LT1072CT#PBF [Linear]

LT1072 - 1.25A High Efficiency Switching Regulator; Package: TO-220; Pins: 5; Temperature Range: 0°C to 70°C;
LT1072CT#PBF
型号: LT1072CT#PBF
厂家: Linear    Linear
描述:

LT1072 - 1.25A High Efficiency Switching Regulator; Package: TO-220; Pins: 5; Temperature Range: 0°C to 70°C

局域网 开关
文件: 总16页 (文件大小:193K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1072  
1.25A High Efficiency  
Switching Regulator  
U
FEATURES  
DESCRIPTIO  
The LT®1072 is a monolithic high power switching  
regulator. It can be operated in all standard switching  
configurations including buck, boost, flyback, forward,  
inverting and “Cuk”. A high current, high efficiency switch  
is included on the die along with all oscillator, control, and  
protection circuitry. Integration of all functions allows the  
LT1072 to be built in a standard 5-pin TO-3 or TO-220  
power package as well as the 8-pin miniDlP. This makes it  
extremelyeasytouseandprovidesbustproofoperation  
similar to that obtained with 3-pin linear regulators.  
Available in MiniDiP, TO-220, and TO-3 Packages  
Wide Input Voltage Range 3V to 60V  
Low Quiescent Current—6mA  
Internal 1.25A Switch  
Very Few External Parts Required  
Self-Protected Against Overloads  
Operates in Nearly All Switching Topologies  
Shutdown Mode Draws Only 50µA Supply Current  
Flyback-Regulated Mode has Fully Floating Outputs  
Can be Externally Synchronized  
U
TheLT1072operateswithsupplyvoltagesfrom3Vto60V,  
and draws only 6mA quiescent current. It can deliver load  
power up to 20 watts with no external power devices. By  
utilizing current-mode switching techniques, it provides  
excellent AC and DC load and line regulation.  
APPLICATIO S  
Logic Supply 5V at 2.5A  
5V Logic to ±15V Op Amp Supply  
Offline Converter up to 50W  
Battery Upconverter  
The LT1072 has many unique features not found even on  
the vastly more difficult to use low power control chips  
presently available. It uses an adaptive anti-sat switch  
drive to allow very wide ranging load currents with no loss  
in efficiency. An externally activated shutdown mode  
reduces total supply current to 50µA typical for standby  
operation. Totally isolated and regulated outputs can be  
generatedbyusingtheoptionalflybackregulationmode”  
builtintotheLT1072, withouttheneedforoptocouplersor  
extra transformer windings.  
Power lnverter (+ to –) or (– to +)  
Fully Floating Multiple Outputs  
Driver for High Current Supplies  
USER NOTE:  
This data sheet is only intended to provide specifications, graphs, and a general functional  
description of the LT1072. Application circuits are included to show the capability of the LT1072.  
A complete design manual (AN-19) should be obtained to assist in developing new designs. This  
manualcontainsacomprehensivediscussionofboththeLT1070andtheexternalcomponentsused  
with it, as well as complete formulas for calculating the values of these components. The manual  
can also be used for the LT1072 by factoring in the lower switch current rating.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
Boost Converter (5V to 12V)  
Maximum Output Power*  
25  
5V  
220µH**  
20  
V
IN  
V
SW  
BUCK-BOOST  
V
= 30V  
O
15  
10  
5
12V, 0.25A  
LT1072  
+
C3  
25µF*  
FLYBACK  
ISOLATED  
10.7k  
1.24k  
BOOST  
FB  
GND  
V
C
+
470µF  
1k  
+
BUCK-BOOST  
1µF  
V
= 5V  
O
0
0
10  
20  
30  
40  
50  
*REQUIRED IF INPUT LEADS 2”  
**PULSE ENGINEERING 52626  
LT1072 • TA01  
INPUT VOLTAGE (V)  
*ROUGH GUIDE ONLY. BUCK MODE P = 1A x V  
.
OUT  
OUT  
MINIDIP OUTPUT POWER MAY BE LIMITED BY PACKAGE TEMPERATURE  
RISE AT HIGH INPUT VOLTAGES OR HIGH DUTY CYCLES  
LT1072 • TA02  
1072fc  
1
LT1072  
W W U W  
ABSOLUTE AXI U RATI GS  
(Note 1)  
Note 1: Minimum switch “on” time for the LT1072 in current limit is  
0.7µsec. This limits the maximum input voltage during short-circuit  
conditions, in the buck and inverting modes onlyt,o 40V. Normal  
(unshorted) conditions are not affected. If the LT1072 is being operated in  
the buck or inverting mode at high input voltages and short-circuit  
conditions are expected, a resistor must be placed in series with the  
inductor, as follows:  
Supply Voltage  
LT1072HV (See Note 1)......................................... 60V  
LT1072 (See Note 1) ............................................. 40V  
Switch Output Voltage  
LT1072HV ............................................................. 75V  
LT1072 .................................................................. 65V  
LT1072S8 .............................................................. 60V  
Feedback Pin Voltage (Transient, 1ms) ................. ±15V  
Operating Junction Temperature Range  
LT1072HVM, LT1072M (OBSOLETE) .... –55°C to 150°C  
LT1072HVC, LT1072C (Oper.)*............0°C to 100°C  
LT1072HVC, LT1072C (Sh. Ckt.)* ........0°C to 125°C  
LT1072HVI ....................................... –40°C to 125°C  
Storage Temperature Range ............... –65°C to 150°C  
Lead Temperature (Soldering, 10 sec) ...............300°C  
*Includes LT1072S8  
The value of the resistor is given by:  
(t) (f) (V ) – V  
IN  
f
R =  
–R  
L
I
(LIMIT)  
t = Minimum “on” time of LT1072 in current limit, 0.7µs  
f = Operating frequency (40kHz)  
V = Forward voltage of external catch diode at I  
f
(LIMIT)  
I
= Current limit of LT1072 (2A)  
(LIMIT)  
R = Internal series resistance of inductor  
L
U W  
U
PACKAGE/ORDER I FOR ATIO  
ORDER PART  
ORDER PART  
NUMBER  
NUMBER  
TOP VIEW  
TOP VIEW  
BOTTOM VIEW  
V
V
C
GND  
1
2
3
4
E2  
V
GND  
1
2
3
4
8
7
6
5
E2  
V
8
7
6
5
SW  
LT1072HVMK  
LT1072MK  
LT1072HVCK  
LT1072CK  
LT1072CN8  
LT1072CS8  
V
V
C
SW  
C
SW  
1
4
2
3
CASE IS  
GND  
E1  
V
FB  
NC  
FB  
NC  
E1  
V
IN  
IN  
V
FB  
IN  
S8 PART  
MARKING  
S8 PACKAGE  
8-LEAD PLASTIC SO  
N PACKAGE  
8-LEAD PDIP  
K PACKAGE  
4-LEAD TO-3 METAL CAN  
= 150°C, θ = 8°C/W, θ = 35°C/W  
T
= 100°C, θ = 130°C/W  
T
= 100°C, θ = 130°C/W  
JMAX  
JA  
JMAX  
JA  
T
JMAX  
JC  
JA  
T
= 100°C*, θ = 8°C/W, θ = 35°C/W  
1072  
JMAX  
JC JA  
J PACKAGE  
8-LEAD CERAMIC DIP  
= 150°C, θ = 100°C/W  
LT1072MJ8  
LT1072CJ8  
T
JMAX  
JA  
OBSOLETE PACKAGE  
OBSOLETE PACKAGE  
Consider the S8 or N8 Packages for Alternate Source  
TOP VIEW  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
FRONT VIEW  
NC  
NC  
GND  
1
2
3
4
5
6
7
8
16 NC  
15  
NC  
5
VIN  
4
LT1072CT  
LT1072HVCT  
LT1072HVIT  
VSW  
14  
LT1072CSW  
E2  
3
GND  
13  
V
V
SW  
C
2
FB  
12  
11  
10  
9
E1  
FB  
NC  
NC  
NC  
1
VC  
V
IN  
T PACKAGE  
5-LEAD TO-220  
NC  
NC  
T
= 100°C/W, θ = 8°C/W, θ = 50°C/W  
JMAX  
JC JA  
SW PACKAGE  
16-LEAD PLASTIC SO WIDE  
= 100°C, θ = 130°C/W  
T
JMAX  
JC  
LT1072 • POI01  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
1072fc  
2
LT1072  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating  
temperature range. Unless otherwise specified, VIN = 15V, VC = 0.5V, VFB = VREF, output pin open.  
SYMBOL PARAMETER  
CONDITlONS  
MIN  
TYP  
MAX  
UNITS  
V
Reference Voltage  
Measured at Feedback Pin  
C
1.224 1.244 1.264  
1.214 1.244 1.274  
V
V
REF  
V = 0.8V  
I
Feedback Input Current  
V
= V  
REF  
350  
4400  
200  
750  
nA  
nA  
B
FB  
1100  
gm  
Error Amplifier  
Transconductance  
I = ±25µA  
C
3000  
2400  
6000  
7000  
µmho  
µmho  
Error Amplifier Source or  
Sink Current  
V = 1.5V  
C
150  
120  
350  
400  
µA  
µA  
Error Amplifier Clamp  
Voltage  
Hi Clamp, V = 1V  
1.8  
0.25  
2.3  
0.52  
V
V
FB  
Lo Clamp, V = 1.5V  
0.38  
FB  
Reference Voltage Line  
Regulation  
3V V V  
C
0.03  
%/V  
%/V  
IN  
MAX  
V = 0.8V  
A
Error Amplifier Voltage Gain  
Minimum Input Voltage  
Supply Current  
0.9V V 1.4V  
500  
800  
2.6  
6
V/V  
V
V
C
3.0  
9
I
3V V V  
, V = 0.6V  
MAX  
mA  
Q
IN  
C
Control Pin Threshold  
Duty Cycle = 0  
0.8  
0.6  
0.9  
1.08  
1.25  
V
V
Normal/Flyback Threshold on Feedback Pin  
Flyback Reference Voltage  
0.4  
0.45  
16.3  
0.54  
V
V
l
= 50µA  
FB  
15  
14  
17.6  
18  
V
V
FB  
Change in Flyback Reference Voltage  
0.05 I 1mA  
4.5  
6.8  
8.5  
V
FB  
Flyback Reference Voltage  
Line Regulation  
l
= 50µA  
0.01  
0.03  
%/V  
%/V  
FB  
3V V V  
(Note 4)  
MAX  
IN  
Flyback Amplifier Transconductance (gm)  
I = ±10µA  
C
150  
300  
650  
µmho  
Flyback Amplifier Source  
and Sink Current  
V = 0.6V Source  
FB  
15  
25  
32  
40  
70  
70  
µA  
µA  
C
I
= 50µA Sink  
BV  
Output Switch Breakdown  
Voltage  
3V V V  
SW  
LT1072  
LT1072HV  
LT1072S8  
65  
75  
60  
90  
90  
80  
V
V
V
IN  
MAX  
I
= 1.5mA  
V
Output Switch ON Resistance (Note 2)  
Control Voltage to Switch Current Transconductance  
Switch Current Limit  
I
= 1.25A  
0.6  
2
1
SAT  
SW  
A/V  
I
Duty Cycle = 50%  
T 25°C  
J
1.25  
1.25  
1
3
3.5  
2.5  
A
A
A
LIM  
J
Duty Cycle = 50%  
T < 25°C  
Duty Cycle = 80% (Note 3)  
I  
I  
Supply Current Increase  
During Switch ON Time  
25  
40  
35  
mA/A  
IN  
SW  
f
Switching Frequency  
35  
33  
45  
47  
kHz  
kHz  
DC (max) Maximum Switch Duty Cycle  
Flyback Sense Delay Time  
90  
92  
1.5  
100  
97  
%
µs  
µA  
Shutdown Mode  
Supply Current  
3V V V  
C
250  
IN  
MAX  
MAX  
V = 0.05V  
Shutdown Mode  
Threshold Voltage  
3V V V  
100  
50  
150  
250  
300  
mV  
mV  
IN  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 3: For duty cycles (DC) between 50% and 80%, minimum  
guaranteed switch current is given by I = 0.833 (2 – DC).  
LIM  
Note 2: Measured with V in hi clamp, V = 0.8V.  
Note 4: V  
= 55V for LT1072HV to avoid switch breakdown.  
C
FB  
MAX  
1072fc  
3
LT1072  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Switch Current Limit vs Duty Cycle  
Maximum Duty Cycle  
Flyback Blanking Time  
4
3
2
1
0
96  
95  
2.2  
2.0  
94  
1.8  
–55°C  
125°C  
25°C  
93  
92  
1.6  
1.4  
91  
90  
1.2  
1.0  
0
10 20 30 40 50 60 70 80 90 100  
DUTY CYCLE (%)  
–75 –50 –25  
0
25 50 75 100 125 150  
–75 –50 –25  
0
25 50 75 100 125 150  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
LT1072 • TPC01  
LT1072 • TPC02  
LT1072 • TPC03  
Isolated Mode Flyback Reference  
Voltage  
Minimum Input Voltage  
Switch Saturation Voltage  
2.9  
2.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
23  
22  
21  
20  
19  
18  
17  
16  
15  
SWITCH CURRENT = 1.25A  
150°C  
R
= 500  
= 1kΩ  
FEEDBACK  
FEEDBACK  
100°C  
2.7  
25°C  
–55°C  
R
2.6  
2.5  
SWITCH CURRENT = 0A  
R
= 10kΩ  
FEEDBACK  
2.4  
2.3  
–75 –50 –25  
0
25 50 75 100 125 150  
1
1.25  
25 50  
0
0.25 0.5 0.75  
1.5 1.75  
2
–75 –50 –25  
0
75 100 125 150  
TEMPERATURE (°C)  
SWITCH CURRENT (A)  
TEMPERATURE (C°)  
LT1072 • TPC04  
LT1072 • TPC05  
LT1072 • TPC06  
Reference Voltage and Switching  
Frequency vs Temperature  
Feedback Bias Current vs  
Temperature  
Line Regulation  
1.250  
1.248  
1.246  
1.244  
42  
41  
40  
39  
800  
700  
600  
500  
400  
300  
200  
100  
0
5
4
3
SWITCHING FREQUENCY  
T = 150°C  
J
2
1
0
–1  
–2  
–3  
1.242  
1.240  
1.238  
1.236  
1.234  
38  
37  
36  
35  
34  
T = 55°C  
J
REFERENCE VOLTAGE  
–4  
–5  
25 50  
TEMPERATURE (°C)  
25 50  
–75 –50 –25  
0
75 100 125 150  
–75 –50 –25  
0
75 100 125 150  
0
10  
30  
40  
50  
60  
20  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
LT1072 • TPC08  
LT1072 • TPC09  
LT1072 • TPC07  
1072fc  
4
LT1072  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Supply Current vs Supply Voltage  
(Shutdown Mode)  
Driver Current* vs Switch Current  
Supply Current vs Input Voltage*  
80  
70  
60  
50  
40  
30  
20  
10  
0
15  
14  
13  
12  
11  
10  
9
160  
140  
120  
100  
T = 25°C  
T = 25°C  
J
J
NOTE THAT THIS CURRENT DOES NOT  
INCLUDE DRIVER CURRENT, WHICH IS  
A FUNCTION OF LOAD CURRENT AND  
DUTY CYCLE.  
90% DUTY CYCLE  
V
= 50mV  
C
80  
60  
50% DUTY CYCLE  
10% DUTY CYCLE  
8
40  
20  
0
7
V
= 0V  
C
6
0% DUTY CYCLE  
5
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
0
10  
20  
40  
50  
60  
0
10  
30  
40  
50  
60  
30  
20  
INPUT VOLTAGE (V)  
SWITCH CURRENT (A)  
SUPPLY VOLTAGE (V)  
*AVERAGE LT1072 POWER SUPPLY CURRENT IS  
FOUND BY MULTIPLYING DRIVER CURRENT BY  
LT1072 • TPC12  
*UNDER VERY LOW OUTPUT CURRENT CONDITIONS,  
DUTY CYCLE FOR MOST CIRCUITS WILL APPROACH  
DUTY CYCLE, THEN ADDING QUIESCENT CURRENT  
10% OR LESS  
LT1072 • TPC10  
LT1072 • TPC11  
Normal/Flyback Mode Threshold  
on Feedback Pin  
Shutdown Mode Supply Current  
Error Amplifier Transconductance  
500  
–24  
–22  
–20  
–18  
–16  
–14  
–12  
–10  
–8  
5000  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
200  
180  
160  
140  
I (V PIN)  
C
G
=
490  
480  
470  
460  
450  
440  
430  
420  
410  
400  
m
V (FB PIN)  
FEEDBACK PIN VOLTAGE  
(AT THRESHOLD)  
T = 150°C  
120  
100  
80  
60  
40  
20  
0
J
55°C T 125°C  
J
FEEDBACK PIN CURRENT  
(AT THRESHOLD)  
–6  
–4  
150  
0
–50  
50  
100 125  
–75 –50 –25  
0
25 50 75 100 125 150  
–25  
0
25  
75  
0
10 20 30 40 50 60 70 80 90 100  
PIN VOLTAGE (mV)  
TEMPERATURE (°C)  
TEMPERATURE (C°)  
V
C
LT1072 • TPC13  
LT1072 • TPC15  
LT1072 • TPC14  
Idle Supply Current vs  
Temperature  
Shutdown Thresholds  
Feedback Pin Clamp Voltage  
11  
10  
9
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
400  
350  
300  
250  
200  
150  
100  
50  
–400  
–350  
–300  
–250  
–200  
–150  
–100  
–50  
V
C
= 0.6V  
CURRENT (OUT OF V PIN)  
C
–55°C  
8
V
V
= 60V  
= 3V  
7
SUPPLY  
SUPPLY  
25°C  
6
150°C  
VOLTAGE  
5
4
3
V
VOLTAGE IS REDUCED UNTIL  
C
REGULATOR CURRENT DROPS  
2
BELOW 300µA  
0
0
1
0
–75 –50 –25  
0
25 50 75 100 125 150  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
FEEDBACK CURRENT (mA)  
1
–75 –50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
LT1072 • TPC16  
LT1072 • TPC18  
LT1072 • TPC17  
1072fc  
5
LT1072  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Transconductance of Error  
Amplifier  
VC Pin Characteristics  
Switch “Off” Characteristics  
300  
200  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
–30  
0
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
V
= 1.5V (CURRENT INTO V PIN)  
C
FB  
θ
30  
100  
V
= 55V  
SUPPLY  
60  
V
= 40V  
SUPPLY  
T = 25°C  
0
J
G
V
= 15V  
m
SUPPLY  
90  
V
= 3V  
SUPPLY  
–100  
–200  
–300  
–400  
120  
150  
180  
210  
V
= 0.8V (CURRENT OUT OF V PIN)  
C
FB  
–1000  
0
0.5  
1.0  
1.5  
2.0  
2.5  
1k  
10k  
100k  
1M  
10M  
0
10 20 30 40 50 60 70 80 90 100  
SWITCH VOLTAGE (V)  
FREQUENCY (Hz)  
V
PIN VOLTAGE (V)  
C
LT1072 • TPC19  
LT1072 • TPC20  
LT1072 • TPC21  
W
BLOCK DIAGRA  
SWITCH  
OUT  
V
16V  
IN  
2.3V  
REG  
FLYBACK  
ERROR  
AMP  
40kHz  
OSC  
LOGIC  
COMP  
DRIVER  
ANTI-  
SAT  
MODE  
SELECT  
FB  
ERROR  
AMP  
V
C
+
+
SHUTDOWN  
CIRCUIT  
CURRENT  
AMP  
0.16  
0.16Ω  
GAIN  
6  
E1* E2  
1.24V  
REF  
0.15V * ALWAYS CONNECT E1 TO GROUND PIN ON MINIDIP AND SURFACE MOUNT  
PACKAGES. EMITTERS TIED TO GROUND ON TO-3 AND TO-220 PACKAGES  
GND  
LT1072 • BD01  
1072fc  
6
LT1072  
U
LT1072 OPERATIO  
The LT1072 is a current mode switcher. This means that  
switch duty cycle is directly controlled by switch current  
rather than by output voltage. Referring to the block  
diagram, the switch is turned “on” at the start of each  
oscillator cycle. It is turned “off” when switch current  
reachesapredeterminedlevel. Controlofoutputvoltageis  
obtained by using the output of a voltage sensing error  
amplifier to set current trip level. This technique has  
several advantages. First, it has immediate response to  
input voltage variations, unlike ordinary switchers which  
have notoriously poor line transient response. Second, it  
reduces the 90 phase shift at midfrequencies in the energy  
storage inductor. This greatly simplifies closed loop fre-  
quency compensation under widely varying input voltage  
or output load conditions. Finally, it allows simple pulse-  
by-pulse current limiting to provide maximum switch  
protection under output overload or short conditions. A  
low-dropout internal regulator provides a 2.3V supply for  
all internal circuitry on the LT1072. This low-dropout  
design allows input voltage to vary from 3V to 60V with  
virtually no change in device performance. A 40kHz  
oscillator is the basic clock for all internal timing. It turns  
“on” the output switch via the logic and driver circuitry.  
Special adaptive antisat circuitry detects onset of  
saturation in the power switch and adjusts driver current  
instantaneously to limit switch saturation. This minimizes  
driver dissipation and provides very rapid turn-off of  
the switch.  
inside the LT1072 ignores the leakage inductance spike at  
the leading edge of the flyback pulse to improve output  
regulation.  
The error signal developed at the comparator input is  
brought out externally. This pin (VC) has four different  
functions. It is used for frequency compensation, current  
limit adjustment, soft starting, and total regulator  
shutdown. During normal regulator operation this pin sits  
at a voltage between 0.9V (low output current) and 2.0V  
(high output current). The error amplifiers are current  
output (gm) types, so this voltage can be externally  
clamped for adjusting current limit. Likewise, a capacitor  
coupled external clamp will provide soft start. Switch duty  
cycle goes to zero if the VC pin is pulled to ground through  
a diode, placing the LT1072 in an idle mode. Pulling the VC  
pin below 0.15V causes total regulator shutdown, with  
only 50µA supply current for shutdown circuitry biasing.  
See AN-19 for full application details.  
Extra Pins on the MiniDIP and Surface Mount Packages  
The 8 and 16-pin versions of the LT1072 have the emitters  
of the power transistor brought out separately from the  
ground pin. This eliminates errors due to ground pin  
voltagedropsandallowstheusertoreduceswitchcurrent  
limit 2:1 by leaving the second emitter (E2) disconnected.  
The first emitter (E1) should always be connected to the  
ground pin. Note that switch “on” resistance doubles  
when E2 is left open, so efficiency will suffer somewhat  
when switch currents exceed 100mA. Also, note that chip  
dissipation will actually increase with E2 open during  
normal load operation, even though dissipation in current  
limit mode will decrease. See “Thermal Considerations.”  
A 1.2V bandgap reference biases the positive input of the  
error amplifier. The negative input is brought out for  
output voltage sensing. This feedback pin has a second  
function; when pulled low with an external resistor, it  
programs the LT1072 to disconnect the main error  
amplifier output and connects the output of the flyback  
amplifier to the comparator input. The LT1072 will then  
regulate the value of the flyback pulse with respect to the  
supply voltage. This flyback pulse is directly proportional  
to output voltage in the traditional transformer coupled  
flyback topology regulator. By regulating the amplitude of  
the flyback pulse, the output voltage can be regulated with  
nodirectconnectionbetweeninputandoutput.Theoutput  
is fully floating up to the breakdown voltage of the  
transformer windings. Multiple floating outputs are easily  
obtainedwithadditionalwindings. Aspecialdelaynetwork  
Thermal Considerations When Using Small Packages  
The low supply current and high switch efficiency of the  
LT1072 allow it to be used without a heat sink in most  
applicationswhentheTO-220orTO-3packageisselected.  
These packages are rated at 50°C/W and 35°C/W  
respectively. The small packages, however, are rated at  
greater than 100°C/W. Care should be taken with these  
packages to ensure that the worse case input voltage and  
load current conditions do not cause excessive die  
temperatures. The following formulas can be used as a  
1072fc  
7
LT1072  
U
LT1072 OPERATIO  
rough guide to calculate LT1072 power dissipation. For  
more details, the reader is referred to Application Note 19  
(AN19), “Efficiency Calculations” section.  
The third approach for lower current applications is to  
leave the second switch emitter open. This increases  
switch “on” resistance by 2:1, but reduces switch current  
limit by 2:1 also, resulting in a net 2:1 reduction in I2R  
switch dissipation under current limit conditions.  
Average supply current (including driver current) is:  
IIN 6mA + ISW(0.004 + DC/40)  
ThefourthapproachistoclamptheVC pintoavoltageless  
than its internal clamp level of 2V. The LT1072 switch  
current limit is zero at approximately 1V on the VC pin and  
2A at 2V on the VC pin. Peak switch current can be  
externally clamped between these two levels with a diode.  
See AN-19 for details.  
ISW = switch current  
DC = switch duty cycle  
Switch power dissipation is given by:  
P
SW = (ISW)2 • RSW • DC  
R
SW = LT1072 switch “on” resistance (1maximum)  
LT1072 Synchronizing  
Total power dissipation is the sum of supply current times  
input voltage plus switch power:  
TheLT1072canbeexternallysynchronizedinthefrequency  
range of 48kHz to 70kHz. This is accomplished as shown  
in the accompanying figures. Synchronizing occurs when  
the VC pin is pulled to ground with an external transistor.  
To avoid disturbing the DC characteristics of the internal  
error amplifier, the width of the synchronizing pulse  
should be under 1µs. C2 sets the pulse width at 0.35µs.  
The effect of a synchronizing pulse on the LT1072  
amplifier offset can be calculated from:  
PTOT = (llN)(VIN) + PSW  
In a typical example, using a boost converter to generate  
12V @ 0.12A from a 5V input, duty cycle is approximately  
60%, and switch current is about 0.65A, yielding:  
llN = 6mA + 0.65(0.004 + DC/40) = 18mA  
PSW = (0.65)2 • 1• (0.6) = 0.25W  
PTOT = (5V)(0.018A) + 0.25 = 0.34W  
V
KT  
C
(t )(f ) I +  
S
S
C
(
(
(
(
R3  
q
V  
=
OS  
I
Temperature rise in a plastic miniDIP would be 130°C/W  
times 0.34W, or approximately 44°C. The maximum  
ambient temperature would be limited to 100°C  
(commercial temperature limit) minus 44°C, or 56°C.  
C
KT  
q
= 26mV at 25°C  
tS = pulse width  
fS = pulse frequency  
IC = LT1072 VC source current (200µA)  
VC = LT1072 operating VC voltage (1V to 2V)  
In most applications, full load current is used to calculate  
die temperature. However, if overload conditions must  
also be accounted for, four approaches are possible. First,  
if loss of regulated output is acceptable under overload  
conditions, the internal thermal limit of the LT1072 will  
protect the die in most applications by shutting off switch  
current. Thermal limit is not a tested parameter, however,  
andshouldbeconsideredonlyfornon-criticalapplications  
withtemporaryoverloads.Asecondapproachistousethe  
largerTO-220(T)orTO-3(K)packagewhich,evenwithout  
aheatsink, maylimitdietemperaturestosafelevelsunder  
overload conditions. In critical situations, heat sinking  
of these packages is required; especially if overload  
conditions must be tolerated for extended periods of time.  
R3 = resistor used to set mid-frequency “zero” in LT1072  
frequency compensation network.  
With tS = 0.35µs, fS = 50kHz, VC = 1.5V, and R3 = 2K,  
offset voltage shift is 2.2mV. This is not particularly  
bothersome, but note that high offsets could result  
if R3 were reduced to a much lower value. Also, the  
synchronizing transistor must sink higher currents with  
lowvaluesofR3, solargerdrivesmayhavetobeused. The  
transistor must be capable of pulling the VC pin to within  
200mV of ground to ensure synchronizing.  
1072fc  
8
LT1072  
U
LT1072 OPERATIO  
Synchronizing with Bipolar Transistor  
Synchronizing with MOS Transistor  
V
V
IN  
IN  
LT1072  
LT1072  
V
C
V
C
GND  
GND  
C2  
C2  
D1  
R1  
3k  
200pF  
68pF  
1N4158  
R3  
R3  
C1  
2N2369  
VN2222*  
C1  
R2  
R2  
2.2k  
D2  
1N4158  
FROM 5V  
LOGIC  
FROM 5V  
LOGIC  
2.2k  
*SILICONIX OR EQUIVALENT  
LT1072 • OP01  
LT1072 • OP02  
U
TYPICAL APPLICATIO S  
Totally Isolated Converter  
OPTIONAL  
OUTPUT FILTER  
L1  
10µH  
D1  
15V  
1:N  
+
+
C5  
R4  
2.7k  
C3  
0.47µF  
C1  
N
N
200µF  
200µF  
COM  
–15V  
+
+
C6  
L2  
C4  
200µF  
200µF  
10µH  
V
IN  
V
SW  
+
C5  
25µF*  
V
IN  
5V  
LT1072  
N = 0.875 = 7:8  
FOR V = 15V  
OUT  
FB  
C2  
V
GND  
C
500  
R2  
0.01µF  
5k  
*REQUIRED IF INPUT LEADS 2”  
16V  
V
IN  
0
SWITCH VOLTAGE  
t
ON  
t
OFF  
V
+ V (V = DIODE FORWARD VOLTAGE)  
f f  
OUT  
SECONDARY VOLTAGE  
0V  
N • V  
IN  
LT1072 • TA03  
1072fc  
9
LT1072  
U
TYPICAL APPLICATIO S  
Flyback Converter  
CLAMP TURN-ON  
SPIKE  
L2  
10µH  
V
SNUB  
C4  
V
+ V  
f
OUT  
N
200µF  
a
PRIMARY FLYBACK VOLTAGE =  
LT1072 SWITCH VOLTAGE  
V
IN  
OPTIONAL  
FILTER  
b
d
AREA “a” = AREA “b” TO MAINTAIN  
ZERO DC VOLTS ACROSS PRIMARY  
0V  
V
+ V  
f
D1  
OUT  
V
OUT  
V
IN  
5V  
20 TO 30V  
c
SECONDARY VOLTAGE  
N • V  
IN  
1.5A  
1
N*  
R4  
1k  
C3  
0.47µF  
**  
AREA “c” = AREA “d” TO MAINTAIN  
ZERO DC VOLTS ACROSS SECONDARY  
0V  
+
C1  
500µF  
1
3
N* =  
I  
I
PRI  
D2  
V
R1  
3.74k  
IN  
V
PRIMARY CURRENT  
SW  
0
0
+
C4  
25µF*  
LT1072  
I
PRI  
N
SECONDARY CURRENT  
I
PRI  
FB  
V
GND  
C
LT1070 SWITCH CURRENT  
SNUBBER DIODE CURRENT  
R2  
1.24k  
R3  
1.5k  
0
0
I
PRI  
C2  
0.15µF  
*REQUIRED IF INPUT LEADS 2"  
**OPTIONAL TO REPLACE R4 AND C3  
(I ) (L )  
PRI  
L
t =  
V
SNUB  
LT1072 • TA04  
Negative to Positive Buck-Boost Converter  
External Current Limit  
L2  
V
IN  
V
SW  
FB  
OPTIONAL  
OUTPUT  
FILTER  
C3  
L1**  
220µH  
LT1072  
D1  
V
OUT  
12V, 0.5A  
V
+
IN  
V
V
SW  
GND  
C
V
IN  
R1  
11.3k  
+
C2  
1000µF  
+
C4  
25µF*  
LT1072  
Q1  
R1  
1k  
R2  
C2  
NOTE THAT THE LT1072 GND PIN  
OPTIONAL  
INPUT  
FILTER  
FB  
V
GND  
C
Q1  
C1  
R3  
2.2k  
R2  
1.24k  
1000pF  
L3  
C1  
0.22µF  
*REQUIRED IF INPUT LEADS 2"  
**PULSE ENGINEERING 52626  
IS NO LONGER COMMON TO V (–)  
IN  
R
S
V
IN  
–12V  
LT1072 • TA06  
LT1072 • TA05  
1072fc  
10  
LT1072  
U
TYPICAL APPLICATIO S  
Positive to Negative Buck-Boost Converter  
D3  
*REQUIRED IF INPUT LEADS 2"  
R5  
1N4001  
**PULSE ENGINEERING 92113  
470, 1W  
V
IN  
10 TO 30V  
TO AVOID START-UP PROBLEMS  
C5  
FOR INPUT VOLTAGES BELOW 10V,  
100µF*  
CONNECT ANODE OF D3 TO V  
AND REMOVE R5. C1 MAY BE  
,
IN  
V
IN  
V
SW  
REDUCED FOR LOWER OUTPUT  
CURRENTS. C1 (500µF)(I ).  
+
OUT  
C4  
5µF  
LT1072  
FOR 5V OUTPUTS, REDUCE R3  
TO 1.5k, INCREASE C2 TO 0.3µF,  
AND REDUCE R6 TO 100Ω  
D2  
1N914  
R1  
10.7k  
R4  
47Ω  
FB  
V
GND  
C
+
R3  
5k  
+
C3  
2µF  
C1  
R2  
1.24k  
R6  
470Ω  
1000µF  
C2  
0.1µF  
D1  
V
OUT  
–12V AT 2A  
L1**  
200µH  
LT1072 • TA07  
External Current Limit  
V
X
LT1072  
R2  
R1  
2V  
D1  
V
GND  
C
500Ω  
LT1072 • TA08  
Voltage Boosted Boost Converter  
R4  
1.5k  
1/2W  
C3  
0.68  
D2  
TOTAL INDUCTANCE = 8mH  
INTERLEAVE PRIMARY AND  
SECONDARY FOR LOW LEAKAGE  
INDUCTANCE  
1
L1  
N = 5  
V
IN  
V
SW  
+
V
IN  
15V  
LT1072  
D1  
R1  
98k  
V
OUT  
100V AT 75mA  
FB  
V
GND  
C
R3  
10k  
+
R2  
1.24k  
C1  
200µF  
C2  
0.047µF  
LT1072 • TA09  
1072fc  
11  
LT1072  
U
TYPICAL APPLICATIO S  
Driving High Voltage FET  
(for Offline Applications, See AN-25)  
G
D
Q1  
D1  
V
IN  
V
SW  
+
10 TO 20V  
LT1072  
GND  
LT1072 • TA10  
Negative Buck Converter  
+
C2  
500µF  
D1  
R1  
LOAD  
4.64k  
V
IN  
V
–5.2V AT 1A  
SW  
L1**  
220µH  
C3  
25µF*  
+
Q1  
2N3906  
LT1072  
OPTIONAL  
FB  
C1  
V
INPUT  
GND  
C
FILTER  
OPTIONAL  
OUTPUT  
FILTER  
+
R2  
1.24k  
C4  
200µF  
L3  
R3  
V
IN  
–20V  
L2  
4µH  
*REQUIRED IF INPUT LEADS 2"  
**PULSE ENGINEERING 52626  
LT1072 • TA11  
Positive Buck Converter  
V
IN  
D3  
L2  
V
IN  
4µH  
V
SW  
FB  
C5  
OPTIONAL  
OUTPUT  
FILTER  
200µF  
+
C3  
2.2µF  
LT1072  
R1  
+
D2  
3.74k  
C5*  
25µF  
V
GND  
C
1N914  
+
R3  
470Ω  
R2  
1.24k  
R4  
C2  
1µF  
10Ω  
L1**  
C1  
220µH  
1µF  
r
5V, 1A  
100mA  
MINIMUM  
+
C4  
500µF  
D1  
*REQUIRED IF INPUT LEADS 2"  
**PULSE ENGINEERING 52626  
LT1072 • TA12  
1072fc  
12  
LT1072  
U
TYPICAL APPLICATIO S  
Negative Boost Regulator  
D2  
V
IN  
V
SW  
R1  
27k  
R
0
LT1072  
+
+
C3  
10µF  
C1  
1000µF  
(MINIMUM  
LOAD)  
+
C4  
470µF*  
FB  
V
C
GND  
R3  
R2  
1.24k  
3.3k  
L1  
200µH  
C2  
0.22µF  
D1  
V
V
–15V  
OUT  
IN  
–28V AT 0.25A  
*REQUIRED IF INPUT LEADS 2"  
LT1072 • TA13  
U
PACKAGE DESCRIPTIO  
J8 Package  
8-Lead CERDIP (Narrow .300 Inch, Hermetic)  
(Reference LTC DWG # 05-08-1110)  
.405  
(10.287)  
MAX  
CORNER LEADS OPTION  
(4 PLCS)  
.005  
(0.127)  
MIN  
6
5
4
8
7
.023 – .045  
(0.584 – 1.143)  
HALF LEAD  
OPTION  
.025  
.220 – .310  
(5.588 – 7.874)  
.045 – .068  
(0.635)  
RAD TYP  
(1.143 – 1.650)  
FULL LEAD  
OPTION  
1
2
3
.200  
(5.080)  
MAX  
.300 BSC  
(7.62 BSC)  
.015 – .060  
(0.381 – 1.524)  
.008 – .018  
(0.203 – 0.457)  
0° – 15°  
.045 – .065  
(1.143 – 1.651)  
.125  
3.175  
MIN  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE  
OR TIN PLATE LEADS  
.014 – .026  
(0.360 – 0.660)  
.100  
(2.54)  
BSC  
J8 0801  
OBSOLETE PACKAGE  
1072fc  
13  
LT1072  
U
PACKAGE DESCRIPTIO  
K Package  
4-Lead TO-3 Metal Can  
(Reference LTC DWG # 05-08-1311)  
0.760 – 0.775  
(19.30 – 19.69)  
0.320 – 0.350  
(8.13 – 8.89)  
0.060 – 0.135  
(1.524 – 3.429)  
0.420 – 0.480  
(10.67 – 12.19)  
0.038 – 0.043  
(0.965 – 1.09)  
1.177 – 1.197  
(29.90 – 30.40)  
0.655 – 0.675  
(16.64 – 19.05)  
0.470 TP  
P.C.D.  
0.151 – 0.161  
(3.84 – 4.09)  
DIA 2 PLC  
0.167 – 0.177  
(4.24 – 4.49)  
R
0.490 – 0.510  
(12.45 – 12.95)  
R
72°  
18°  
K4(TO-3) 1098  
OBSOLETE PACKAGE  
N8 Package  
8-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510)  
.400*  
(10.160)  
MAX  
8
7
6
5
4
.255 ± .015*  
(6.477 ± 0.381)  
1
2
3
.130 ± .005  
.300 – .325  
.045 – .065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
.065  
(1.651)  
TYP  
.008 – .015  
(0.203 – 0.381)  
.120  
.020  
(0.508)  
MIN  
(3.048)  
MIN  
+.035  
.325  
–.015  
.018 ± .003  
(0.457 ± 0.076)  
.100  
(2.54)  
BSC  
+0.889  
8.255  
(
)
N8 1002  
–0.381  
NOTE:  
INCHES  
1. DIMENSIONS ARE  
MILLIMETERS  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
1072fc  
14  
LT1072  
U
PACKAGE DESCRIPTIO  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
NOTE 3  
.045 ±.005  
.050 BSC  
7
5
8
6
N
N
.245  
MIN  
.160 ±.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
1
2
3
N/2  
N/2  
4
.030 ±.005  
TYP  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0502  
SW Package  
16-Lead Plastic Small Outline (Wide .300 Inch)  
(Reference LTC DWG # 05-08-1620)  
.050 BSC .045 ±.005  
.030 ±.005  
.398 – .413  
(10.109 – 10.490)  
NOTE 4  
TYP  
15 14  
12  
10  
9
N
16  
N
13  
11  
.325 ±.005  
.420  
MIN  
.394 – .419  
(10.007 – 10.643)  
NOTE 3  
N/2  
8
1
2
3
N/2  
RECOMMENDED SOLDER PAD LAYOUT  
2
3
5
7
1
4
6
.291 – .299  
(7.391 – 7.595)  
NOTE 4  
.037 – .045  
(0.940 – 1.143)  
.093 – .104  
(2.362 – 2.642)  
.010 – .029  
× 45°  
(0.254 – 0.737)  
.005  
(0.127)  
RAD MIN  
0° – 8° TYP  
.050  
(1.270)  
BSC  
.004 – .012  
.009 – .013  
(0.102 – 0.305)  
NOTE 3  
(0.229 – 0.330)  
.014 – .019  
.016 – .050  
(0.356 – 0.482)  
TYP  
(0.406 – 1.270)  
NOTE:  
1. DIMENSIONS IN  
INCHES  
(MILLIMETERS)  
S16 (WIDE) 0502  
2. DRAWING NOT TO SCALE  
3. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.  
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS  
4. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
1072fc  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT1072  
U
PACKAGE DESCRIPTIO  
T Package  
5-Lead Plastic TO-220 (Standard)  
(Reference LTC DWG # 05-08-1421)  
.165 – .180  
(4.191 – 4.572)  
.147 – .155  
(3.734 – 3.937)  
DIA  
.390 – .415  
(9.906 – 10.541)  
.045 – .055  
(1.143 – 1.397)  
.230 – .270  
(5.842 – 6.858)  
.570 – .620  
(14.478 – 15.748)  
.620  
(15.75)  
TYP  
.460 – .500  
(11.684 – 12.700)  
.330 – .370  
(8.382 – 9.398)  
.700 – .728  
(17.78 – 18.491)  
.095 – .115  
(2.413 – 2.921)  
SEATING PLANE  
.152 – .202  
(3.861 – 5.131)  
.155 – .195*  
(3.937 – 4.953)  
.260 – .320  
(6.60 – 8.13)  
.013 – .023  
(0.330 – 0.584)  
.067  
BSC  
.135 – .165  
(3.429 – 4.191)  
.028 – .038  
(0.711 – 0.965)  
(1.70)  
* MEASURED AT THE SEATING PLANE  
T5 (TO-220) 0801  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1070/HV  
5A I , 40kHz, High Efficiency Switching Regulator  
V =3V to 40/60V, V  
Package  
up to 65/75V, I =6mA, I <50µA, TO220-5  
OUT Q SD  
SW  
IN  
LT1071/HV  
LT1082  
2.5A I , 40kHz, High Efficiency Switching Regulator V =3V to 40/60V, V  
up to 65/75V, I =6mA, I <50µA,TO220-5 Package  
SW  
IN  
OUT Q SD  
1A I , 60kHz, High Efficiency Switching Regulator  
V =3V to 75V, V  
Packages  
up to 100V, I =4.5mA, I <120µA, DD, N8, TO220-5  
SW  
IN  
OUT Q SD  
LT1170/HV  
5A I , 100kHz, High Efficiency Switching Regulator V =3V to 40/60V, V  
up to 65/75V, I =6mA, I <50µA, DD, N8, S16,  
OUT Q SD  
SW  
IN  
TO220-5 Packages  
LT1171/HV  
2.5A I , 100kHz, High Efficiency Switching  
Regulator  
V =3V to 40/60V, V  
TO220-5 Packages  
up to 65/75V, I =6mA, I <50µA, DD, N8, S16,  
Q SD  
SW  
IN  
OUT  
LT1172/HV  
1.25A I , 100kHz, High Efficiency Switching  
Regulator  
V =3V to 40/60V, V  
TO220-5 Packages  
up to 65/75V, I =6mA, I <50µA, DD, N8, S16,  
Q SD  
SW  
IN  
OUT  
LT1307/LT1307B  
LT1317/LT1317B  
LT1370/HV  
600mA I , 600kHz, High Efficiency Switching  
Regulator  
V =1V to 12V, V  
Packages  
up to 28V, I =50µA/1mA, I <1µA, MS8, N8, S8  
SW  
IN  
OUT Q SD  
600mA I , 600kHz, High Efficiency Switching  
V =1.5V to 12V, V  
up to 28V, I =100µA/4.8mA, I <30µA/28µA, MS8,  
OUT Q SD  
SW  
IN  
Regulator  
S8 Packages  
6A ISW, 500kHz, High Efficiency Switching Regulator V =2.7V to 30V, V  
up to 35/42V, I =4.5mA, I <12µA, DD, T0220-7  
Q SD  
IN  
OUT  
Packages  
LT1371/HV  
3A ISW, 500kHz, High Efficiency Switching Regulator V =2.7V to 30V, V  
up to 35/42V, I =4mA, I <12µA, DD, S20,  
OUT Q SD  
IN  
T0220-7 Packages  
1072fc  
LW/TP 1102 1K REV C • PRINTED IN USA  
16 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 1988  

相关型号:

LT1072HV

1.25A High Efficiency Switching Regulator
Linear

LT1072HVC

Available in MiniDiP, TO-220, and TO-3 Packages
Linear

LT1072HVCK

1.25A High Efficiency Switching Regulator
Linear

LT1072HVCKC

Current-Mode SMPS Controller
ETC

LT1072HVCKV

Current-Mode SMPS Controller
ETC

LT1072HVCP

Current-Mode SMPS Controller
ETC

LT1072HVCT

1.25A High Efficiency Switching Regulator
Linear

LT1072HVCT#PBF

LT1072 - 1.25A High Efficiency Switching Regulator; Package: TO-220; Pins: 5; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1072HVI

Available in MiniDiP, TO-220, and TO-3 Packages
Linear

LT1072HVIK

IC 1.25 A SWITCHING REGULATOR, 40 kHz SWITCHING FREQ-MAX, MBFM2, METAL, TO-3, 2 PIN, Switching Regulator or Controller
Linear

LT1072HVIKC

Current-Mode SMPS Controller
ETC

LT1072HVIP

Current-Mode SMPS Controller
ETC