LT1064 [Linear]

Low Noise, Fast, Quad Universal Filter Building Block; 低噪声,快速,四路通用滤波器积木
LT1064
型号: LT1064
厂家: Linear    Linear
描述:

Low Noise, Fast, Quad Universal Filter Building Block
低噪声,快速,四路通用滤波器积木

文件: 总16页 (文件大小:389K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1064  
Low Noise, Fast, Quad  
Universal Filter Building Block  
U
FEATURES  
DESCRIPTION  
The LTC®1064 consists of four high speed, low noise  
switched-capacitor filter building blocks. Each filter build-  
ing block, together with an external clock and three to five  
resistors can provide various 2nd order functions like  
lowpass, highpass, bandpass and notch. The center fre-  
quency of each 2nd order function can be tuned with an  
external clock, or a clock and resistor ratio. For Q 5, the  
center frequency range is from 0.1Hz to 100kHz. For Q ≤  
3, the center frequency range can be extended to 140kHz.  
Up to 8th order filters can be realized by cascading all four  
2nd order sections. Any classical filter realization (such as  
Butterworth,Cauer,BesselandChebyshev)canbeformed.  
Four Filters in a 0.3-Inch Wide Package  
One Half the Noise of the LTC1059/LTC1060/  
LTC1061 Devices  
Maximum Center Frequency: 140kHz  
Maximum Clock Frequency: 7MHz  
Clock-to-Center Frequency Ratio of 50:1 and 100:1  
Simultaneously Available  
Power Supplies: ±2.375V to ±8V  
Low Offsets  
Low Harmonic Distortion  
Customized Version with Internal Resistors  
Available  
U
A customized monolithic version of the LTC1064 includ-  
ing internal thin film resistors can be obtained for high  
volume applications. Consult LTC Marketing for details.  
APPLICATIONS  
Anti-Aliasing Filters  
Wide Frequency Range Tracking Filters  
Spectral Analysis  
The LTC1064 is manufactured using Linear Technology’s  
enhanced LTCMOSTM silicon gate process.  
Loop Filters  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
LTCMOS is a trademark of Linear Technology Corporation.  
U
TYPICAL APPLICATION  
Clock-Tunable 8th Order Cauer Lowpass Filter with fCUTOFF up to 100kHz  
13k  
66.5k  
R
H2  
102k  
Gain vs Frequency  
PIN 12  
22.1k  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
V
INV B  
HPB/NB  
BPB  
INV C  
HPC/NC  
BPC  
IN  
10k  
10k  
0
–15  
18.25k  
10.7k  
12.1k  
17.4k  
3
R
4
L2  
LPB  
LPC  
26.7k  
–30  
5
SB  
SC  
–45  
f
= 5MHz  
CLK  
6
AGND  
V
RIPPLE = ±0.1dB  
–8V  
–60  
0.1µF  
LTC1064  
7
+
8V  
V
CLK  
50/100  
LPD  
5MHz  
8V  
–75  
0.1µF  
10k  
f
= 1MHz  
8
CLK  
SA  
–90  
RIPPLE = ±0.05dB  
V
OUT  
9
LPA  
–105  
–120  
–135  
41.2k  
12.7k  
14k  
49.9K  
11.5K  
10  
11  
12  
BPA  
BPD  
HPA/NA  
INV A  
HPD  
1k  
10k  
100k  
1M  
(FROM  
INV D  
INPUT FREQUENCY (Hz)  
R
, R )  
H2 L2  
121k  
10k  
1064 TA02  
FOR f  
CLK  
= 5MHz, ADD C1 = 10pF BETWEEN PINS 4, 1  
C2 = 10pF BETWEEN PINS 21, 24  
WIDEBAND NOISE 140µV  
RMS  
1064 TA01  
C3 = 27pF BETWEEN PINS 9, 12  
1
LTC1064  
W W U W  
ABSOLUTE MAXIMUM RATINGS  
Total Supply Voltage (V+ to V) ............................. 16V  
Power Dissipation............................................. 500mW  
Operating Temperature Range  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
LTC1064AC/LTC1064C.................... 40°C to 85°C  
LTC1064AM/LTC1064M ................ 55°C to 125°C  
U
W U  
PACKAGE/ORDER INFORMATION  
TOP VIEW  
ORDER PART  
NUMBER  
TOP VIEW  
ORDER PART  
NUMBER  
INV B  
HPB/NB  
BPB  
1
2
INV C  
HPC/NC  
BPC  
24  
23  
22  
21  
INV B  
HPB/NB  
BPB  
1
2
INV C  
HPC/NC  
BPC  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
3
3
LTC1064ACJ  
LTC1064CJ  
LTC1064AMJ  
LTC1064MJ  
LTC1064ACN  
LTC1064CN  
LTC1064CS  
LPB  
4
LPC  
LPB  
4
LPC  
SB  
5
20 SC  
SB  
5
SC  
AGND  
6
V
19  
18  
17  
16  
15  
14  
13  
AGND  
6
V
+
+
V
7
CLK  
V
7
CLK  
SA  
LPA  
8
50/100  
LPD  
BPD  
HPD  
INV D  
SA  
LPA  
8
50/100  
LPD  
9
9
BPA  
10  
11  
12  
BPA  
10  
11  
12  
BPD  
HPA/NA  
INV A  
HPA/NA  
INV A  
HPD  
INV D  
SW PACKAGE  
24-LEAD PLASTIC SO  
J PACKAGE  
N PACKAGE  
24-LEAD CERAMIC DIP 24-LEAD PLASTIC DIP  
TJMAX = 150°C, θJA = 100°C/ W (J)  
TJMAX = 100°C, θJA = 85°C/ W  
T
JMAX = 110°C, θJA = 65°C/ W (N)  
Consult factory for Industrial grade parts.  
ELECTRICAL CHARACTERISTICS  
(Internal Op Amps) TA = 25°C, unless otherwise specified.  
PARAMETER  
CONDITIONS  
V = ±5V, R = 5k  
MIN  
TYP  
MAX  
UNITS  
Operating Supply Voltage Range  
Voltage Swings  
±2.375  
±3.2  
±3.1  
±8  
V
V
V
±3.6  
S
L
Output Short-Circuit Current (Source/Sink)  
DC Open-Loop Gain  
GBW Product  
V = ±5V  
3
80  
7
mA  
dB  
MHz  
V/µs  
S
V = ±5V, R = 5k  
S
L
V = ±5V  
S
Slew Rate  
V = ±5V  
S
10  
2
LTC1064  
ELECTRICAL CHARACTERISTICS  
(Complete Filter) VS = ±5V, TA = 25°C, TTL clock input level, unless otherwise specified.  
PARAMETER  
Center Frequency Range, f  
Input Frequency Range  
CONDITIONS  
V = ±8V, Q 3  
MIN  
TYP  
0.1 to 140  
0 to 1  
MAX  
UNITS  
kHz  
MHz  
O
S
Clock-to-Center Frequency  
LTC1064  
LTC1064A (Note 1)  
f
= 1MHz, f = 20kHz, Pin 17 High  
50 ± 0.3  
%
%
CLK  
O
Ratio, f /f  
Sides A, B, C: Mode 1,  
R1 = R3 = 5k, R2 = 5k, Q = 10,  
Sides D: Mode 3, R1 = R3 = 50k  
R2 = R4 = 5k  
50 ± 0.8  
50 ± 0.9  
CLK  
O
%
LTC1064  
LTC1064A (Note 1)  
Same as Above, Pin 17 Low, f  
= 1MHz  
100 ± 0.3  
%
%
CLK  
f = 10kHz  
O
Sides A, B, C  
Side D  
100 ± 0.8  
100 ± 0.9  
Clock-to-Center Frequency  
Ratio, Side-to-Side Matching LTC1064A (Note 1)  
LTC1064  
f
= 1MHz  
0.4  
%
%
CLK  
1
Clock-to-Center Frequency  
LTC1064  
LTC1064A (Note 1)  
f
= 4MHz, f = 80kHz, Pin 17 High  
50 ± 0.6  
%
%
CLK  
O
Ratio, f /f (Note 2)  
Sides A, B, C: Mode 1, V = ±7.5V  
50 ± 1.3  
CLK  
O
S
R1 = R3 = 50k, R2 = 5k, Q = 5  
Side D: Mode 3, R1 = R3 = 50k  
R2 = R4 = 5k, f  
= 4MHz  
CLK  
LTC1064  
LTC1064 A (Note 1)  
Same as Above, Pin 17 Low  
= 4MHz, f = 40kHz  
100 ± 0.6  
%
%
f
100 ± 1.3  
CLK  
O
Q Accuracy  
Sides A, B, C: Mode 1, Q = 10  
Side D: Mode 3, f = 1MHz  
±2  
±3  
6
8
%
%
CLK  
f Temperature Coefficient  
O
Mode 1, 50:1, f  
< 2MHz  
±1  
ppm/°C  
CLK  
Q Temperature Coefficient  
Mode 1, 100:1, f  
< 2MHz  
±5  
±5  
ppm/°C  
ppm/°C  
CLK  
Mode 3, f  
< 2MHz  
CLK  
DC Offset Voltage  
V
OS1  
V
OS2  
V
OS3  
(Table 1)  
(Table 1)  
(Table 1)  
f
f
f
f
= 1MHz, 50:1 or 100:1  
= 1MHz, 50:1 or 100:1  
= 1MHz, 50:1 or 100:1  
< 1MHz  
2
3
3
0.2  
7
12  
15  
45  
45  
mV  
mV  
mV  
CLK  
CLK  
CLK  
CLK  
Clock Feedthrough  
Maximum Clock Frequency  
Power Supply Current  
mV  
RMS  
MHz  
Mode 1, Q < 5, V ≥ ±5V  
S
9
23  
26  
mA  
mA  
The  
denotes specifications which apply over the full operating  
Note 1: Contact LTC Marketing.  
Note 2: Not tested, guaranteed by Design.  
temperature range.  
Table 1. Output DC Offsets, One 2nd Order Section  
V
V
V
OSLP  
PINS 4, 9, 16, 21  
OSN  
OSBP  
MODE  
PINS 2, 11, 14, 23  
PINS 3, 10, 15, 22  
1
1b  
2
V
V
V
[(1/Q) + 1 + ] – V /Q  
H
V
V
V
V
OSN  
– V  
OS1  
OS1  
OS1  
OLP  
OS3  
OS3  
OS3  
OS3  
OS2  
[(1/Q) + 1 + (R2/R1)] – V /Q  
~(V  
– V )[1 + (R5/R6)]  
OSN OS2  
OS3  
[(1 + (R2/R1) + (R2/R3) + (R2/R4) – V (R2/R3)]  
V
– V  
OSN OS2  
OS3  
× [R4/(R2 + R4)] + V [R2/(R2 + R4)]  
OS2  
3
V
OS2  
V
V
[1 + (R4/R1) + (R4/R2) + (R4/R3)]  
OS1  
OS3  
– V (R4/R2) – V (R4/R3)  
OS2  
OS3  
3
LTC1064  
W
BLOCK DIAGRA  
HPA/NA  
(11)  
BPA  
(10)  
LPA  
(9)  
+
V
(7)  
INV A  
(12)  
50/100 (17)  
+
+
+
+
+
+
+
+
+
+
+
Σ
AGND  
(6)  
+
CLK (18)  
BPB  
(3)  
LPB  
(4)  
HPB/NB  
(2)  
V
(19)  
SA  
(8)  
INV B  
(1)  
Σ
+
HPC/NC  
(23)  
LPC  
(21)  
BPC  
(22)  
SB  
(5)  
+
INV C  
(24)  
BY TYING PIN 17 TO V , ALL SECTIONS  
OPERATE WITH (f /f ) = 50:1.  
+
CLK  
O
Σ
BY TYING PIN 17 TO V , ALL SECTIONS  
OPERATE WITH (f /f ) = 100:1.  
CLK  
O
BY TYING PIN 17 TO AGND, SECTIONS B, C  
LPD  
(16)  
HPD  
(14)  
BPD  
(15)  
OPERATE WITH (f /f ) = 50:1 AND  
CLK  
O
SECTIONS A, D OPERATE AT 100:1.  
SC  
(20)  
INV D  
(13)  
+
1064 BD  
U W  
TYPICAL PERFORMANCE CHARACTERISTICS  
Mode 1, (fCLK/fO) = 50:1  
Mode 1, (fCLK/fO) = 100:1  
Mode 2, (fCLK/fO) = 25:1  
T
= 25°C  
Q = 5  
T
= 25°C  
T = 25°C  
A
A
A
Q = 5  
Q = 10  
+
20  
15  
10  
5
20  
15  
10  
5
20  
15  
10  
5
Q = 10  
Q = 10  
PIN 17 AT V  
(R2/R4) = 3  
V = ±5V  
S
V
= ±5V  
S
V
= ±7.5V  
V
= ±2.5V  
C
S
S
V
S
= ±2.5V  
V
= ±7.5V  
C
= 15pF  
V
= ±5V  
= 15pF  
S
S
C
C
0
0
0
V
= ±2.5V  
S
–5  
–5  
–5  
T
= 25°C  
T
= 25°C  
A
A
V
= ±7.5V  
S
Q = 5 OR 10  
Q = 5 OR 10  
V
= ±5V  
S
1.5  
1.0  
0.5  
0
1.5  
1.0  
0.5  
0
1.5  
1.0  
0.5  
0
V
S
= ±5V  
V
= ±2.5V  
S
V
= ±2.5V  
S
V
= ±7.5V  
S
V
= ±5V  
V
= ±2.5V  
S
S
10 20 30  
40  
60 70 80 90 100110 120  
50  
0
10  
40  
60 70 80 90 100110 120  
0
0
10  
40  
60 70 80 90 100110 120  
50  
20 30  
50  
20 30  
CENTER FREQUENCY (kHz)  
CENTER FREQUENCY (kHz)  
CENTER FREQUENCY (kHz)  
1064 G01  
1064 G02  
1064 G03  
4
LTC1064  
U W  
TYPICAL PERFORMANCE CHARACTERISTICS  
Mode 2, (fCLK/fO) = 25:1  
Mode 2, (fCLK/fO) = 50:1  
Mode 3, (fCLK/fO) = 50:1  
T
= 25°C  
T
= 25°C  
T
= 25°C  
A
C
A
S
A
C
= 5pF  
V
= ±7.5V  
PIN 17 AT V  
(R2/R4) = 3  
Q = 5  
20  
15  
10  
5
20  
15  
10  
5
20  
15  
10  
5
+
V
= ±5V  
R2 = R4  
S
PIN 17 AT V  
(R2/R4) = 3  
V
S
= ±2.5V  
V
= ±5V  
S
Q = 5  
Q = 10  
V
S
= ±2.5V  
Q = 10  
Q = 5  
= 22pF  
Q = 2  
= 39pF  
V
= ±7.5V  
S
C
C
V
S
= ±7.5V  
C
C
0
0
0
–5  
–5  
–5  
1.5  
1.0  
0.5  
0
1.5  
1.0  
0.5  
0
1.5  
1.0  
0.5  
0
V
= ±5V  
S
V
= ±5V  
S
Q = 2  
Q = 5  
V
S
= ±7.5V  
V
= ±2.5V  
V
= ±2.5V  
S
S
V
S
= ±7.5V  
0
20  
80  
120140160180200  
0
10  
40  
60 70 80 90 100110 120  
0
10  
40  
60 70 80 90 100110 120  
50  
40 60  
100  
20 30  
50  
20 30  
CENTER FREQUENCY (kHz)  
CENTER FREQUENCY (kHz)  
CENTER FREQUENCY (kHz)  
1064 G04  
1064 G05  
1064 G06  
Mode 3, (fCLK/fO) = 50:1  
Wideband Noise vs Q  
Mode 3, (fCLK/fO) = 100:1  
240  
220  
200  
180  
160  
140  
120  
100  
80  
T
= 25°C  
T = 25°C  
A
C = 5pF  
C
ANY OUTPUT  
R3 = R1  
ONE SECOND ORDER  
SECTION  
MODE 1 OR 3  
100:1 OR 50:1  
A
C
C
= 15pF  
20  
15  
10  
5
20  
15  
10  
5
R2 = R4  
V
R2 = R4  
Q = 10  
V
= ±2.5V  
S
V
= ±5V  
= ±7.5V  
S
S
±7.5V  
±5V  
Q = 2  
Q = 1  
V
= ±7.5V  
S
±2.5V  
0
0
–5  
–5  
V
= ±5V  
S
V
= ±2.5V  
S
V
S
= ±7.5V  
1.5  
1.0  
0.5  
0
1.5  
1.0  
0.5  
0
60  
V
S
= ±2.5V  
V
= ±7.5V  
S
40  
V
S
= ±5V  
20  
0
0
10  
40  
60 70 80 90 100110 120  
0
10 20 30 40 50 60 70 80 90 100110 120  
CENTER FREQUENCY (kHz)  
1064 G08  
20 30  
50  
0
2
8 12 14 16 18 20 22 24  
10  
4
6
CENTER FREQUENCY (kHz)  
Q
1064 G07  
1064 G09  
Harmonic Distortion, 8th Order  
LP Butterworth, fC = 20kHz,  
THD = 0.015% for 3VRMS Input  
Power Supply Current vs  
Supply Voltage  
48  
44  
40  
36  
32  
28  
24  
20  
16  
12  
8
–55°C  
25°C  
125°C  
4
0
1064 G11  
0
2
8 12 14 16 18 20 22 24  
10  
POWER SUPPLY VOLTAGE (V – V )  
4
6
+
1064 G10  
5
LTC1064  
U
U
U
PIN FUNCTIONS  
V+, V(Pins 7, 19): Power Supplies. They should be  
bypassed with a 0.1µF ceramic capacitor. Low noise,  
nonswitching power supplies are recommended. The de-  
vice operates with a single 5V supply and with dual  
supplies. The absolute maximum operating power supply  
voltage is ±8V.  
AGND (Pin 6): Analog Ground. When the LTC1064 oper-  
ates with dual supplies, Pin 6 should be tied to system  
ground.WhentheLTC1064operateswithasinglepositive  
supply, the analog ground pin should be tied to 1/2 supply  
and it should be bypassed with a 1µF solid tantalum in  
parallel with a 0.1µF ceramic capacitor, Figure 1. The  
positive input of all the internal op amps, as well as the  
common reference of all the internal switches, are inter-  
nally tied to the analog ground pin. Because of this, a very  
“clean” ground is recommended.  
50/100 (Pin 17): By tying Pin 17 to V+, all filter sections  
operate with a clock-to-center frequency ratio internally  
setat50:1. WhenPin17isatmid-supplies, sectionsBand  
C operate with (fCLK/fO) = 50:1 and sections A and D  
operate at 100:1. When Pin 17 is shorted to the negative  
supply pin, all filter sections operate with (fCLK/fO) =  
100:1.  
CLK (Pin 18): Clock. For ±5V supplies the logic threshold  
level is 1.4V. For ±8V and 0V to 5V supplies the logic  
threshold levels are 2.2V and 3V respectively. The logic  
threshold levels vary ±100mV over the full military tem-  
perature range. The recommended duty cycle of the input  
clockis50%,althoughforclockfrequenciesbelow500kHz,  
the clock “on” time can be as low as 200ns. The maximum  
clock frequency for ±5V supplies is 4MHz. For ±7V  
supplies and above, the maximum clock frequency is  
7MHz.  
1
24  
2
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
+
V
LTC1064  
3
4
5
5k  
5k  
V+/2  
6
AGND  
V
CLOCK INPUT  
+
7
+
V
V
V
= 15V, TRIP VOLTAGE = 7V  
= 10V, TRIP VOLTAGE = 6.4V  
= 5V, TRIP VOLTAGE = 3V  
+
V
CLK  
50/100  
+
+
1µF  
8
0.1µF  
9
10  
11  
12  
TO DIGITAL  
GROUND  
ANALOG  
GROUND  
PLANE  
1064 F01  
NOTE: PINS 5, 8, 20, IF NOT USED, SHOULD BE CONNECTED TO PIN 6  
Figure 1. Single Supply Operation  
6
LTC1064  
U
W U U  
APPLICATIONS INFORMATION  
ANALOG CONSIDERATIONS  
Grounding and Bypassing  
Figure2showsanexampleofanidealgroundplanedesign  
for a two-sided board. Of course this much ground plane  
will not always be possible, but users should strive to get  
as close to this as possible. Protoboards are not  
recommended.  
The LTC1064 should be used with separated analog and  
digital ground planes and single point grounding  
techniques.  
Pin 6 (AGND) should be tied directly to the analog ground  
plane.  
Buffering the Filter Output  
Pin 7 (V+) should be bypassed to the ground plane with a  
0.1µF ceramic capacitor with leads as short as possible.  
Pin 19 (V) should be bypassed with a 0.1µF ceramic  
capacitor. For single supply applications, Vcan be tied to  
the analog ground plane.  
For good noise performance, V+ and Vmust be free of  
noise and ripple.  
When driving coaxial cables and 1× scope probes, the  
filter output should be buffered. This is important espe-  
cially when high Qs are used to design a specific filter.  
Inadequate buffering may cause errors in noise, distor-  
tion, Q and gain measurements. When 10× probes are  
used, buffering is usually not required. An inverting buffer  
is recommended especially when THD tests are per-  
formed. As shown in Figure 3, the buffer should be  
adequately bypassed to minimize clock feedthrough.  
All analog inputs should be referenced directly to the  
single point ground. The clock inputs should be shielded  
from and/or routed away from the analog circuitry and a  
separate digital ground plane used.  
PIN 1 IDENT  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
V
IN  
2
3
4
FOR BEST HIGH FREQUENCY RESPONSE  
PLACE RESISTORS PARALLEL TO DOUBLE-  
SIDED COPPER CLAD BOARD AND LAY FLAT  
(4 RESISTORS SHOWN HERE TYPICAL)  
5k  
–7.5V  
0.1µF CERAMIC  
5
LTC1064  
6
7.5V  
7
8
CLOCK  
DIGITAL  
GROUND  
PLANE  
0.1µF  
CERAMIC  
9
(SINGLE POINT  
GROUND)  
10  
11  
12  
ANALOG  
GROUND  
PLANE  
NOTE: CONNECT ANALOG AND DIGITAL  
GROUND PLANES AT A SINGLE POINT AT  
THE BOARD EDGE  
1064 F02  
Figure 2. Example Ground Plane Breadboard Technique for LTC1064  
7
LTC1064  
U
W U U  
APPLICATIONS INFORMATION  
Noise  
Offset Nulling  
All the noise performance mentioned excludes the clock  
feedthrough. Noise measurements will degrade if the  
already described grounding bypassing and buffering  
techniques are not practiced. The graph Wideband Noise  
vs Q in the Typical Performance Characteristics section is  
a very good representation of the noise performance of  
this device.  
Lowpass filters may have too much DC offset for some  
users. A servo circuit may be used to actively null the  
offsets of the LTC1064 or any LTC switched-capacitor  
filter.ThecircuitshowninFigure4willnulloffsetstobetter  
than300µV. Thiscircuittakessecondstosettlebecauseof  
the integrator pole frequency.  
+
SEPARATE V POWER SUPPLY TRACE FOR BUFFER  
R12  
+
FROM  
R11  
1µF  
0.1µF  
10k  
FILTER OUTPUT  
V
IN  
R21  
R31  
R22  
R32  
10k  
R1  
1M  
4
LT®318  
+
V
TRACE FOR FILTER  
R3  
100k  
+
LT1007  
LT1056  
TO FILTER  
FIRST SUMMING  
NODE  
C1  
19  
LTC1064  
LT1012  
0.1µF  
+
7
POSITIVE  
SUPPLY  
7
0.1µF  
0.1µF  
1µF  
R2  
1M  
0.1µF  
NEGATIVE  
SUPPLY  
C2  
0.1µF  
+
C1 = C2 = LOW LEAKAGE FILM  
(I.E. POLYPROPYLENE)  
R1 = R2 = METAL FILM 1%  
1064 F04  
1064 F03  
Figure 3. Buffering the Output of a 4th Order Bandpass Realization  
Figure 4. Servo Amplifier  
W
U
ODES OF OPERATIO  
PRIMARY MODES  
Mode 1  
R3  
R2  
In Mode 1, the ratio of the external clock frequency to the  
center frequency of each 2nd order section is internally  
fixed at 50:1 or 100:1. Figure 5 illustrates Mode 1 provid-  
ing 2nd order notch, lowpass and bandpass outputs.  
Mode 1 can be used to make high order Butterworth  
lowpass filters; it can also be used to make low Q notches  
and for cascading 2nd order bandpass functions tuned at  
thesamecenterfrequencywithunitygain.Mode1isfaster  
than Mode 3. Note that Mode 1 can only be implemented  
with three of the four LTC1064 sections because Section  
D has no externally available summing node. Section D,  
however, can be internally connected in Mode 1 upon  
special request.  
BP  
LP  
N
S
R1  
V
IN  
+
+
Σ
1/4 LTC1064  
AGND  
R2  
R1  
R3  
R1  
R2  
R1  
R3  
R2  
f
CLK  
100(50)  
f
O
=
; f= f ; H  
= –  
; H  
= –  
; H = –  
ON1  
; Q =  
n
O
OLP  
OBP  
1064 F05  
Figure 5. Mode 1: 2nd Order Filter Providing Notch,  
Bandpass and Lowpass  
8
LTC1064  
W
U
ODES OF OPERATIO  
Mode 3  
SECONDARY MODES  
Mode 1b  
Mode3isthesecondoftheprimarymodes. InMode3, the  
ratio of the external clock frequency to the center fre-  
quencyofeach2ndordersectioncanbeadjustedabove or  
below 50:1 or 100:1. Side D of the LTC1064 can only be  
connected in Mode 3. Figure 6 illustrates Mode 3, the  
classical state variable configuration, providing highpass,  
bandpass and lowpass 2nd order filter functions. Mode 3  
is slower than Mode 1. Mode 3 can be used to make high  
order all-pole bandpass, lowpass, highpass and notch  
filters.  
Mode1bisderivedfromMode1.InMode1b,Figure7,two  
additional resistors R5 and R6 are added to alternate the  
amount of voltage fed back from the lowpass output into  
the input of the SA (or SB or SC) switched-capacitor  
summer. This allows the filter’s clock-to-center frequency  
ratio to be adjusted beyond 50:1 or 100:1. Mode 1b  
maintains the speed advantages of Mode 1.  
R6  
R5  
When the internal clock-to-center frequency ratio is set at  
50:1, the design equations for Q and bandpass gain are  
different from the 100:1 case. This was done to provide  
speed without penalizing the noise performance.  
R3  
R2  
BP  
LP  
N
S
R1  
V
IN  
+
+
Σ
C
C
1064 F07  
1/4 LTC1064  
R4  
R3  
R2  
AGND  
BP  
LP  
HP  
S
R3  
f
R6  
R6  
R5 + R6  
CLK  
f
O
=
; f= f Q =  
;
n
O;  
R2  
100(50) R5 + R6  
R1  
V
IN  
+
R2  
R1  
R6  
R5 + R6  
+
R2  
R1  
f
CLK  
2
H
(f0) = H  
f→  
= –  
; H  
OLP  
= –  
;
Σ
ON1  
OBP  
ON2  
(
)
1064 F06  
1/4 LTC1064  
R3  
H
= –  
; R5 R6 5k  
1064 F07 Eq  
R1  
AGND  
Figure 7. Mode 1b: 2nd Order Filter Providing Notch,  
Bandpass and Lowpass  
R2  
R4  
R3 R2  
R2  
R1  
f
CLK  
MODE 3 (100:1):  
MODE 3 (50:1):  
f
=
; Q =  
; H = –  
OHP  
;
O
R1  
R2 R4  
100  
R3  
R1  
R4  
H
= –  
; H  
= –  
OLP  
OBP  
Mode 2  
R2  
R4  
1.005  
f
R2  
R4  
CLK  
50  
f
=
; Q =  
;
O
Mode 2 is a combination of Mode 1 and Mode 3, as shown  
in Figure 8. With Mode 2, the clock-to-center frequency  
ratio fCLK/fO is always less than 50:1 or 100:1. The  
advantage of Mode 2 is that it provides less sensitivity to  
resistor tolerances than does Mode 3. As in Mode 1, Mode  
2 has a notch output which depends on the clock fre-  
quency and the notch frequency is therefore less than the  
center frequency fO.  
R2  
R2  
R3 16R4  
R3  
R1  
R3  
R2  
R1  
R4  
R1  
H
= –  
; H  
= –  
OBP  
; H = –  
OLP  
OHP  
1 –  
16R4  
NOTE: THE 50:1 EQUATIONS FOR MODE 3 ARE DIFFERENT FROM THE EQUATIONS  
FOR MODE 3 OPERATIONS OF THE LTC1059, LTC1060 AND LTC1061. START WITH  
f , CALCULATE R2/R4, SET R4; FROM THE Q VALUE, CALCULATE R3:  
O
R2  
R3 =  
; THEN CALCULATE R1 TO SET  
THE DESIRED GAIN.  
1.005  
Q
R2  
R4  
R2  
16R4  
1064 F06 Eq  
+
When the internal clock-to-center frequency ratio is set at  
50:1, the design equations for Q and bandpass gain are  
different from the 100:1 case.  
Figure 6. Mode 3: 2nd Order Filter Providing Highpass,  
Bandpass and Lowpass  
9
LTC1064  
W
U
ODES OF OPERATIO  
R2  
R1  
R4  
R3  
R2  
R2  
R4  
f
R3  
R2  
R2  
R4  
f
CLK  
50  
CLK  
MODE 2 (100:1):  
f
=
1 +  
; f  
=
; Q =  
1 +  
; H  
= –  
OLP  
;
O
n
R2  
100  
1 +  
R4  
R2  
R1  
R3  
R1  
R2  
f
CLK  
2
BP  
LP  
N
S
H
= –  
; H (f0) = –  
; H  
f→  
= –  
OBP  
ON1  
ON2  
(
)
R1  
R2  
1 +  
R4  
R1  
V
IN  
+
R2  
R1  
R2  
R4  
+
1.005 1 +  
f
R2  
R4  
f
CLK  
50  
CLK  
50  
Σ
f
=
1 +  
; f  
=
; Q =  
; H  
= –  
;
MODE 2 (50:1):  
O
n
OLP  
R2  
R2  
R2  
R4  
1 +  
R3 16R4  
1064 F08  
1/4 LTC1064  
R3  
R1  
R3  
R2  
f
R2  
R1  
R1  
; H  
1 +  
AGND  
CLK  
2
H
= –  
; H (f0) = –  
=
f→  
=
OBP  
ON1  
ON2  
(
)
R2  
R4  
1 –  
16R4  
NOTE: THE 50:1 EQUATIONS FOR MODE 2 ARE DIFFERENT FROM THE EQUATIONS  
FOR MODE 2 OPERATION OF THE LTC1059, LTC1060 AND LTC1061. START WITH  
f , CALCULATE R2/R4, SET R4; FROM THE Q VALUE, CALCULATE R3:  
O
R2  
R3 =  
; THEN CALCULATE R1 TO SET THE DESIRED GAIN.  
1.005  
Q
R2  
R2  
1 +  
+
1064 F08Eq  
R4 16R4  
Figure 8. Mode 2: 2nd Order Filter Providing Notch, Bandpass and Lowpass  
puts can be summed directly into the inverting input of the  
next section. The topology of Mode 3a is useful for elliptic  
highpass and notch filters with clock-to-cutoff frequency  
ratios higher than 100:1. This is often required to extend  
the allowed input signal frequency range and to avoid  
premature aliasing.  
Mode 3a  
This is an extension of Mode 3 where the highpass and  
lowpass outputs are summed through two external resis-  
tors RH and RL to create a notch. This is shown in Figure  
9. Mode 3a is more versatile than Mode 2 because the  
notch frequency can be higher or lower than the center  
frequencyofthe2ndordersection. Theexternalopampof  
Figure 9 is not always required. When cascading the  
sections of the LTC1064, the highpass and lowpass out-  
When the internal clock-to-center frequency ratio is set at  
50:1, the design equations for Q and bandpass gain are  
different from the 100:1 case.  
R2  
R4  
f
R
R
R2  
R1  
R3  
R1  
f
CLK  
H
CLK  
MODE 3a (100:1):  
f
=
; f  
=
; H =  
OHP  
; HOBP =  
=
;
O
n
100  
100  
L
R
R
R2  
R1  
R4  
R1  
R
R
R4  
R1  
f
G
G
CLK  
2
H
H
f
= –  
; H (f0) =  
; H  
f→  
;
C
C
OLP  
ON1  
ON2  
(
)(  
)
(
)
(
)(  
)
H
L
R
G
R
R
R3  
R2  
R2  
R4  
G
R4  
R3  
R2  
(f = f ) = Q  
O
H
H
; Q =  
ON  
OLP  
OHP  
(
)
R
CLK  
L
H
R2  
R1  
f
R2  
R4  
f
f
R
H
CLK  
50  
CLK  
50  
=
;
=
1 +  
; f  
=
; H  
f→  
MODE 3a (50:1):  
O
n
OHP  
(
)
2
R
L
R
BP  
LP  
R
HP  
S
G
R3  
R1  
R3  
R2  
R4  
1.005  
R1  
R4  
R1  
H
= –  
; H (f = 0) =  
Q =  
;
+
V
IN  
OBP  
OLP  
+
L
R2  
R2  
1 –  
Σ
16R4  
R3 16R4  
NOTCH  
NOTE: THE 50:1 EQUATIONS FOR MODE 3A ARE DIFFERENT FROM  
+
1/4 LTC1064  
THE EQUATIONS FOR MODE 3A OPERATION OF THE LTC1059,  
R
H
AGND  
LTC1060 AND LTC1061. START WITH f , CALCULATE R2/R4, SET R4;  
O
FROM THE Q VALUE, CALCULATE R3:  
R2  
EXTERNAL OP AMP OR INPUT  
OP AMP OF THE LTC1064,  
R3 =  
; THEN CALCULATE R1 TO  
R2  
SET THE DESIRED GAIN.  
SIDE A, B, C, D  
1.005 R2  
1064 F09Eq  
1064 F09  
+
Q
R4 16R4  
Figure 9. Mode 3a: 2nd Order Filter Providing Highpass, Bandpass, Lowpass and Notch  
10  
LTC1064  
U
TYPICAL APPLICATIONS  
Amplitude Response  
Wideband Bandpass: Ratio of High to Low Corner Frequency Equal to 2  
R14  
15  
0
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
INV B  
HPB/NB  
BPB  
INV C  
HPC/NC  
BPC  
f
= 7MHz  
R23  
R33  
R43  
R24  
R34  
R44  
CLK  
–15  
–30  
–45  
–60  
–75  
–90  
–105  
3
4
LPB  
LPC  
V
5
OUT  
SB  
SC  
f
= 2MHz  
CLK  
6
C1  
AGND  
V
–5V TO –8V  
LTC1064  
0.1µF  
7
+
5V TO 8V  
V
CLK  
50/100  
LPD  
f
7MHz  
CLK  
0.1µF  
8
SA  
R41  
R31  
R21  
V
S
= ±8V  
9
LPA  
C2  
R42  
R32  
R22  
R12  
10  
11  
12  
10k  
100k  
INPUT FREQUENCY (Hz)  
1M  
BPA  
BPD  
HPA/NA  
INV A  
HPD  
1064 TA04  
R11  
INV D  
V
IN  
R13  
RESISTOR VALUES:  
R11 = 16k  
R12 = 10k  
R21 = 16k  
R22 = 10k  
R31 = 7.32k  
R32 = 22.6k  
R41 = 10k  
R42 = 13.3k  
R43 = 10k  
R44 = 32.4k  
R13 = 23.2k R23 = 13.3k R33 = 21.5k  
R14 = 6.8k  
R24 = 20k  
R34 = 15.4k  
1064 TA03  
NOTE: FOR f  
3MHz, USE C1 = C2 = 22pF  
CLK  
Amplitude Response  
Quad Bandpass Filter with Center Frequency Equal to fO, 2fO, 3fO, and 4fO  
10.5k  
5
R12  
R13  
f
= 2MHz  
CLK  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
V
INV B  
HPB/NB  
BPB  
INV C  
HPC/NC  
BPC  
V
0
–5  
IN1  
IN2  
R22  
R32  
R23  
R33  
R43  
3
–10  
–15  
–20  
–25  
–30  
–35  
–40  
4
LPB  
LPC  
5
SB  
SC  
6
AGND  
V
–5V TO –8V  
0.1µF  
LTC1064  
7
+
V
CLK  
50/100  
LPD  
f
5V TO 8V  
CLK  
8
SA  
0.1µF  
R44  
R34  
R24  
9
LPA  
R31  
R21  
10  
11  
12  
0
10  
20  
30  
40  
50  
BPA  
BPD  
INPUT FREQUENCY (kHz)  
HPA/NA  
INV A  
HPD  
1064 TA06  
R11  
R14  
INV D  
V
IN4  
V
IN3  
20k  
17.4k  
20k  
20k  
+
RESISTOR VALUES:  
V
LT1056  
OUT  
R11 = 249k  
R12 = 249k  
R13 = 499k  
R14 = 453k  
R21 = 10k  
R31 = 249k  
R32 = 249k  
R33 = 174k  
R34 = 249k  
R22 = 10k  
R23 = 10k  
R24 = 10k  
R43 = 17.8k  
R44 = 40.2k  
1064 TA05  
11  
LTC1064  
TYPICAL APPLICATIONS  
U
Amplitude Response  
8th Order Bandpass Filter with 2 Stopband Notches  
R
L2  
10  
0
R
V
f
= ±5V  
CLK  
PIN 17 AT V  
H2  
S
= 1.28MHz  
R
H3  
+
R12  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
INV B  
HPB/NB  
BPB  
INV C  
HPC/NC  
BPC  
R22  
R32  
R42  
R23  
R33  
R43  
3
4
LPB  
LPC  
R
L3  
5
SB  
SC  
6
AGND  
V
–5V TO –8V  
LTC1064  
0.1µF  
7
+
V
CLK  
50/100  
LPD  
1.28MHz  
5V TO 8V  
8
+
0.1µF  
TO V  
SA  
R41  
R31  
R21  
R44  
R34  
R24  
1
5
10  
20  
40  
100  
9
LPA  
INPUT FREQUENCY (kHz)  
10  
11  
12  
BPA  
BPD  
1064 TA08  
HPA/NA  
INV A  
HPD  
R11  
V
IN  
INV D  
V
OUT  
RESISTOR VALUES:  
R11 = 46.95k  
R12 = 93.93k  
R21 = 10k  
R22 = 10k  
R23 = 16.3k  
R31 = 38.25k  
R32 = 81.5k  
R33 = 70.3k  
R34 = 39.42k  
R41 = 11.81k  
R42 = 14.72k =R27.46k  
R43 = 10k  
R44 = 10.5k  
R = 6.9k  
H2  
R = 69.7k  
H3  
L2  
L3  
=R17.9k  
R24 = 13.19k  
+
NOTE1: THE V , V PINS SHOULD BE BYPASSED WITH A 0.1µF TO 0.22µF  
CERAMIC CAPACITOR, RIGHT AT THE PINS.  
NOTE 2: THE RATIOS OF ALL (R2/R4) RESISTORS SHOULD BE MATCHED  
TO BETTER THAN 0.25%. THE REMAINING RESISTORS SHOULD BE  
BETTER THAN 0.5% ACCURATE.  
1064 TA07  
C-Message Filter  
Amplitude Response  
R13  
10  
0
V
= ±5V  
S
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
INV B  
HPB/NB  
BPB  
INV C  
HPC/NC  
BPC  
R22  
R32  
R42  
R23  
R33  
R43  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
3
4
LPB  
LPC  
0.1µF  
5
SB  
SC  
R14  
6
–5V  
AGND  
V
LTC1064  
7
3.5795MHz  
16  
+
f
=
V
CLK  
50/100  
LPD  
5V  
CLK  
0.1µF  
R12  
R41  
R31  
R21  
8
SA  
R44  
R34  
R24  
9
LPA  
10  
11  
12  
0
1
2
3
4
5
BPA  
BPD  
INPUT FREQUENCY (kHz)  
HPA/NA  
INV A  
HPD  
1064 TA10  
R11  
V
INV D  
IN  
V
OUT  
RESISTOR VALUES:  
R11 = 88.7k  
R12 = 10k  
R21 = 10k  
R22 = 44.8k  
R23 = 48.9k  
R24 = 44.8k  
R31 = 35.7k  
R32 = 33.2k  
R33 = 63.5k  
R34 = 16.5k  
R41 = 88.7k  
R42 = 24.9k  
R43 = 25.5k  
R44 = 24.9k  
R13 = 15.8k  
R14 = 15.8k  
1064 TA09  
12  
LTC1064  
U
TYPICAL APPLICATIONS  
8th Order Chebyshev Lowpass Filter with a Passband  
Amplitude Response  
Ripple of 0.1dB and Cutoff Frequency up to 100kHz  
R13  
15  
0
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
INV B  
HPB/NB  
BPB  
INV C  
HPC/NC  
BPC  
R22  
R32  
R42  
R23  
R33  
R43  
R14  
15  
–30  
–45  
–60  
–75  
–90  
–105  
3
R12  
4
LPB  
LPC  
5
SB  
SC  
6
–5V TO –8V  
= 5MHz  
AGND  
V
0.1µF  
LTC1064  
7
+
V
CLK  
50/100  
LPD  
f
5V TO 8V  
CLK  
5V TO 8V  
R44  
0.1µF  
8
SA  
V
f
= ±8V  
CLK  
S
R41  
R31  
R21  
= 5MHz  
9
LPA  
PASSBAND RIPPLE = 0.1dB  
R34  
R24  
10  
11  
12  
BPA  
BPD  
10k  
100k  
1M  
HPA/NA  
INV A  
HPD  
INPUT FREQUENCY (Hz)  
R11  
V
IN  
INV D  
1064 TA12  
V
OUT  
RESISTOR VALUES:  
R11 = 100.86k R21 = 16.75k  
1064 TA11  
R31 = 23.6k  
R41 = 99.73k  
R42 = 25.52k  
R43 = 99.83k  
R44 = 25.42k  
R12 = 25.72k  
R13 = 16.61k  
R14 = 13.84k  
R22 = 20.93k  
R23 = 10.18k  
R24 = 11.52k  
R32 = 45.2k  
R33 = 68.15k  
R34 = 17.72k  
FOR f  
> 3MHz, ADD C2 = 10pF ACROSS R42  
C3 = 10pF ACROSS R43  
CLK  
C4 = 10pF ACROSS R44  
WIDEBAND NOISE = 170µV  
RMS  
8th Order Clock-Sweepable Lowpass Elliptic Antialiasing Filter  
Amplitude Response  
R
H1  
0
R
L1  
–15  
–30  
–45  
–60  
–75  
–90  
–105  
R
H2  
R
L2  
R11  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
INV B  
HPB/NB  
BPB  
INV C  
HPC/NC  
BPC  
V
IN  
R22  
R32  
R42  
R21  
R31  
R41  
3
4
LPB  
LPC  
5
SB  
SC  
6
–7.5V  
AGND  
V
LTC1064  
7
0.1µF  
+
V
CLK  
50/100  
LPD  
f
2MHz  
7.5V  
CLK  
0
10  
20  
30  
40  
FREQUENCY (kHz)  
50  
60  
70  
0.1µF  
8
7.5V  
SA  
R43  
R44  
R34  
R24  
9
LPA  
8TH ORDER CLOCK-SWEEPABLE LOWPASS  
ELLIPTIC ANTIALIASING FILTER MAINTAINS,  
R33  
R23  
10  
11  
12  
BPA  
BPD  
FOR 0.1Hz f  
20kHz, A ±0.1dB MAX  
CUTOFF  
PASSBAND ERROR AND 72dB MIN STOPBAND  
ATTENUATION AT 1.5 × f  
HPA/NA  
INV A  
HPD  
.
CUTOFF  
INV D  
TOTAL WIDEBAND NOISE = 150µV  
,
,
RMS  
V
OUT  
THD = 70dB (0.03%) FOR V = 3V  
R
IN  
RMS  
L3  
f
/f  
= 100:1. THIS FILTER AVAILABLE  
CLK CUTOFF  
R
H3  
AS LTC1064-1 WITH INTERNAL THIN FILM  
RESISTORS.  
1064 TA14  
RESISTOR VALUES:  
R11 = 19.1k  
R21 = 10k  
R22 = 10k  
R23 = 11.3k  
R24 = 15.4k  
R31 = 13.7k  
R32 = 23.7k  
R33 = 84.5k  
R34 = 15.2k  
R41 = 15.4k =R14k  
L1  
R
= 30.9k  
= 76.8k  
= 60.2k  
H1  
R42 = 10.2k =R26.7k  
R
H2  
L2  
R43 = 10k  
=R10k  
R
H3  
L3  
R44 = 42.7k  
NOTE: FOR t  
>15kHz, ADD A 5pF CAPACITOR ACROSS R41 AND R43  
CUTOFF  
1064 TA13  
13  
LTC1064  
U
TYPICAL APPLICATIONS  
Dual 4th Order Bessel Filter with 140kHz Cutoff Frequency  
Amplitude Response  
R13  
15  
0
R12  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
INV B  
HPB/NB  
BPB  
INV C  
HPC/NC  
BPC  
V
IN1  
R22  
R32  
R42  
R23  
R33  
R43  
15  
–30  
–45  
–60  
–75  
–90  
–105  
3
4
LPB  
LPC  
5
SB  
SC  
V
OUT1  
–8V  
0.1µF  
6
AGND  
V
LTC1064  
7
+
7MHz  
CLOCK  
8V  
V
CLK  
50/100  
LPD  
8V  
8
0.1µF  
SA  
V
f
= ±8V  
CLK  
S
V
OUT2  
= 7MHz  
9
LPA  
R44  
R34  
R24  
R41  
R31  
R21  
10  
11  
12  
10k  
100k  
1M  
BPA  
BPD  
INPUT FREQUENCY (Hz)  
HPA/NA  
INV A  
HPD  
1064 TA16  
R11  
INV D  
V
IN2  
R14  
RESISTOR VALUES:  
R11 = 14.3k  
R12 = 15.4k  
R13 = 3.92k  
R14 = 3.92k  
R21 = 13k  
R31 = 7.5k  
R32 = 7.5k  
R33 = 27.4k  
R34 = 6.8k  
R41 = 10k  
R22 = 15.4k  
R23 = 20k  
R24 = 20k  
R42 = 10k  
R43 = 40k  
R44 = 10k  
WIDEBAND NOISE = 64µV  
RMS  
1064 TA15  
fCLK  
=
65  
1
Amplitude Response  
8th Order Linear Phase (Bessel) Filter with  
f3dB  
R12  
15  
0
R11  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
INV B  
HPB/NB  
BPB  
INV C  
HPC/NC  
BPC  
V
IN1  
R21  
R31  
R41  
R22  
R32  
R42  
15  
–30  
–45  
–60  
–75  
–90  
–105  
3
4
LPB  
LPC  
5
SB  
SC  
TO R13  
6
–5V TO –8V  
0.1µF  
AGND  
V
LTC1064  
7
f
+
CLK  
V
= ±8V  
S
V
CLK  
50/100  
LPD  
5V TO 8V  
7MHz  
f
= 4.5MHz  
CLK  
CLK  
–3dB  
8
0.1µF  
+
SA  
f
f
= 50% DUTY CYCLE  
= 70kHz  
TO V  
V
OUT  
9
LPA  
R44  
R34  
R24  
R43  
R33  
R23  
10  
11  
12  
10k  
100k  
INPUT FREQUENCY (Hz)  
1M  
BPA  
BPD  
HPA/NA  
INV A  
HPD  
1064 TA18  
R13  
FROM  
PIN 20  
INV D  
R14  
RESISTOR VALUES:  
R11 = 34.8k  
R12 = 10.5k  
R13 = 12.7k  
R14 = 20k  
R21 = 34.8k  
R31 = 14.3k  
R32 = 22.1k  
R33 = 24.3k  
R34 = 13.3k  
R41 = 40.2k  
R42 = 39.2k  
R43 = 20k  
R44 = 20k  
R22 = 45.3k  
R23 = 34.8k  
R24 = 34.8k  
WIDEBAND NOISE = 70µV  
RMS  
1064 TA17  
14  
LTC1064  
U
TYPICAL APPLICATIONS  
Amplitude Response  
Dual 5th Order Chebyshev Lowpass Filter with  
50kHz and 100kHz Cutoff Frequencies  
15  
0
PASSBAND RIPPLE = 0.2dB  
R14  
R13a  
R13b  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
INV B  
HPB/NB  
BPB  
INV C  
HPC/NC  
BPC  
V
IN2  
15  
–30  
–45  
–60  
–75  
–90  
–105  
R23  
R33  
R43  
R24  
R34  
R44  
C2  
1000pF  
3
4pF  
4
LPB  
LPC  
V
C
OUT2  
= 100kHz  
5
SB  
SC  
f
2pF  
6
–8V  
AGND  
V
LTC1064  
7
5MHz  
T L  
0.1µF  
+
V
CLK  
50/100  
LPD  
8V  
2
22pF  
8
V
C
0.1µF  
OUT1  
SA  
f
= 50kHz  
R42  
R32  
R22  
9
LPA  
10k  
50k 100k  
INPUT FREQUENCY (Hz)  
1M  
R41  
10  
11  
12  
39pF  
RESISTOR VALUES:  
BPA  
BPD  
R31  
R21  
1064 TA20  
HPA/NA  
INV A  
HPD  
R11a = 4.32k  
R11b = 27.4k  
R12 = 10.5k  
R13a = 3k  
R21 = 11.8k  
R31 = 29.4k  
R32 = 21.5k  
R33 = 29.4k  
R34 = 21.6k  
R41 = 10k  
R11a  
R11b  
INV D  
R22 = 20k  
R23 = 11.8k  
R24 = 20k  
R42 = 31.6k  
R43 = 10k  
V
IN1  
C1  
1000pF  
R12  
R44 = 31.6k  
R13b = 29.4k  
R14 = 10.5k  
1064 TA19  
Clock-Tunable, 30kHz to 90kHz 8th Order Notch  
Filter Providing Notch Depth in Excess of 60dB  
R13  
C2  
R14  
Amplitude Response  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
10  
0
INV B  
HPB/NB  
BPB  
INV C  
HPC/NC  
BPC  
R23  
R33  
R22  
R32  
R42  
BW  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
3
4
LPB  
LPC  
0.1µF  
5
SB  
SC  
6
C1  
AGND  
V
–8V  
LTC1064  
7
+
8V  
V
CLK  
50/100  
LPD  
f
5MHz  
CLK  
C3  
0.1µF  
8
SA  
R12  
9
LPA  
V
f
= ±8V  
= 4MHz  
S
CLK  
R31  
R21  
R44  
R34  
R24  
10  
11  
12  
C1 = C2 = C3 = 15pF  
BPA  
BPD  
THE NOTCH DEPTH FROM  
5kHz TO 30kHz IS 50dB  
HPA/NA  
INV A  
HPD  
10  
30  
40  
50  
60  
70  
20  
R11  
WIDEBAND NOISE = 300µV  
RMS  
INV D  
V
INPUT FREQUENCY (kHz)  
IN1  
R
L4  
0.1%  
R
1064 TA22  
G
R
H4  
0.1%  
+
RESISTOR VALUES:  
R11 = 50k  
R12 = 15.4k  
R13 = 10k  
R14 = 9.09k  
R21 = 5k  
R22 = 10k  
R23 = 10k  
R24 = 10k  
R31 = 50k  
= 6R8.1k  
L4  
H4  
LT1056  
V
G
OUT  
R32 = 88.7k  
R33 = 100k  
R34 = 63.4k  
R42 = 48.7k =R10k (0.1%)  
=R10k (0.1%)  
R44 = 12.4k  
1064 TA21  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENT  
LTC1061  
Triple Universal Filter Building Block  
Three Filter Building Blocks in a 20-Pin Package  
Low Noise, Low Power Pin-for-Pin LTC1064 Compatible  
Up to 250kHz Center Frequency  
LTC1164  
Low Power, Quad Universal Filter Building Block  
High Speed, Quad Universal Building Block  
LTC1264  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LTC1064  
PACKAGE DESCRIPTION  
U
Dimension in inches (millimeters) unless otherwise noted.  
1.290  
(32.77)  
MAX  
CORNER LEADS OPTION  
(4 PLCS)  
21  
24  
23  
22  
20  
19  
18  
17  
16  
15  
10  
14  
11  
13  
12  
0.023 – 0.045  
(0.584 – 1.143)  
HALF LEAD  
OPTION  
0.220 – 0.310  
(5.588 – 7.874)  
0.025  
(0.635)  
RAD TYP  
0.045 – 0.068  
1
2
3
4
5
6
(1.143 – 1.727)  
FULL LEAD  
OPTION  
7
8
9
J Package  
24-Lead Ceramic DIP  
0.005  
(0.127)  
MIN  
0.200  
(5.080)  
MAX  
0.300 BSC  
(0.762 BSC)  
0.015 – 0.060  
(0.381 – 1.524)  
0.008 – 0.018  
(0.203 – 0.457)  
0° – 15°  
0.045 – 0.068  
(1.143 – 1.727)  
0.125  
(3.175)  
MIN  
0.385 ± 0.025  
(9.779 ± 0.635)  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.014 – 0.026  
(0.360 – 0.660)  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE OR TIN PLATE LEADS.  
J24 0695  
1.265*  
(32.131)  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
11  
13  
12  
0.255 ± 0.015*  
(6.477 ± 0.381)  
3
4
5
6
7
8
9
10  
1
2
N Package  
24-Lead Plastic DIP  
0.300 – 0.325  
(7.620 – 8.255)  
0.045 – 0.065  
(1.143 – 1.651)  
0.130 ± 0.005  
(3.302 ± 0.127)  
0.015  
(0.381)  
MIN  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
+0.025  
0.125  
(3.175)  
MIN  
0.005  
(0.127)  
MIN  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
(0.457 ± 0.076)  
0.325  
–0.015  
+0.635  
8.255  
N24 0695  
(
)
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
0.598 – 0.614  
(15.190 – 15.600)  
(NOTE 2)  
24 23 22 21 20 19 18  
16 15 14 13  
17  
NOTE:  
1. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM  
OF PACKAGES ARE THE MANUFACTURING OPTIONS.  
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF  
THE OPTIONS.  
0.394 – 0.419  
(10.007 – 10.643)  
NOTE 1  
*
DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH.  
SW Package  
24-Lead Plastic SO  
INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
0.291 – 0.299  
(7.391 – 7.595)  
(NOTE 2)  
2
3
5
7
8
9
10  
1
4
6
11 12  
0.037 – 0.045  
(0.940 – 1.143)  
0.093 – 0.104  
(2.362 – 2.642)  
0.010 – 0.029  
(0.254 – 0.737)  
× 45°  
0° – 8° TYP  
0.050  
(1.270)  
TYP  
0.004 – 0.012  
0.009 – 0.013  
(0.229 – 0.330)  
(0.102 – 0.305)  
NOTE 1  
0.014 – 0.019  
0.016 – 0.050  
(0.356 – 0.482)  
SW24 0695  
(0.406 – 1.270)  
LT/GP 0895 2K REV A • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1989  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7487  
16  
(408) 432-1900 FAX: (408) 434-0507 TELEX: 499-3977  

相关型号:

LT1064-4CJ

Analog Filter
ETC

LT1064-4CN

Analog Filter
ETC

LT1064-4CS

Analog Filter
ETC

LT1064-4MJ

Analog Filter
ETC

LT10647FB

Linear Phase, 8th Order Lowpass Filter
Linear

LT10647FB_15

Linear Phase, 8th Order Lowpass Filter
Linear

LT1066-1CS

Analog Filter
ETC

LT1069-1CS80

IC SWITCHED CAPACITOR FILTER, ELLIPTIC, LOWPASS, Active Filter
Linear

LT107

LT Series: 25/30 WATT Wide Input Range
ETC

LT1070

5A and 2.5A High Efficiency Switching Regulators
Linear

LT1070CK

5A and 2.5A High Efficiency Switching Regulators
Linear

LT1070CKC

Current-Mode SMPS Controller
ETC