL  
–IN  
+IN  
1
2
3
4
N/C  
8
7
6
5
BAL  
–IN  
+IN  
1
2
3
4
8
7
6
5
N/C  
+
+
V
V
OUT  
BAL  
OUT  
BAL  
V
V
N8 PACKAGE  
8-LEAD PDIP  
= 150°C, θ = 130°C/W  
JA  
S8 PACKAGE  
8-LEAD PLASTIC SO  
= 150°C, θ = 130°C/W  
T
JMAX  
T
JMAX  
JA  
TOP VIEW  
NC  
8
+
V
6
BALANCE  
1
3
7
5
2
–IN  
OUT  
BALANCE  
+IN  
4
V
H PACKAGE  
8-LEAD TO-5 METAL CAN  
= 150°C, θ = 150°C/W, θ = 45°C/W  
T
JMAX  
JA  
JC  
OBSOLETE PACKAGE  
Consider the N8 for Alternate Source  
10556fd  
2
For more information www.linear.com/LT1055  
LT1055/LT1056  
ORDER INFORMATION  
LEAD FREE FINISH  
LT1055CN8#PBF  
LT1056CN8#PBF  
LT1055S8#PBF  
LT1056S8#PBF  
TAPE AND REEL  
PART MARKING  
LT1055CN8  
LT1056CN8  
1055  
PACKAGE DESCRIPTION  
8-Lead PDIP  
TEMPERATURE RANGE  
0°C to 70°C  
LT1055CN8#TRPBF  
LT1056CN8#TRPBF  
LT1055S8#TRPBF  
LT1056S8#TRPBF  
8-Lead PDIP  
0°C to 70°C  
8-Lead Plastic SO  
8-Lead Plastic SO  
0°C to 70°C  
1056  
0°C to 70°C  
OBSOLETE PACKAGE  
LT1055ACH#PBF  
LT1055CH#PBF  
LT1055AMH#PBF  
LT1055MH#PBF  
LT1056ACH#PBF  
LT1056CH#PBF  
LT1056AMH#PBF  
LT1056MH#PBF  
LT1055ACH#TRPBF  
LT1055CH#TRPBF  
LT1055AMH#TRPBF  
LT1055MH#TRPBF  
LT1056ACH#TRPBF  
LT1056CH#TRPBF  
LT1056AMH#TRPBF  
LT1056MH#TRPBF  
LT1055ACH  
LT1055CH  
LT1055AMH  
LT1055MH  
LT1056ACH  
LT1056CH  
LT1056AMH  
LT1056MH  
8-Lead TO-5 Metal Can  
8-Lead TO-5 Metal Can  
8-Lead TO-5 Metal Can  
8-Lead TO-5 Metal Can  
8-Lead TO-5 Metal Can  
8-Lead TO-5 Metal Can  
8-Lead TO-5 Metal Can  
8-Lead TO-5 Metal Can  
0°C to 70°C  
0°C to 70°C  
–55°C to 125°C  
–55°C to 125°C  
0°C to 70°C  
0°C to 70°C  
–55°C to 125°C  
–55°C to 125°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on nonstandard lead based finish parts.  
For more information on lead free part markings, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS TA = 25°C. VS = 15Vꢀ VCM = 0V unless otherwise noted.  
LT1055M/LT1056M  
LT1055CH/LT1056CH  
LT1055CN8/LT1056CN8  
LT1055AM/LT1056AM  
LT1055AC/LT1056AC  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage (Note 2)  
LT1055 H Package  
LT1056 H Package  
LT1055 N8 Package  
LT1056 N8 Package  
50  
50  
150  
180  
70  
70  
120  
140  
400  
450  
700  
800  
µV  
µV  
µV  
µV  
OS  
I
I
Input Offset Current  
Input Bias Current  
Fully Warmed Up  
2
10  
2
20  
pA  
OS  
Fully Warmed Up  
10  
30  
50  
130  
10  
30  
50  
150  
pA  
pA  
B
V
= 10V  
CM  
12  
12  
Input Resistance:Differential  
10  
10  
10  
10  
10  
10  
Ω
Ω
Ω
12  
12  
Common Mode  
0.1Hz to 10Hz  
V
V
= –11V to 8V  
= 8V to 11V  
CM  
CM  
11  
11  
Input Capacitance  
Input Noise Voltage  
4
4
pF  
e
LT1055  
LT1056  
1.8  
2.5  
2.0  
2.8  
µV  
µV  
n
P-P  
P-P  
Input Noise Voltage Density  
f = 10Hz (Note 3)  
f = 1kHz (Note 4)  
O
28  
14  
50  
20  
30  
15  
60  
22  
nV/√Hz  
nV/√Hz  
O
I
Input Noise Current Density  
Large-Signal Voltage Gain  
f = 10Hz, 1kHz (Note 5)  
1.8  
4
1.8  
4
fA/√Hz  
n
O
A
V = 10V  
R = 2k  
R = 1k  
150  
130  
400  
300  
120  
100  
400  
300  
V/mV  
V/mV  
VOL  
O
L
L
Input Voltage Range  
11  
86  
90  
12  
12  
100  
106  
13.2  
11  
83  
88  
12  
12  
98  
V
dB  
dB  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Output Voltage Swing  
V
= 11V  
CM  
V = 10V to 18V  
104  
13.2  
S
V
R = 2k  
V
OUT  
L
10556fd  
3
For more information www.linear.com/LT1055  
LT1055/LT1056  
ELECTRICAL CHARACTERISTICS TA = 25°C. VS = 15Vꢀ VCM = 0V unless otherwise noted.t  
LT1055M/LT1056M  
LT1055CH/LT1056CH  
LT1055CN8/LT1056CN8  
LT1055AM/LT1056AM  
LT1055AC/LT1056AC  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
SR  
Slew Rate  
LT1055  
LT1056  
10  
12  
13  
16  
7.5  
9.0  
12  
14  
V/µs  
V/µs  
GBW  
Gain Bandwidth Product  
Supply Current  
f = 1MHz  
LT1055  
LT1056  
5.0  
6.5  
4.5  
5.5  
MHz  
MHz  
I
LT1055  
LT1056  
2.8  
5.0  
4.0  
6.5  
2.8  
5.0  
4.0  
7.0  
mA  
mA  
S
Offset Voltage Adjustment Range R  
= 100k  
5
5
mV  
POT  
The l denotes the specifications which apply over the temperature range 0°C ≤ TA ≤ 70°C. VS = 15Vꢀ VCM = 0V unless otherwise noted.  
LT1055AC  
LT1056AC  
LT1055CH/LT1056CH  
LT1055CN8/LT1056CN8  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
l
l
l
l
V
Input Offset Voltage (Note 2)  
LT1055 H Package  
LT1056 H Package  
LT1055 N8 Package  
LT1056 N8 Package  
100  
100  
330  
360  
140  
140  
250  
280  
750  
800  
1250  
1350  
µV  
µV  
µV  
µV  
OS  
l
l
Average Temperature  
Coefficient of Input Offset  
Voltage  
H Package (Note 6)  
N8 Package (Note 6)  
1.2  
4.0  
1.6  
3.0  
8.0  
12.0  
µV/°C  
µV/°C  
l
l
I
I
Input Offset Current  
Warmed Up  
T = 70°C  
A
LT1055  
LT1056  
10  
14  
50  
70  
16  
18  
80  
100  
pA  
pA  
OS  
l
l
Input Bias Current  
Warmed Up  
T = 70°C  
A
LT1055  
LT1056  
30  
40  
150  
80  
40  
50  
200  
240  
pA  
pA  
B
l
l
l
l
A
Large-Signal Voltage Gain  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Output Voltage Swing  
V = 10V, R = 2k  
80  
85  
89  
12  
250  
100  
105  
13.1  
60  
82  
87  
12  
250  
98  
V/mV  
dB  
VOL  
O
L
CMRR  
PSRR  
V
= 10.5V  
CM  
V = 10V to 18V  
S
103  
13.1  
dB  
V
R = 2k  
L
V
OUT  
The ldenotes the specifications which apply over the temperature range –55°C ≤ TA ≤ 125°C. VS = 15Vꢀ VCM = 0Vꢀ unless otherwise noted.  
LT1055AM  
LT1056AM  
LT1055M  
LT1056M  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
l
l
V
Input Offset Voltage (Note 2)  
LT1055  
LT1056  
180  
180  
500  
550  
250  
250  
1200  
1250  
µV  
µV  
OS  
l
Average Temperature  
Coefficient of Input Offset  
Voltage  
(Note 6)  
1.3  
4.0  
1.8  
8.0  
µV/°C  
l
l
I
I
Input Offset Current  
Warmed Up  
T = 125°C  
A
LT1055  
LT1056  
0.20  
0.25  
1.2  
1.5  
0.25  
0.30  
1.8  
2.4  
nA  
nA  
OS  
l
l
Input Bias Current  
Warmed Up  
T = 125°C  
A
LT1055  
LT1056  
0.4  
0.5  
2.5  
3.0  
0.5  
0.6  
4.0  
5.0  
nA  
nA  
B
l
l
l
l
A
Large-Signal Voltage Gain  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Output Voltage Swing  
V = 10V, R = 2k  
40  
85  
88  
12  
120  
100  
104  
12.9  
35  
82  
86  
12  
120  
98  
V/mV  
dB  
VOL  
O
L
CMRR  
PSRR  
V
= 10.5V  
CM  
V = 10V to 17V  
S
102  
12.9  
dB  
V
R = 2k  
L
V
OUT  
10556fd  
4
For more information www.linear.com/LT1055  
LT1055/LT1056  
ELECTRICAL CHARACTERISTICS TA = 25°C. VS = 15Vꢀ VCM = 0V unless otherwise noted.  
LT1055CS8/LT1056CS8  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
500  
5
MAX  
1500  
30  
UNITS  
µV  
V
Input Offset Voltage (Note 2)  
Input Offset Current  
OS  
I
I
Fully Warmed Up  
Fully Warmed Up  
pA  
OS  
Input Bias Current  
30  
30  
100  
150  
pA  
pA  
B
V
= 10V  
CM  
Input Resistance Differential  
0.4  
0.4  
0.05  
TΩ  
TΩ  
TΩ  
Common Mode  
V
CM  
V
CM  
= –11V to 8V  
= 8V to 11V  
Input Capacitance  
Input Noise Voltage  
4
pF  
e
0.1Hz to 10Hz  
f = 10Hz (Note 4)  
LT1055  
LT1056  
2.5  
3.5  
µV  
µV  
n
P-P  
P-P  
Input Noise Voltage Density  
35  
15  
70  
22  
nV/√Hz  
nV/√Hz  
O
f = 1kHz (Note 4)  
O
i
Input Noise Current Density  
Large-Signal Voltage Gain  
f = 10Hz, 1kHz (Note 5)  
2.5  
10  
fA/√Hz  
n
O
A
V = 10V  
R = 2k  
R = 1k  
120  
100  
400  
300  
V/mV  
V/mV  
VOL  
O
L
L
Input Voltage Range  
11  
83  
88  
12  
12  
98  
V
dB  
dB  
V
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Output Voltage Swing  
Slew Rate  
V
= 11V  
CM  
V = 10V to 18V  
104  
13.2  
S
V
R = 2K  
OUT  
L
SR  
LT1055  
LT1056  
7.5  
9.0  
12  
14  
V/µs  
V/µs  
GBW  
Gain Bandwidth Product  
Supply Current  
f = 1MHz  
LT1055  
LT1056  
4.5  
5.5  
MHz  
MHz  
I
LT1055  
LT1056  
2.8  
5.0  
4.0  
7.0  
mA  
mA  
S
Offset Voltage Adjustment Range  
R
= 100k  
5
mV  
POT  
The l denotes the specifications which apply over the temperature range 0°C ≤ TA ≤ 70°C. VS = 15Vꢀ VCM = 0V unless otherwise noted.  
LT1055CS8/LT1056CS8  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
800  
4
MAX  
2200  
15  
UNITS  
µV  
l
l
l
l
l
l
l
l
V
Input Offset Voltage (Note 2)  
Average Temperature Coefficient of Input Offset Voltage  
Input Offset Current  
OS  
µV/°C  
pA  
I
I
Warmed Up, T = 70°C  
18  
150  
400  
OS  
A
Input Bias Current  
Warmed Up, T = 70°C  
60  
pA  
B
A
A
VOL  
Large-Signal Voltage Gain  
V = 10V, R = 2k  
60  
82  
87  
12  
250  
98  
V/mV  
dB  
O
L
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Output Voltage Swing  
V
CM  
= 10.5V  
V = 10V to 18V  
S
103  
13.1  
dB  
V
R = 2K  
L
V
OUT  
10556fd  
5
For more information www.linear.com/LT1055  
LT1055/LT1056  
ELECTRICAL CHARACTERISTICS  
For MIL-STD components, please refer to LTC883 data sheet for test  
listing and parameters.  
Note 3: 10Hz noise voltage density is sample tested on every lot of A  
grades. Devices 100% tested at 10Hz are available on request.  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 4: This parameter is tested on a sample basis only.  
1/2  
Note 5: Current noise is calculated from the formula: i = (2ql ) , where  
n
B
–19  
q = 1.6 • 10 coulomb. The noise of source resistors up to 1GΩ swamps  
the contribution of current noise.  
Note 2: Offset voltage is measured under two different conditions:  
Note 6: Offset voltage drift with temperature is practically unchanged when  
(a) approximately 0.5 seconds after application of power; (b) at T = 25°C  
A
the offset voltage is trimmed to zero with a 100k potentiometer between  
+
only, with the chip heated to approximately 38°C for the LT1055 and to  
45°C for the LT1056, to account for chip temperature rise when the device  
is fully warmed up.  
the balance terminals and the wiper tied to V . Devices tested to tighter  
drift specifications are available on request.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Input Bias and Offset Currents  
vs Temperature  
Input Bias Current Over the  
Common Mode Range  
Distribution of Input Offset  
Voltage (N8 Package)  
1200  
800  
120  
80  
1000  
300  
100  
30  
160  
140  
120  
100  
80  
V
T
=
15V  
V
V
=
CM  
15V  
S
A
S
V = 15V  
S
WARMED UP  
50% YIELD  
TO 140µV  
= 25°C  
= 0V  
550 UNITS  
TESTED FROM  
TWO RUNS  
(LT1056)  
WARMED UP  
T
= 125°C  
T
A
BIAS OR OFFSET CURRENTS  
MAY BE POSITIVE OR NEGATIVE  
T
= 70°C  
A
400  
40  
A
A
= 25°C  
A
BIAS CURRENT  
0
0
60  
400  
–800  
–1200  
40  
–80  
–120  
T
= 70°C  
A
T
= 125°C  
40  
A
10  
B
B
OFFSET CURRENT  
20  
A = POSITIVE INPUT CURRENT  
B = NEGATIVE INPUT CURRENT  
3
0
–15  
–5  
0
5
10  
15  
25  
AMBIENT TEMPERATURE (°C)  
50  
75  
100  
125  
–10  
0
200  
400 600  
0
–800 –600  
800  
–400 –200  
COMMON MODE INPUT VOLTAGE (V)  
INPUT OFFSET VOLTAGE (µV)  
LT1055/56 G01  
LT1055/56 G02  
LT1055/56 G03  
Distribution of Offset Voltage Drift  
with Temperature (H Package)*  
Long Term Drift of  
Warm-Up Drift  
Representative Units  
100  
50  
40  
140  
120  
50% TO  
1.5µV/°C  
V
= 15V  
V
T
=
15V  
S
V
T
=
15V  
S
A
S
A
634 UNITS TESTED  
FROM THREE RUNS  
= 25°C  
= 25°C  
80  
60  
40  
20  
0
30  
20  
100  
10  
80  
60  
40  
20  
LT1056CN8  
0
–10  
–20  
LT1055CN8  
LT1056 H PACKAGE  
LT1055 H PACKAGE  
–30  
–40  
–50  
0
0
1
2
3
4
5
10  
0
1
2
3
4
5
–10  
–4  
2
4
6
8
–8 –6  
–2  
0
TIME AFTER POWER ON (MINUTES)  
OFFSET VOLTAGE DRIFT WITH TEMPERATURE (µV/°C)  
TIME (MONTHS)  
LT1055/56 G05  
LT1055/56 GO6  
*DISTRIBUTION IN THE PLASTIC (N8) PACKAGE  
IS SIGNIFICANTLY WIDER.  
LT1055/56 G04  
10556fd  
6
For more information www.linear.com/LT1055  
LT1055/LT1056  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.1Hz to 10Hz Noise  
Noise vs Chip Temperature  
Voltage Noise vs Frequency  
1000  
300  
100  
30  
10  
7
100  
70  
V
=
15V  
S
A
T
= 25°C  
LT1056  
PEAK-TO-PEAK  
NOISE  
5
50  
3
2
30  
20  
LT1056  
1/f CORNER = 28HZ  
f
O
= 10kHz  
LT1055  
f
= 1kHz  
60  
O
LT1055  
1/f CORNER  
= 20HZ  
1
10  
80  
10  
2
4
6
8
10  
1
3
10  
100  
300 1000  
0
30  
10  
20  
30  
40  
50  
70  
TIME (SECONDS)  
FREQUENCY (Hz)  
CHIP TEMPERATURE (°C)  
LT1055/56 GO7  
LT1055/56 G09  
LT1055/56 G08  
LT1056 Large-Signal Response  
Small-Signal Response  
LT1055 Large-Signal Response  
A
= 1, C = 100pf, 0.5µs/DIV  
L
A
= 1, C = 100pf, 0.5µs/DIV  
L
V
V
LT1055/56 G10  
LT1055/56 G12  
A
= 1, C = 100pf, 0.2µs/DIV  
L
V
LT1055/56 G11  
Undistorted Output Swing vs  
Frequency  
Slew Rateꢀ Gain Bandwidth vs  
Temperature  
Output Impedance vs Frequency  
100  
10  
1
10  
8
30  
20  
30  
24  
V
=
15V  
S
A
V
=
15V  
S
A
A = 100  
V
T
= 25°C  
T
= 25°C  
LT1056 GBW  
LT1055 GBW  
LT1055  
LT1056  
= 10  
6
18  
12  
6
A
V
4
2
LT1055  
LT1056  
LT1055  
LT1056  
LT1056 SLEW  
LT1055 SLEW  
10  
0
LT1055  
LT1056  
= 1  
A
V
V
O
=
15V  
S
f
= 1MHz FOR GBW  
0.1  
0
1
10  
100  
1000  
0.1  
1
10  
–25  
25  
75  
125  
FREQUENCY (kHz)  
FREQUENCY (MHz)  
TEMPERATURE (°C)  
LT1055/56 G15  
LT1055/56 G13  
LT1055/56 G14  
10556fd  
7
For more information www.linear.com/LT1055  
LT1055/LT1056  
TYPICAL PERFORMANCE CHARACTERISTICS  
Gain vs Frequency  
Gainꢀ Phase Shift vs Frequency  
Voltage Gain vs Temperature  
100  
120  
140  
160  
1000  
140  
120  
100  
80  
V
T
=
15V  
V
V
=
=
15V  
10V  
S
A
S
O
= 25°C  
20  
10  
R = 2k  
L
PHASE  
300  
100  
LT1056  
LT1055  
R
= 1k  
L
60  
GAIN  
LT1056  
LT1055  
40  
LT1056  
LT1055  
0
20  
30  
10  
0
V
=
15V  
S
A
T
= 25°C  
–20  
–10  
10k 100k  
1
10 100 1k  
1M 10M 100M  
–75  
–25  
25  
125  
75  
4
6
1
2
8
10  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
FREQUENCY (MHz)  
LT1055/56 G16  
LT1055/56 G18  
LT1055/56 G17  
Common Mode Range vs  
Temperature  
LT1055 Settling Time  
LT1056 Settling Time  
15  
14  
10  
5
10  
5
2mV  
10mV  
10mV  
2mV  
0.5mV  
0.5mV  
13  
12  
11  
5mV  
1mV  
5mV  
5mV  
1mV  
V
=
15V  
S
A
0
0
10  
T
= 25°C  
5mV 2mV  
–11  
–12  
–13  
–14  
–15  
–5  
–10  
–5  
10mV  
10mV  
0.5mV  
2
2mV  
0.5mV  
1mV  
1mV  
V
=
15V  
S
A
T
= 25°C  
V
= 15V  
S
–10  
1
1
2
0
3
0
3
–50  
0
50  
100  
SETTLING TIME (µS)  
SETTLING TIME (µS)  
TEMPERATURE (°C)  
LT1055/56 G19  
LT1055/56 G20  
LT1055/56 G21  
Common Mode and Power Supply  
Rejections vs Temperature  
Common Mode Rejection Ratio vs  
Frequency  
Power Supply Rejection Ratio vs  
Frequency  
120  
110  
120  
100  
80  
60  
40  
20  
0
140  
120  
100  
80  
V
V
=
=
10V Tꢀ 17V ꢁꢀR PSRR  
V
T
=
15V  
T
= 25°C  
S
S
S
A
A
15V, V  
=
10ꢂ5V ꢁꢀR CMRR  
= 25°C  
CM  
POSITIVE  
SUPPLY  
PSRR  
CMRR  
NEGATIVE  
SUPPLY  
60  
100  
90  
40  
20  
0
125  
–25  
25  
75  
10  
1k  
10k 100k  
1M  
10M  
100k  
FREQUENCY (Hz)  
10M  
100  
10  
100  
1k  
10k  
1M  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
LT1055/56 G22  
LT1055/56 G23  
LT1055/56 G24  
10556fd  
8
For more information www.linear.com/LT1055  
LT1055/LT1056  
TYPICAL PERFORMANCE CHARACTERISTICS  
Supply Current vs Supply Voltage  
Output Swing vs Load Resistance  
Short-Circuit Current vs Time  
8
6
4
2
0
50  
40  
15  
12  
9
T
T
= 55°C  
= 25°C  
A
A
A
T
= 55°C  
A
30  
T
= 125°C  
T
= –25°C  
A
T
= 55°C  
20  
6
A
LT1056  
LT1055  
10  
3
T
= –125°C  
A
25°C  
25°C  
T
T
= 125°C  
= 55°C  
A
V
=
15V  
0
V
= 15V  
0
S
S
SINKING  
–10  
–20  
–30  
–40  
–50  
A
–3  
–6  
–9  
–12  
–15  
T
= –25°C  
T
A
T
= 125°C  
= 25°C  
A
T
= 125°C  
A
T
A
= –125°C  
A
T
= 55°C  
0.3  
A
T
= 55°C  
2
A
10  
15  
0
20  
5
0
1
3
0.1  
1
3
10  
LOAD RESISTANCE (kΩ)  
TIME FROM OUTPUT SHORT TO GROUND  
(MINUTES)  
SUPPLY VOLTAGE (V)  
LT1055/56 G26  
LT1055/56 G25  
LT1055/56 G27  
APPLICATIONS INFORMATION  
TheLT1055/LT1056maybeinserteddirectlyintoLF155A/  
LT355A, LF156A/LT356A, OP-15 and OP-16 sockets.  
Offset nulling will be compatible with these devices with  
the wiper of the potentiometer tied to the positive supply.  
example, leakage currents in circuitry external to the op  
amp can significantly degrade performance. High quality  
insulation should be used (e.g. Teflon, Kel-F); cleaning of  
all insulating surfaces to remove fluxes and other resi-  
dues will probably be required. Surface coating may be  
necessary to provide a moisture barrier in high humidity  
environments.  
Offset Nulling  
+
V
1
R
P
Board leakage can be minimized by encircling the input  
circuitry with a guard ring operated at a potential close to  
thatoftheinputs:ininvertingconfigurationstheguardring  
should be tied to ground, in noninverting connnections  
to the inverting input at pin 2. Guarding both sides of the  
2
3
5
7
6
LT1055  
LT1056  
OUT  
+
4
V
LT1055/56 AI1  
N/C  
No appreciable change in offset voltage drift with tem-  
perature will occur when the device is nulled with a  
OFFSET  
TRIM  
+
V
potentiometer, R , ranging from 10k to 200k.  
P
8
OUTPUT  
7
The LT1055/LT1056 can also be used in LF351, LF411,  
AD547, AD611, OPA-111, and TL081 sockets, provided  
thatthenullingcicuitryisremoved.BecauseoftheLT1055/  
LT1056’s low offset voltage, nulling will not be necessary  
in most applications.  
1
6
2
5
OFFSET  
TRIM  
4
3
Achieving Picoampere/Microvolt Performance  
V
Inordertorealizethepicoampere-microvoltlevelaccuracy  
of the LT1055/LT1056 proper care must be exercised. For  
GUARD  
LT1055/56 AI2  
10556fd  
9
For more information www.linear.com/LT1055  
LT1055/LT1056  
APPLICATIONS INFORMATION  
printed circuit board is required. Bulk leakage reduction  
depends on the guard ring width.  
ing an LT1056 at 5V supplies or with a 20°C/W case-  
to-ambient heat sink reduces 0.1Hz to 10Hz noise from  
typically 2.5µV ( 15V, free-air) to 1.5µV . Similiarly,  
P-P  
P-P  
The LT1055/LT1056 has the lowest offset voltage of any  
JFET input op amp available today. However, the offset  
voltage and its drift with time and temperature are still  
not as good as on the best bipolar amplifiers because the  
transconductance of FETs is considerably lower than that  
of bipolar transistors. Conversely, this lower transcon-  
ductanceisthemaincauseofthesignificantlyfasterspeed  
performance of FET input op amps.  
the noise of an LT1055 will be 1.8µV typically because  
P-P  
of its lower power dissipation and chip temperature.  
High Speed Operation  
Settlingtimeismeasuredinthetestcircuitshown.Thistest  
configuration has two features which eliminate problems  
common to settling time measurments: (1) probe capaci-  
tance is isolated from the “false summing” node, and (2)  
it does not require a “flat top” input pulse since the input  
pulse is merely used to steer current through the diode  
bridges. For more details, please see Application Note 10.  
Offset voltage also changes somewhat with temperature  
cycling. The AM grades show a typical 20µV hysteresis  
(30µV on the M grades) when cycled over the –55°C to  
125°C temperature range. Temperature cycling from 0°C  
to 70°C hasa negligible(lessthan 10µV) hysteresis effect.  
Aswithmosthighspeedamplifiers,careshouldbetakenwith  
supply decoupling, lead dress and component placement.  
The offset voltage and drift performance are also affected  
by packaging. In the plastic N8 package the molding com-  
pound is in direct contact with the chip, exerting pressure  
on the surface. While NPN input transistors are largely  
unaffectedbythispressure,JFETdevicematchinganddrift  
are degraded. Consequently, for best DC performance, as  
shown in the typical performance distribution plots, the  
TO-5 H package is recommended.  
When the feedback around the op amp is resistive (R ),  
F
a pole will be created with R , the source resistance and  
F
capacitance (R , C ), and the amplifier input capacitance  
S
S
(C ≈ 4pF). In low closed-loop gain configurations and  
IN  
with R and R in the kilohm range, this pole can create  
S
F
excess phase shift and even oscillation. A small capaci-  
tor (C ) in parallel with R eliminates this problem. With  
F
F
R (C + C ) = R C , the effect of the feedback pole is  
S
S
IN  
F F  
Noise Performance  
completely removed.  
C
F
The current noise of the LT1055/LT1056 is practically  
immeasurable at 1.8fA/√Hz. At 25°C it is negligible up to  
R
F
1G of source resistance, R (compound to the noise of  
S
R ). Even at 125°C it is negligible to 100M of R .  
S
S
+
The voltage noise spectrum is characterized by a low 1/f  
corner in the 20Hz to 30Hz range, significantly lower than  
on other competitive JFET input op amps. Of particular  
interest is the fact that with any JFET IC amplifier, the  
frequency location of the 1/f corner is proportional to  
the square root of the internal gate leakage currents and,  
therefore, noise doubles every 20°C. Furthermore, as il-  
lustrated in the noise versus chip temperature curves, the  
0.1Hz to 10Hz peak-to-peak noise is a strong function of  
C
IN  
OUTPUT  
R
C
S
S
LT1055/56 AI03  
Phase Reversal Protection  
Most industry standard JFET input op amps (e.g., LF155/  
LF156, LF351, LF411, OP15/16) exhibit phase reversal at  
the output when the negative common mode limit at the  
input is exceeded (i.e., from –12V to –15V with 15V sup-  
plies). This can cause lock-up in servo systems. As shown  
below, the LT1055/LT1056 does not have this problem  
due to unique phase reversal protection circuitry (Q1 on  
temperature, while wideband noise (f = 1kHz) is practi-  
O
cally unaffected by temperature.  
Consequently, for optimum low frequency noise, chip  
temperature should be minimized. For example, operat-  
simplified schematic).  
10556fd  
10  
For more information www.linear.com/LT1055  
LT1055/LT1056  
APPLICATIONS INFORMATION  
Settling Time Test Circuit  
10pF (TYPICAL)  
15V  
15k  
+ 10µF  
10k  
0.01 DISC  
SOLID  
TANTALUM  
LT1055  
LT1056  
–15V  
AUT OUTPUT  
15V  
4.7k  
15k  
+
10µF  
SOLID  
TANTALUM  
AMPLIFIER  
UNDER  
TEST  
0.01 DISC  
10k  
+
2N3866  
15V  
2k  
50Ω  
2N160  
1/2  
U440  
PULSE GEN  
INPUT  
(5V MIN STEP)  
15V  
2W  
15k  
3Ω  
HP5082-8210  
HEWLETT  
PACKARD  
10µF  
–15V  
15V  
+
50Ω  
OUTPUT  
TO SCOPE  
0.01 DISC  
SOLID  
+
2k  
TANTALUM  
3Ω  
1/2  
U440  
2N3866  
–15V  
100Ω  
2N5160  
15k  
10µF  
DC ZERO  
4.7k  
0.01 DISC  
+
SOLID TANTALUM  
= 1N4148  
–15V  
LT1055/56 AI04  
–15V  
Voltage Follower with Input Exceeding the Negative  
Common Mode Range  
15V  
7
2
3
6
LT1055/56  
OUTPUT  
2k  
INPUT  
15V  
SINE WAVE  
+
4
–15V  
LT1055/56 AI05  
Output  
Output  
LT1055/LT1056  
Input  
(LF155/LF56ꢀ LF441ꢀ OP-15/OP-16)  
0.5ms/DIV  
0.5ms/DIV  
0.5ms/DIV  
LT1055/56 AI08  
LT1055/56 AI07  
LT1055/56 AI06  
10556fd  
11  
For more information www.linear.com/LT1055  
LT1055/LT1056  
TYPICAL APPLICATIONS †  
Exponential Voltage-to-Frequency Converter for Music Synthesizers  
INPUT  
0V TO 10V  
EXPONENT  
11.3k*  
TRIM  
500pF  
2N3906  
2500Ω*  
POLYSTYRENE  
15V  
5
2N3904  
2
6
4
7
500Ω*  
6
LT1055  
3.57k*  
ZERO TRIM  
500k  
3
+
SAWTOOTH  
OUTPUT  
–15V  
1.1k  
4.7k  
1k*  
562Ω*  
15V  
LM329  
4.7k  
15V  
10k*  
10k*  
1k*  
15V  
7
2
+
9
3k  
6
8
LM301A  
13  
14  
8
3
7
1N148  
1
1
4
2
33Ω  
3
15  
0.01µF  
2.2k  
SCALE FACTOR  
–15V  
TEMPERATURE CONTROL LOOP  
1V IN OCTAVE OUT  
For ten additional applications utilizing the  
*1% METAL FILM RESISTOR  
PIN NUMBERED TRANSISTORS = CA3096 ARRAY  
LT1055 and LT1056, please see the LTC1043  
data sheet and Application Note 3.  
LT1055/56 TA03  
12-Bit Charge Balance A/D Converter  
74C00  
0.003µF  
28k  
14k  
0.01µF  
CLK OUTPUT (B)  
15V  
7
10k  
2
OUTPUT  
(A)  
CLK  
74C74  
1N4148  
Q
6
LT1055  
D
Q
3
P
CL  
+
4
10k  
–15V  
2N3904  
1N4148  
1N4148  
LM329  
249k*  
15V  
0V TO 10V INPUT  
33k  
10k  
15V  
COUPLE  
THERMALLY  
15V  
7
2
3
CIRCUIT OUTPUT  
6
LT1001  
f
f
(A)  
(B)  
OUT  
RATIO  
CLK  
4
+
33k  
–15V  
1N4148  
LT1055/56 TA04  
10556fd  
12  
For more information www.linear.com/LT1055  
LT1055/LT1056  
TYPICAL APPLICATIONS  
Fast “No Trims” 12-Bit Multiplying CMOS DAC Amplifier  
Fastꢀ 16-Bit Current Comparator  
R
FEEDBACK  
REFERENCE  
IN  
DELAY = 250ns  
* = 1% FILM RESISTOR  
15V  
HP5082-2810  
I
OUT1  
TYPICAL 12-BIT  
CMOS DAC  
15V  
7
OUTPUT  
50k*  
4.7k  
LT1055  
2
3
15V  
I
OUT2  
3k  
2
+
6
100k*  
8
LT1056  
+
INPUT  
7
4
OUTPUT  
+
LT1011  
4
LT1009  
2.5V  
3
LT1055/56 TA05  
1
–15V  
–15V  
LT1055/56 TA06  
Temperature-to-Frequency Converter  
560Ω  
1k*  
1k*  
15V  
15V  
10k  
2N2222  
2N2907  
TTL OUTPUT  
0kHz TO 1kHz =  
0°C TO 100°C  
6.2k*  
0.01µF  
POLYSTYRENE  
LM329  
510pF  
2.7k  
2N2222  
4.7k  
2k  
100°C  
ADJ  
500Ω  
0°C ADJ  
15V  
10k  
2
3
7
6
LT1055  
6.2k*  
820Ω*  
+
4
–15V  
LM134  
510Ω  
2V  
137Ω*  
*1% FILM RESISTOR  
LT1055/56 TA07  
10556fd  
13  
For more information www.linear.com/LT1055  
LT1055/LT1056  
TYPICAL APPLICATIONS  
100kHz Voltage Controlled Oscillator  
15V  
7
2
3
*1% FILM RESISTOR  
=1N4148  
6
X1  
X2  
U1  
+V  
CC  
W
+15V  
SINE OUT  
2V  
RMS  
LT1056  
FREQUENCY LINEARITY = 0.1%  
FREQUENCY STABILITY = 150ppm/°C  
SETTLING TIME = 1.7µs  
DISTORTION = 0.25% AT 100kHz,  
0.07% AT 10zHz  
+
4
22.1k  
4.5k  
U2 AD639 Z1  
0kHs TO 100kHs  
–15V  
1k  
COM  
Z2  
68k  
VR  
Y1  
Y2  
GT  
UP  
–V  
15V  
50k  
10Hz  
FINE  
DISTORTION  
TRIMS  
100kHz  
DISTORTION  
TRIM  
10k  
–15  
DISTORTION  
TRIM  
2k  
5k  
9.09k*  
68k  
POLYSTYRENE  
500pF  
22M  
–15V  
FREQUENCY  
TRIM  
15pF  
–15V  
15V  
10k*  
2
3
0V TO 10V  
INPUT  
15V  
7
4
15V  
7
10k  
5k*  
2N4391  
2N4391  
6
2
3
10k*  
2
LT1056  
22k  
6
1k  
8
LT1056  
+
+
2.5k*  
1k  
7
HP5082-  
2810  
LT1011  
4
+
4
–15V  
3
2N4391  
1
–15V  
20pF  
0.01µF  
LM329  
–15V  
10k  
4.7k  
4.7k  
15V  
–15V  
LT1055/56 TA08  
12-Bit Voltage Output D/A Converter  
12-BIT CURRENT OUTPUT D/A  
CONVERTER (e.g., 6012,565  
OR DAC-80)  
C
2
F
15V  
7
+
6
0 TO 2  
OR 4mA  
LT1056  
OUTPUT  
0V TO 10V  
3
4
C = 15pF TO 33pF  
F
SETTLING TIME TO 2mV  
(0.8 LSB) = 1.5µs TO 2µs  
–15V  
LT1055/56 TA09  
10556fd  
14  
For more information www.linear.com/LT1055  
LT1055/LT1056  
SIMPLIFIED SCHEMATIC  
NULL  
5
+
7
V
Q8  
7k  
7k  
Q7  
NULL  
1
J5 J6  
J7  
7.5pF  
2
3
–INPUT  
+INPUT  
300Ω  
Q9  
J1  
J2  
Q15  
Q12  
Q10  
20Ω  
6
Q11  
OUTPUT  
J3  
J4  
J8  
Q13  
Q14  
Q2  
Q1  
Q5  
8k  
Q3  
200Ω  
Q16  
50Ω  
120µA*  
(160)  
120µA*  
(160)  
800µA*  
(1000)  
400µA*  
(1100)  
9pF  
14k  
14k  
3k  
Q4  
4
V
*CURRENTS AS SHOWN FOR LT1055. (X) = CURRENTS FOR LT1056.  
LT1055/56 SCHM  
10556fd  
15  
For more information www.linear.com/LT1055  
LT1055/LT1056  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
H Package  
8-Lead TO-5 Metal Can (.200 Inch PCD)  
(Reference LTC DWG # 05-08-1320)  
.335 – .370  
(8.509 – 9.398)  
DIA  
.305 – .335  
(7.747 – 8.509)  
.040  
(1.016)  
MAX  
.050  
(1.270)  
MAX  
.165 – .185  
(4.191 – 4.699)  
REFERENCE  
PLANE  
SEATING  
PLANE  
GAUGE  
PLANE  
.500 – .750  
(12.700 – 19.050)  
.010 – .045*  
(0.254 – 1.143)  
.016 – .021**  
(0.406 – 0.533)  
.027 – .045  
(0.686 – 1.143)  
45°  
PIN 1  
.028 – .034  
(0.711 – 0.864)  
.200  
(5.080)  
TYP  
.110 – .160  
(2.794 – 4.064)  
INSULATING  
STANDOFF  
*LEAD DIAMETER IS UNCONTROLLED BETWEEN THE REFERENCE PLANE  
AND THE SEATING PLANE  
.016 – .024  
(0.406 – 0.610)  
**FOR SOLDER DIP LEAD FINISH, LEAD DIAMETER IS  
H8(TO-5) 0.200 PCD 0204  
OBSOLETE PACKAGE  
10556fd  
16  
For more information www.linear.com/LT1055  
LT1055/LT1056  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
N Package  
8-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510 Rev I)  
.400*  
(10.160)  
MAX  
8
7
6
5
4
.255 ±.015*  
(6.477 ±0.381)  
1
2
3
.130 ±.005  
.300 – .325  
.045 – .065  
(3.302 ±0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
.065  
(1.651)  
TYP  
.008 – .015  
(0.203 – 0.381)  
.120  
.020  
(0.508)  
MIN  
(3.048)  
MIN  
+.035  
.325  
–.015  
.018 ±.003  
(0.457 ±0.076)  
.100  
(2.54)  
BSC  
+0.889  
8.255  
N8 REV I 0711  
(
)
–0.381  
NOTE:  
INCHES  
1. DIMENSIONS ARE  
MILLIMETERS  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
10556fd  
17  
For more information www.linear.com/LT1055  
LT1055/LT1056  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610 Rev G)  
.189 – .197  
(4.801 – 5.004)  
.045 ±.005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 ±.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 ±.005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
4. PIN 1 CAN BE BEVEL EDGE OR A DIMPLE  
SO8 REV G 0212  
10556fd  
18  
For more information www.linear.com/LT1055  
LT1055/LT1056  
REVISION HISTORY (Revision history begins at Rev D)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
D
08/15 Corrected application circuit.  
20  
10556fd  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
19  
LT1055/LT1056  
TYPICAL APPLICATION  
120V Output Precision Op Amp  
125V  
1µF  
25ꢀA OUTPUT  
HEAT SINK OUTPUT  
TRANSISTORS  
330Ω  
510Ω  
10k  
2N5415  
1N965  
100pF  
10k  
2N3440  
50k  
50k  
1k  
1k  
1M  
2N2222  
2
27Ω  
27Ω  
1N4148  
7
4
6
OUTPUT  
LT1055  
10k  
3
INPUT  
+
1N4148  
2N2907  
1M  
2N5415  
2N3440  
330Ω  
1N965  
10k  
510Ω  
1µF  
33pF  
100k  
–125V  
LT1055/56 TA10  
RELATED PARTS  
PART NUMBER  
LT1122  
DESCRIPTION  
COMMENTS  
340ns Settling Time, GBW = 14MHz, SR = 60V/µs  
e = 6nV/√Hz Max at f = 1kHz  
Fast Settling JFET Op Amp  
Low Noise JFET Op Amp  
LT1792  
n
10556fd  
LT 0815 REV D • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LT1055  
LINEAR TECHNOLOGY CORPORATION 1994  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY