LT1121CZ-5#TRPBF [Linear]

LT1121 - Micropower Low Dropout Regulators with Shutdown; Package: TO-92; Pins: 3; Temperature Range: 0°C to 70°C;
LT1121CZ-5#TRPBF
型号: LT1121CZ-5#TRPBF
厂家: Linear    Linear
描述:

LT1121 - Micropower Low Dropout Regulators with Shutdown; Package: TO-92; Pins: 3; Temperature Range: 0°C to 70°C

线性稳压器IC 调节器 电源电路 输出元件
文件: 总16页 (文件大小:173K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1121/LT1121-3.3/LT1121-5  
Micropower Low Dropout  
Regulators with Shutdown  
U
FEATURES  
DESCRIPTIO  
The LT®1121/LT1121-3.3/LT1121-5 are micropower low  
dropout regulators with shutdown. These devices are  
capable of supplying 150mA of output current with a  
dropout voltage of 0.4V. Designed for use in battery-  
powered systems, the low quiescent current, 30μA oper-  
ating and 16μA in shutdown, makes them an ideal choice.  
The quiescent current is well-controlled; it does not rise in  
dropout as it does with many other low dropout PNP  
regulators.  
0.4V Dropout Voltage  
150mA Output Current  
30μA Quiescent Current  
No Protection Diodes Needed  
Adjustable Output from 3.75V to 30V  
3.3V and 5V Fixed Output Voltages  
Controlled Quiescent Current in Dropout  
Shutdown  
16μA Quiescent Current in Shutdown  
Stable with 0.33μF Output Capacitor  
Other features of the LT1121/LT1121-3.3/LT1121-5 in-  
clude the ability to operate with very small output capaci-  
tors. They are stable with only 0.33μF on the output while  
most older devices require between 1μF and 100μF for  
stability.Smallceramiccapacitorscanbeused,enhancing  
manufacturability. Also the input may be connected to  
ground or a reverse voltage without reverse current flow  
from output to input. This makes the LT1121 series ideal  
for backup power situations where the output is held high  
and the input is at ground or reversed. Under these  
conditions only 16μA will flow from the output pin to  
ground.  
Reverse Battery Protection  
No Reverse Current with Input Low  
Thermal Limiting  
Available in the 8-Lead SO, 8-Lead PDIP, 3-Lead  
SOT-23 and 3-Lead TO-92 Packages  
U
APPLICATIO S  
Low Current Regulator  
Regulator for Battery-Powered Systems  
Post Regulator for Switching Supplies  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
U
TYPICAL APPLICATIO  
5V Battery-Powered Supply with Shutdown  
Dropout Voltage  
0.5  
8
1
3.3V  
OUT  
IN  
OUT  
LT1121-3.3  
150mA  
0.4  
0.3  
0.2  
0.1  
0
+
1μF  
5V  
SOLID TANTALUM  
5
SHDN  
GND  
3
V
(PIN 5) OUTPUT  
SHDN  
<0.25  
>2.8  
NC  
OFF  
ON  
ON  
LT1121 • TA01  
80  
OUTPUT CURRENT (mA)  
0
20 40 60  
100 120 140 160  
LT1121 • TA02  
1121fe  
1
LT1121/LT1121-3.3/LT1121-5  
W W U W  
ABSOLUTE AXI U RATI GS (Note 1)  
Input Voltage  
LT1121 ............................................................. ± 30V  
LT1121HV ............................................. +36V, 30V  
Output Pin Reverse Current ................................. 10mA  
Adjust Pin Current ............................................... 10mA  
Shutdown Pin Input Voltage (Note 2) ........ 6.5V, – 0.6V  
Shutdown Pin Input Current (Note 2) .................. 20mA  
Output Short-Circuit Duration......................... Indefinite  
Operating Junction Temperature Range (Note 3)  
LT1121C-X ........................................... 0°C to 125°C  
LT1121I-X ....................................... 40°C to 125°C  
Storage Temperature Range ................. – 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
W U  
/O  
PACKAGE RDER I FOR ATIO  
TOP VIEW  
PIN 2 = NC FOR LT1121-3.3/LT1121-5  
= ADJ FOR LT1121  
PINS 6 AND 7 ARE FLOATING (NO  
INTERNAL CONNECTION) ON THE  
STANDARD S8 PACKAGE.  
PINS 6 AND 7 CONNECTED TO GROUND  
ON THE A VERSION OF THE LT1121 (S8 ONLY).  
CONNECTING PINS 6 AND 7 TO THE  
GROUND PLANE WILL REDUCE THERMAL  
RESISTANCE. SEE THERMAL RESISTANCE  
TABLES IN THE APPLICATIONS INFORMATION  
SECTION.  
*
BOTTOM VIEW  
FRONT VIEW  
OUT  
NC/ADJ*  
GND  
1
2
3
4
IN  
8
7
6
5
**  
NC**  
NC**  
SHDN  
3
2
1
OUTPUT  
GND  
IN  
GND OUT  
TAB IS  
GND  
NC  
V
IN  
N8 PACKAGE  
8-LEAD PDIP  
Z PACKAGE  
3-LEAD PLASTIC TO-92  
ST PACKAGE  
3-LEAD PLASTIC SOT-223  
S8 PACKAGE  
8-LEAD PLASTIC SO  
T
JMAX = 150°C, θJA 50°C/W  
TJMAX = 150°C, θJA 150°C/W  
TJMAX = 150°C, θJA 120°C/W (N8, S8)  
TJMAX = 150°C, θJA 70°C/W (AS8)  
S8 PART  
MARKING  
ORDER PART  
NUMBER  
ST PART  
MARKING  
ORDER PART  
NUMBER  
ORDER PART NUMBER  
LT1121CN8  
LT1121IS8-3.3  
121I3  
121I5  
LT1121CST-3.3  
LT1121IST-3.3  
11213  
121IS3  
11215  
1121I5  
LT1121CZ-3.3  
LT121IZ-3.3  
LT1121CZ-5  
LT1121IZ-5  
LT1121CN8-3.3 LT1121IS8-5  
LT1121CN8-5  
LT1121IN8  
LT1121IN8-3.3 LT1121ACS8-3.3  
LT1121IN8-5  
LT1121CS8  
LT1121HVIS8  
LT1121ACS8  
121HVI LT1121CST-5  
1121A  
121A3  
121A5  
121AHV  
LT1121IST-5  
LT1121ACS8-5  
LT1121AHVCS8  
1121  
LT1121CS8-3.3 LT1121AIS8  
LT1121CS8-5 LT1121AIS8-3.3  
LT1121HVCS8 LT1121AIS8-5  
LT1121IS8 LT1121AHVIS8  
11213 121AI  
11215 121AI3  
1121HV 121AI5  
1121I  
21AHVI  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
1121fe  
2
LT1121/LT1121-3.3/LT1121-5  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the operating temperature  
range, otherwise specifications are at TA = 25°C.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Regulated Output Voltage  
(Note 4)  
LT1121-3.3  
V
= 3.8V, I  
= 1mA, T = 25°C  
3.250  
3.200  
3.300  
3.300  
3.350  
3.400  
V
V
IN  
OUT  
J
4.3V < V < 20V, 1mA < I  
< 150mA  
IN  
OUT  
LT1121-5  
V
= 5.5V, I  
IN  
= 1mA, T = 25°C  
4.925  
4.850  
5.000  
5.000  
5.075  
5.150  
V
V
IN  
OUT  
J
6V < V < 20V, 1mA < I  
< 150mA  
OUT  
LT1121 (Note 5)  
V
= 4.3V, I  
= 1mA, T = 25°C  
3.695  
3.640  
3.750  
3.750  
3.805  
3.860  
V
V
IN  
OUT  
J
4.8V < V < 20V, 1mA < I  
< 150mA  
IN  
OUT  
Line Regulation  
Load Regulation  
LT1121-3.3  
LT1121-5  
ΔV = 4.8V to 20V, I  
= 1mA  
= 1mA  
= 1mA  
1.5  
1.5  
1.5  
10  
10  
10  
mV  
mV  
mV  
IN  
OUT  
OUT  
OUT  
ΔV = 5.5V to 20V, I  
IN  
LT1121 (Note 5)  
LT1121-3.3  
ΔV = 4.3V to 20V, I  
IN  
ΔI  
ΔI  
= 1mA to 150mA, T = 25°C  
= 1mA to 150mA  
12  
20  
25  
40  
mV  
mV  
LOAD  
LOAD  
J
LT1121-5  
ΔI  
ΔI  
= 1mA to 150mA, T = 25°C  
= 1mA to 150mA  
17  
28  
35  
50  
mV  
mV  
LOAD  
LOAD  
J
LT1121 (Note 5)  
ΔI  
ΔI  
= 1mA to 150mA, T = 25°C  
= 1mA to 150mA  
12  
18  
25  
40  
mV  
mV  
LOAD  
LOAD  
J
Dropout Voltage  
(Note 6)  
I
I
= 1mA, T = 25°C  
0.13  
0.30  
0.37  
0.42  
0.16  
0.25  
V
V
LOAD  
LOAD  
J
= 1mA  
I
I
= 50mA, T = 25°C  
0.35  
0.50  
V
V
LOAD  
LOAD  
J
= 50mA  
I
I
= 100mA, T = 25°C  
= 100mA  
0.45  
0.60  
V
V
LOAD  
LOAD  
J
I
I
= 150mA, T = 25°C  
= 150mA  
0.55  
0.70  
V
V
LOAD  
LOAD  
J
Ground Pin Current  
(Note 7)  
I
I
I
I
I
I
= 0mA  
30  
90  
50  
120  
500  
2.5  
μA  
μA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 1mA  
= 10mA  
= 50mA  
= 100mA  
= 150mA  
350  
1.5  
4.0  
7.0  
150  
μA  
mA  
mA  
mA  
nA  
7.0  
14.0  
300  
2.8  
Adjust Pin Bias Current (Notes 5, 8)  
Shutdown Threshold  
T = 25°C  
J
V
V
= Off to On  
= On to Off  
1.2  
0.75  
V
V
OUT  
OUT  
0.25  
50  
Shutdown Pin Current (Note 9)  
Quiescent Current in Shutdown (Note 10)  
Ripple Rejection  
V
V
V
= 0V  
6
10  
22  
μA  
μA  
dB  
SHDN  
= 6V, V  
= 0V  
SHDN  
16  
58  
IN  
IN  
– V  
= 1V (Avg), V  
= 0.5V  
,
OUT  
RIPPLE  
P-P  
f
= 120Hz, I  
= 0.1A  
RIPPLE  
LOAD  
Current Limit  
V
V
– V  
= 7V, T = 25°C  
200  
500  
1.0  
mA  
mA  
IN  
IN  
OUT  
J
Input Reverse Leakage Current  
Reverse Output Current (Note 11)  
= –20V, V  
= 0V  
OUT  
LT1121-3.3  
LT1121-5  
LT1121 (Note 5)  
V
V
V
= 3.3V, V = 0V  
16  
16  
16  
25  
25  
25  
μA  
μA  
μA  
OUT  
OUT  
OUT  
IN  
= 5V, V = 0V  
IN  
= 3.8V, V = 0V  
IN  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The shutdown pin input voltage rating is required for a low  
impedance source. Internal protection devices connected to the shutdown  
pin will turn on and clamp the pin to approximately 7V or 0.6V. This  
range allows the use of 5V logic devices to drive the pin directly. For high  
1121fe  
3
LT1121/LT1121-3.3/LT1121-5  
ELECTRICAL CHARACTERISTICS  
impedance sources or logic running on supply voltages greater than 5.5V,  
the maximum current driven into the shutdown pin must be limited to less  
than 20mA.  
Note 6: Dropout voltage is the minimum input/output voltage required to  
maintain regulation at the specified output current. In dropout the output  
voltage will be equal to: (V – V  
).  
IN  
DROPOUT  
Note 3: For junction temperatures greater than 110°C, a minimum load of  
Note 7: Ground pin current is tested with V = V  
(nominal) and a  
OUT  
IN  
1mA is recommended. For T > 110°C and I  
< 1mA, output voltage  
current source load. This means that the device is tested while operating in  
its dropout region. This is the worst case ground pin current. The ground  
pin current will decrease slightly at higher input voltages.  
J
OUT  
may increase by 1%.  
Note 4: Operating conditions are limited by maximum junction  
temperature. The regulated output voltage specification will not apply for  
all possible combinations of input voltage and output current. When  
operating at maximum input voltage, the output current range must be  
limited. When operating at maximum output current the input voltage  
range must be limited.  
Note 8: Adjust pin bias current flows into the adjust pin.  
Note 9: Shutdown pin current at V  
= 0V flows out of the shutdown pin.  
SHDN  
Note 10: Quiescent current in shutdown is equal to the sum total of the  
shutdown pin current (6μA) and the ground pin current (9μA).  
Note 11: Reverse output current is tested with the input pin grounded and  
the output pin forced to the rated output voltage. This current flows into  
the output pin and out of the ground pin.  
Note 5: The LT1121 (adjustable version) is tested and specified with the  
adjust pin connected to the output pin.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Quiescent Current  
Guaranteed Dropout Voltage  
Dropout Voltage  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
50  
40  
30  
20  
10  
0
V
= 6V  
=
IN  
LOAD  
R
I
= 150mA  
LOAD  
T
J
125°C  
V
SHDN  
= OPEN  
I
= 100mA  
LLOAD  
T
J
25°C  
I
= 50mA  
LOAD  
V
= 0V  
SHDN  
I
= 1mA  
LOAD  
= TEST POINTS  
0
40 60 80 100 120 140 160  
OUTPUT CURRENT (mA)  
–50  
0
25  
50  
75 100 125  
–50  
–25  
0
25  
50  
75 100 125  
20  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1121 G27  
1121 G14  
1121 G11  
LT1121-3.3  
Quiescent Current  
LT1121-5  
Quiescent Current  
LT1121  
Quiescent Current  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
T
= 25°C  
LOAD  
T
= 25°C  
LOAD  
T
R
V
= 25°C  
J
R
J
R
J
=
=
=
LOAD  
= V  
OUT  
ADJ  
V
= OPEN  
V
= OPEN  
SHDN  
SHDN  
V
= OPEN  
SHDN  
V
= 0V  
7
V
= 0V  
8
V
= 0V  
7
SHDN  
6
SHDN  
7
SHDN  
6
0
1
2
3
4
5
8
9
10  
0
1
2
3
4
5
6
9
10  
0
1
2
3
4
5
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1121 G04  
1121 G02  
1121 G03  
1121fe  
4
LT1121/LT1121-3.3/LT1121-5  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LT1121-3.3  
LT1121-5  
LT1121  
Adjust Pin Voltage  
3.83  
Output Voltage  
Output Voltage  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
5.08  
5.06  
5.04  
5.02  
5.00  
4.98  
4.96  
4.94  
4.92  
I
= 1mA  
I
= 1mA  
OUT  
OUT  
I
= 1mA  
OUT  
3.81  
3.79  
3.77  
3.75  
3.73  
3.71  
3.69  
3.67  
–50  
0
25  
50  
75 100 125  
–25  
–50  
0
25  
50  
75 100 125  
–50  
0
25  
50  
75 100 125  
–25  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1121 G24  
1121 G22  
1121 G23  
LT1121-3.3  
Ground Pin Current  
LT1121-5  
Ground Pin Current  
LT1121  
Ground Pin Current  
800  
700  
600  
500  
400  
300  
200  
100  
0
800  
700  
600  
500  
400  
300  
200  
100  
0
800  
700  
600  
500  
400  
300  
200  
100  
0
T
= 25°C  
OUT  
T
= 25°C  
T
= 25°C  
J
J
J
R
I
= 150Ω  
LOAD  
LOAD  
V
= V  
ADJ  
= 25mA*  
R
= 200Ω  
LOAD  
LOAD  
R
I
= 130Ω  
LOAD  
LOAD  
I
= 25mA*  
= 25mA*  
R
I
= 500Ω  
= 10mA*  
R
= 330Ω  
= 10mA*  
LOAD  
LOAD  
LOAD  
R
= 380Ω  
= 10mA*  
LOAD  
LOAD  
I
LOAD  
I
*FOR V  
= 3.75V  
*FOR V  
= 3.3V  
*FOR V  
= 5V  
R
OUT  
OUT  
OUT  
= 5k  
= 1mA*  
R
I
= 3.8k  
LOAD  
R
= 3.3k  
= 1mA*  
LOAD  
LOAD  
LOAD  
I
= 1mA*  
I
LOAD  
LOAD  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1121 G10  
1121 G06  
1121 G08  
LT1121-3.3  
Ground Pin Current  
LT1121-5  
Ground Pin Current  
LT1121  
Ground Pin Current  
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
T = 25°C  
T = 25°C  
T = 25°C  
J
OUT  
J
J
V
= V  
ADJ  
R
I
= 22Ω  
LOAD  
LOAD  
R
= 33Ω  
LOAD  
LOAD  
R
= 25Ω  
= 150mA*  
LOAD  
LOAD  
I
= 150mA*  
I
= 150mA*  
R
= 33Ω  
LOAD  
LOAD  
R
= 50Ω  
= 100mA*  
LOAD  
LOAD  
I
= 100mA*  
R
= 38Ω  
= 100mA*  
LOAD  
LOAD  
I
I
R
I
= 100Ω  
= 50mA*  
R
= 66Ω  
= 50mA*  
LOAD  
LOAD  
LOAD  
R
I
= 75Ω  
LOAD  
= 50mA*  
LOAD  
I
LOAD  
*FOR V  
= 3.3V  
6
*FOR V  
= 5V  
7
*FOR V  
OUT  
= 3.75V  
OUT  
5
OUT  
6
0
2
4
8
10  
0
2
4
8
10  
1
3
7
9
1
3
5
9
0
2
6
8
9
10  
4
1
3
5
7
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1121 G09  
1121 G05  
1121 G07  
1121fe  
5
LT1121/LT1121-3.3/LT1121-5  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Shutdown Pin Threshold  
(On-to-Off)  
Shutdown Pin Threshold  
(Off-to-On)  
Ground Pin Current  
14  
12  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
V
V
= 3.3V (LT1121-3.3)  
= 5V (LT1121-5)  
= 3.75V (LT1121)  
I
= 1mA  
IN  
IN  
IN  
LOAD  
DEVICE IS OPERATING  
I
= 150mA  
LOAD  
10 IN DROPOUT  
T
= 125°C  
J
8
6
4
2
0
I
= 1mA  
LOAD  
T
= 25°C  
J
T
= –55°C  
J
0
40 60 80 100 120 140 160  
OUTPUT CURRENT (mA)  
–50  
0
25  
TEMPERATURE (°C)  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
20  
–25  
TEMPERATURE (°C)  
1121 G29  
1121 G16  
1121 G17  
LT1121  
Adjust Pin Bias Current  
Shutdown Pin Current  
Shutdown Pin Input Current  
400  
350  
300  
250  
200  
150  
100  
50  
10  
9
8
7
6
5
4
3
2
1
0
25  
20  
V
SHDN  
= 0V  
15  
10  
5
0
0
–50  
0
25  
50  
75 100 125  
–50  
0
25  
50  
75 100 125  
–25  
–25  
0
1
2
3
4
5
6
7
8
9
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SHUTDOWN PIN VOLTAGE (V)  
1121 G25  
1121 G15  
1121 G28  
Reverse Output Current  
Current Limit  
Current Limit  
30  
25  
20  
15  
10  
5
400  
350  
300  
250  
200  
150  
100  
50  
400  
350  
300  
250  
200  
150  
100  
50  
V
= 0V  
V
V
= 7V  
V
V
V
V
= 0V  
OUT  
IN  
OUT  
IN  
= 5V (LT1121-5)  
= 3.3V (LT1121-3.3)  
= 3.8V (LT1121)  
= 0V  
OUT  
OUT  
OUT  
0
0
0
–50  
0
25  
50  
75 100 125  
0
2
3
4
5
6
7
–50  
0
25  
50  
75  
125  
–25  
1
–25  
100  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
1121 G13  
1121 G20  
1121 G19  
1121fe  
6
LT1121/LT1121-3.3/LT1121-5  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Reverse Output Current  
Ripple Rejection  
Ripple Rejection  
64  
62  
60  
58  
56  
54  
52  
50  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
I
= 100mA  
T = 25°C  
V
IN  
= V  
OUT  
(NOMINAL) + 1V  
OUT  
IN  
J
IN  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 6V + 50mV  
RIPPLE  
V
= 0V  
RMS  
+ 0.5V RIPPLE AT f = 120Hz  
P-P  
= 100mA  
CURRENT FLOWS  
INTO OUTPUT PIN  
I
OUT  
C
= 47μF  
OUT  
SOLID TANTALUM  
LT1121  
= V  
(V  
)
ADJ  
OUT  
LT1121-3.3  
C
= 1μF  
OUT  
SOLID TANTALUM  
LT1121-5  
10  
100  
1k  
10k  
100k  
1M  
–50  
0
25  
50  
75 100 125  
0
2
4
6
8
10  
–25  
1
3
5
7
9
FREQUENCY (Hz)  
TEMPERATURE (°C)  
OUTPUT VOLTAGE (V)  
1121 G26  
1121 G18  
1121 G01  
LT1121-5  
Load Transient Response  
LT1121-5  
Load Transient Response  
Load Regulation  
0
–5  
ΔI  
= 1mA TO 150mA  
V
C
C
= 6V  
V
C
C
= 6V  
LOAD  
IN  
IN  
IN  
IN  
0.2  
0.1  
0.2  
0.1  
= 0.1μF  
= 0.1μF  
= 1μF  
= 3.3μF  
OUT  
OUT  
LT1121*  
LT1121-3.3  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
0
0
–0.1  
–0.2  
–0.1  
–0.2  
LT1121-5  
150  
100  
50  
150  
100  
* ADJ PIN TIED TO  
OUTPUT PIN  
–50  
0
25  
50  
75 100 125  
–25  
0
0.1  
0.3 0.4 0.5 0.6 0.7  
TIME (ms)  
0.8  
0.9  
1.0  
0
0.1  
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
0.2  
0.2  
TEMPERATURE (°C)  
TIME (ms)  
1121 G21  
1121 G30  
1121 G31  
1121fe  
7
LT1121/LT1121-3.3/LT1121-5  
U
U
U
PI FU CTIO S  
Input Pin: Power is supplied to the device through the  
input pin. The input pin should be bypassed to ground if  
the device is more than six inches away from the main  
input filter capacitor. In general the output impedance of a  
battery rises with frequency so it is usually adviseable to  
include a bypass capacitor in battery-powered circuits. A  
bypass capacitor in the range of 0.1μF to 1μF is sufficient.  
The LT1121 is designed to withstand reverse voltages on  
the input pin with respect to both ground and the output  
pin. In the case of a reversed input, which can happen if a  
battery is plugged in backwards, the LT1121 will act as if  
there is a diode in series with its input. There will be no  
reverse current flow into the LT1121 and no reverse  
voltage will appear at the load. The device will protect both  
itself and the load.  
off. This pin is active low. The device will be shut down if  
the shutdown pin is pulled low. The shutdown pin current  
with the pin pulled to ground will be 6μA. The shutdown  
pin is internally clamped to 7V and 0.6V (one VBE). This  
allows the shutdown pin to be driven directly by 5V logic  
or by open collector logic with a pull-up resistor. The pull-  
up resistor is only required to supply the leakage current  
of the open collector gate, normally several microam-  
peres. Pull-up current must be limited to a maximum of  
20mA. A curve of shutdown pin input current as a function  
of voltage appears in the Typical Performance Character-  
istics. If the shutdown pin is not used it can be left open  
circuit.Thedevicewillbeactive,outputon,iftheshutdown  
pin is not connected.  
AdjustPin:FortheadjustableLT1121, theadjustpinisthe  
input to the error amplifier. This pin is internally clamped  
to 6V and 0.6V (one VBE). It has a bias current of 150nA  
which flows into the pin. See Bias Current curve in the  
Typical Performance Characteristics. The adjust pin refer-  
ence voltage is 3.75V referenced to ground. The output  
voltage range that can be produced by this device is 3.75V  
to 30V.  
Output Pin: The output pin supplies power to the load. An  
output capacitor is required to prevent oscillations. See  
the Applications Information section for recommended  
value of output capacitance and information on reverse  
output characteristics.  
Shutdown Pin: This pin is used to put the device into  
shutdown. In shutdown the output of the device is turned  
1121fe  
8
LT1121/LT1121-3.3/LT1121-5  
W U U  
APPLICATIO S I FOR ATIO  
U
The LT1121 is a micropower low dropout regulator with  
shutdown, capable of supplying up to 150mA of output  
current at a dropout voltage of 0.4V. The device operates  
with very low quiescent current (30μA). In shutdown the  
quiescent current drops to only 16μA. In addition to the  
low quiescent current the LT1121 incorporates several  
protection features which make it ideal for use in battery-  
powered systems. The device is protected against both  
reverse input voltages and reverse output voltages. In  
battery backup applications where the output can be held  
up by a backup battery when the input is pulled to ground,  
the LT1121 acts like it has a diode in series with its output  
and prevents reverse current flow.  
approximately 15ppm/°C. The adjust pin bias current has  
anegativetemperaturecoefficient. Theseeffectsaresmall  
and will tend to cancel each other.  
The adjustable device is specified with the adjust pin tied  
to the output pin. This sets the output voltage to 3.75V.  
Specificationsforoutputvoltagegreaterthan3.75Vwillbe  
proportional to the ratio of the desired output voltage to  
3.75V (VOUT/3.75V). For example: load regulation for an  
output current change of 1mA to 150mA is –12mV typical  
at VOUT = 3.75V. At VOUT = 12V, load regulation would be:  
12V  
3.75V  
• –12mV = –38mV  
(
) (  
)
Adjustable Operation  
Thermal Considerations  
The adjustable version of the LT1121 has an output  
voltage range of 3.75V to 30V. The output voltage is set by  
theratiooftwoexternalresistorsasshowninFigure1.The  
device servos the output voltage to maintain the voltage at  
the adjust pin at 3.75V. The current in R1 is then equal to  
3.75V/R1. The current in R2 is equal to the sum of the  
currentinR1andtheadjustpinbiascurrent.Theadjustpin  
bias current, 150nA at 25°C, flows through R2 into the  
adjust pin. The output voltage can be calculated according  
to the formula in Figure 1. The value of R1 should be less  
than 400k to minimize errors in the output voltage caused  
by the adjust pin bias current. Note that in shutdown the  
output is turned off and the divider current will be zero.  
Curves of Adjust Pin Voltage vs Temperature and Adjust  
Pin Bias Current vs Temperature appear in the Typical  
Performance Characteristics. The reference voltage at the  
adjust pin has a slight positive temperature coefficient of  
Power handling capability will be limited by maximum  
rated junction temperature (125°C). Power dissipated by  
the device will be made up of two components:  
1. Output current multiplied by the input/output voltage  
differential: IOUT • (VIN – VOUT), and  
2. Ground pin current multiplied by the input voltage:  
IGND • VIN.  
The ground pin current can be found by examining the  
Ground Pin Current curves in the Typical Performance  
Characteristics. Powerdissipationwillbeequaltothesum  
of the two components listed above.  
The LT1121 series regulators have internal thermal limit-  
ing designed to protect the device during overload condi-  
tions. For continuous normal load conditions the maxi-  
mum junction temperature rating of 125°C must not be  
exceeded. It is important to give careful consideration to  
allsourcesofthermalresistancefromjunctiontoambient.  
Additional heat sources mounted nearby must also be  
considered.  
V
IN  
OUT  
ADJ  
OUT  
LT1121  
R2  
R1  
+
SHDN  
Heat sinking, for surface mount devices, is accomplished  
by using the heat spreading capabilities of the PC board  
and its copper traces. Copper board stiffeners and plated  
through holes can also be used to spread the heat gener-  
ated by power devices. Tables 1 through 5 list thermal  
resistances for each package. Measured values of thermal  
resistance for several different board sizes and copper  
GND  
1121 • F01  
R2  
V
V
= 3.75V 1 +  
+ I  
(
• R2  
)
OUT  
ADJ  
(
)
R1  
= 3.75V  
ADJ  
I
= 150nA AT 25°C  
ADJ  
OUTPUT RANGE = 3.75V TO 30V  
Figure 1. Adjustable Operation  
areas are listed for each package. All measurements were  
1121fe  
9
LT1121/LT1121-3.3/LT1121-5  
W U U  
U
APPLICATIO S I FOR ATIO  
Table 5. TO-92 Package  
taken in still air, on 3/32" FR-4 board with 1oz copper. All  
NC leads were connected to the ground plane.  
THERMAL  
RESISTANCE  
Package alone  
220°C/W  
175°C/W  
Table 1. N8 Package*  
Package soldered into PC board with plated  
through holes only  
COPPER AREA  
THERMAL RESISTANCE  
(JUNCTION-TO-AMBIENT)  
TOPSIDE  
BACKSIDE  
BOARD AREA  
Package soldered into PC board with 1/4 sq. inch of  
copper trace per lead  
145°C/W  
2500 sq mm 2500 sq. mm 2500 sq. mm  
1000 sq mm 2500 sq. mm 2500 sq. mm  
80°C/W  
80°C/W  
Package soldered into PC board with plated through holes  
in board, no extra copper trace, and a clip-on type  
225 sq mm  
2500 sq. mm 2500 sq. mm  
85°C/W  
heat sink:  
Thermalloy type 2224B  
Aavid type 5754  
160°C/W  
135°C/W  
1000 sq mm 1000 sq. mm 1000 sq. mm  
91°C/W  
* Device is mounted on topside. Leads are through hole and are soldered  
to both sides of board.  
Calculating Junction Temperature  
Table 2. S8 Package  
Example: given an output voltage of 3.3V, an input voltage  
range of 4.5V to 7V, an output current range of 0mA to  
100mA, and a maximum ambient temperature of 50°C,  
what will the maximum junction temperature be?  
COPPER AREA  
THERMAL RESISTANCE  
(JUNCTION-TO-AMBIENT)  
TOPSIDE*  
BACKSIDE  
BOARD AREA  
2500 sq. mm 2500 sq. mm 2500 sq. mm  
1000 sq. mm 2500 sq. mm 2500 sq. mm  
225 sq. mm 2500 sq. mm 2500 sq. mm  
100 sq. mm 1000 sq. mm 1000 sq. mm  
* Device is mounted on topside.  
120°C/W  
120°C/W  
Power dissipated by the device will be equal to:  
IOUT MAX • (VIN MAX – VOUT) + (IGND • VIN)  
125°C/W  
131°C/W  
where, IOUT MAX = 100mA  
VIN MAX = 7V  
Table 3. AS8 Package*  
COPPER AREA  
IGND at (IOUT = 100mA, VIN = 7V) = 5mA  
TOPSIDE**  
BACKSIDE  
BOARD AREA  
so,  
P =100mA • (7V – 3.3V) + (5mA • 7V)  
= 0.405W  
2500 sq. mm 2500 sq. mm 2500 sq. mm  
1000 sq. mm 2500 sq. mm 2500 sq. mm  
225 sq. mm 2500 sq. mm 2500 sq. mm  
100 sq. mm 2500 sq. mm 2500 sq. mm  
60°C/W  
60°C/W  
68°C/W  
74°C/W  
IfweuseanSOT-223package,thenthethermalresistance  
will be in the range of 50°C/W to 65°C/W depending on  
copper area. So the junction temperature rise above  
ambient will be less than or equal to:  
*
Pins 3, 6, and 7 are ground.  
** Device is mounted on topside.  
0.405W • 60°C/W = 24°C  
Table 4. SOT-223 Package  
(Thermal Resistance Junction-to-Tab 20°C/W)  
The maximum junction temperature will then be equal to  
the maximum junction temperature rise above ambient  
plus the maximum ambient temperature or:  
COPPER AREA  
THERMAL RESISTANCE  
BOARD AREA  
(JUNCTION-TO-AMBIENT)  
TOPSIDE*  
BACKSIDE  
2500 sq. mm 2500 sq. mm 2500 sq. mm  
1000 sq. mm 2500 sq. mm 2500 sq. mm  
225 sq. mm 2500 sq. mm 2500 sq. mm  
100 sq. mm 2500 sq. mm 2500 sq. mm  
1000 sq. mm 1000 sq. mm 1000 sq. mm  
50°C/W  
50°C/W  
58°C/W  
64°C/W  
57°C/W  
60°C/W  
TJMAX = 50°C + 24°C = 74°C  
Output Capacitance and Transient Performance  
The LT1121 is designed to be stable with a wide range of  
output capacitors. The minimum recommended value is  
1μF with an ESR of 3Ω or less. For applications where  
space is very limited, capacitors as low as 0.33μF can be  
used if combined with a small series resistor. Assuming  
1000 sq. mm  
0
1000 sq. mm  
* Tab of device attached to topside copper  
1121fe  
10  
LT1121/LT1121-3.3/LT1121-5  
W U U  
APPLICATIO S I FOR ATIO  
U
that the ESR of the capacitor is low (ceramic) the sug-  
gested series resistor is shown in Table 6. The LT1121 is  
amicropowerdeviceandoutputtransientresponsewillbe  
a function of output capacitance. See the Transient Re-  
sponsecurvesintheTypicalPerformanceCharacteristics.  
Larger values of output capacitance will decrease the peak  
deviations and provide improved output transient re-  
sponse. Bypass capacitors, used to decouple individual  
components powered by the LT1121, will increase the  
effective value of the output capacitor.  
short-circuit current of the device and will protect itself by  
thermal limiting. For the adjustable version of the device,  
the output pin is internally clamped at one diode drop  
below ground. Reverse current for the adjustable device  
must be limited to 5mA.  
In circuits where a backup battery is required, several  
different input/output conditions can occur. The output  
voltage may be held up while the input is either pulled to  
ground, pulled to some intermediate voltage, or is left  
open circuit. Current flow back into the output will vary  
depending on the conditions. Many battery-powered cir-  
cuits incorporate some form of power management. The  
following information will help optimize battery life. Table  
7 summarizes the following information.  
Table 6. Suggested Series Resistor Values  
SUGGESTED SERIES  
OUTPUT CAPACITANCE  
RESISTOR  
0.33μF  
0.47μF  
0.68μF  
>1μF  
2Ω  
1Ω  
1Ω  
The reverse output current will follow the curve in Figure  
2whentheinputpinispulledtoground. Thiscurrentflows  
through the output pin to ground. The state of the shut-  
down pin will have no effect on output current when the  
input pin is pulled to ground.  
None Needed  
Protection Features  
TheLT1121incorporatesseveralprotectionfeatureswhich  
make it ideal for use in battery-powered circuits. In addi-  
tion to the normal protection features associated with  
monolithic regulators, such as current limiting and ther-  
mal limiting, the device is protected against reverse input  
voltages, reverse output voltages, and reverse voltages  
from output to input.  
Insomeapplicationsitmaybenecessarytoleavetheinput  
to the LT1121 unconnected when the output is held high.  
This can happen when the LT1121 is powered from a  
rectified AC source. If the AC source is removed, then the  
input of the LT1121 is effectively left floating. The reverse  
outputcurrentalsofollowsthecurveinFigure2iftheinput  
pin is left open. The state of the shutdown pin will have no  
effect on the reverse output current when the input pin is  
floating.  
Current limit protection and thermal overload protection  
areintendedtoprotectthedeviceagainstcurrentoverload  
conditions at the output of the device. For normal opera-  
tion, the junction temperature should not exceed 125°C.  
100  
T = 25°C  
IN  
CURRENT FLOWS  
INTO OUTPUT PIN  
TO GROUND  
J
V
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
< V  
OUT  
The input of the device will withstand reverse voltages of  
30V.Currentflowintothedevicewillbelimitedtolessthan  
1mA (typically less than 100μA) and no negative voltage  
will appear at the output. The device will protect both itself  
and the load. This provides protection against batteries  
that can be plugged in backwards.  
LT1121  
= V  
(V  
OUT  
)
ADJ  
LT1121-3.3  
LT1121-5  
For fixed voltage versions of the device, the output can be  
pulled below ground without damaging the device. If the  
input is open circuit or grounded the output can be pulled  
below ground by 20V. The output will act like an open  
circuit, no current will flow out of the pin. If the input is  
powered by a voltage source, the output will source the  
0
2
4
6
8
10  
1
3
5
7
9
OUTPUT VOLTAGE (V)  
1121• F02  
Figure 2. Reverse Output Current  
1121fe  
11  
LT1121/LT1121-3.3/LT1121-5  
W U U  
U
APPLICATIO S I FOR ATIO  
5
4
3
2
1
0
When the input of the LT1121 is forced to a voltage below  
its nominal output voltage and its output is held high, the  
reverse output current will still follow the curve in Figure  
2. This condition can occur if the input of the LT1121 is  
connected to a discharged (low voltage) battery and the  
output is held up by either a backup battery or by a second  
regulator circuit. When the input pin is forced below the  
output pin or the output pin is pulled above the input pin,  
the input current will typically drop to less than 2μA (see  
Figure 3). The state of the shutdown pin will have no effect  
on the reverse output current when the output is pulled  
above the input.  
V
V
= 3.3V (LT1121-3.3)  
= 5V (LT1121-5)  
OUT  
OUT  
0
1
2
3
4
5
INPUT VOLTAGE (V)  
1121 F03  
Figure 3. Input Current  
Table 7. Fault Conditions  
INPUT PIN  
SHDN PIN  
OUTPUT PIN  
<V  
<V  
(Nominal)  
Open (Hi)  
Forced to V  
(Nominal)  
Reverse Output Current 15μA (See Figure 2)  
Input Current 1μA (See Figure 3)  
OUT  
OUT  
(Nominal)  
Grounded  
Forced to V  
(Nominal)  
Reverse Output Current 15μA (See Figure 2)  
Input Current 1μA (See Figure 3)  
OUT  
OUT  
Open  
Open  
Open (Hi)  
Grounded  
Open (Hi)  
Grounded  
Open (Hi)  
Grounded  
Forced to V  
Forced to V  
(Nominal)  
(Nominal)  
Reverse Output Current 15μA (See Figure 2)  
Reverse Output Current 15μA (See Figure 2)  
Output Current = 0  
OUT  
OUT  
0.8V  
0.8V  
>1.5V  
0V  
0V  
0V  
0V  
Output Current = 0  
Output Current = Short-Circuit Current  
Output Current = 0  
30V < V < 30V  
IN  
1121fe  
12  
LT1121/LT1121-3.3/LT1121-5  
U
PACKAGE DESCRIPTIO  
N8 Package  
8-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
.400*  
(10.160)  
MAX  
8
7
6
5
4
.255 ± .015*  
(6.477 ± 0.381)  
1
2
3
.130 ± .005  
.300 – .325  
.045 – .065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
.065  
(1.651)  
TYP  
.008 – .015  
(0.203 – 0.381)  
.120  
.020  
(0.508)  
MIN  
(3.048)  
MIN  
+.035  
.325  
–.015  
.018 ± .003  
(0.457 ± 0.076)  
.100  
(2.54)  
BSC  
+0.889  
8.255  
(
)
N8 1002  
–0.381  
NOTE:  
INCHES  
1. DIMENSIONS ARE  
MILLIMETERS  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 ±.005  
.160 ±.005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 ±.005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
1121fe  
13  
LT1121/LT1121-3.3/LT1121-5  
U
PACKAGE DESCRIPTIO  
ST Package  
3-Lead Plastic SOT-223  
(LTC DWG # 05-08-1630)  
.248 – .264  
(6.30 – 6.71)  
.129 MAX  
.114 – .124  
(2.90 – 3.15)  
.059 MAX  
.264 – .287  
(6.70 – 7.30)  
.248 BSC  
.130 – .146  
(3.30 – 3.71)  
.039 MAX  
.059 MAX  
.090  
BSC  
.181 MAX  
RECOMMENDED SOLDER PAD LAYOUT  
.033 – .041  
(0.84 – 1.04)  
.0905  
(2.30)  
BSC  
10° – 16°  
.010 – .014  
10°  
MAX  
.071  
(1.80)  
MAX  
(0.25 – 0.36)  
10° – 16°  
.0008 – .0040  
(0.0203 – 0.1016)  
.024 – .033  
(0.60 – 0.84)  
.012  
(0.31)  
MIN  
.181  
(4.60)  
BSC  
ST3 (SOT-233) 0502  
1121fe  
14  
LT1121/LT1121-3.3/LT1121-5  
U
PACKAGE DESCRIPTIO  
Z Package  
3-Lead Plastic TO-92 (Similar to TO-226)  
(LTC DWG # 05-08-1410)  
.180 ± .005  
(4.572 ± 0.127)  
.060 ± .005  
(1.524± 0.127)  
DIA  
.90  
(2.286)  
NOM  
.180 ± .005  
(4.572 ± 0.127)  
5°  
NOM  
.500  
(12.70)  
MIN  
.050  
(1.270)  
MAX  
UNCONTROLLED  
LEAD DIMENSION  
.016 ± .003  
.015 ± .002  
(0.406 ± 0.076)  
(0.381 ± 0.051)  
.050  
(1.27)  
BSC  
.098 +.016/–.04  
(2.5 +0.4/–0.1)  
2 PLCS  
Z3 (TO-92) 0801  
.060 ± .010  
TO-92 TAPE AND REEL  
(1.524 ± 0.254)  
REFER TO TAPE AND REEL SECTION OF  
LTC DATA BOOK FOR ADDITIONAL INFORMATION  
.140 ± .010  
(3.556 ± 0.127)  
3
2
1
10° NOM  
1121fe  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT1121/LT1121-3.3/LT1121-5  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1120  
125mA Low Dropout Regulator with 20μA I  
Includes 2.5V Reference and Comparator  
50μA Quiescent Current  
Q
LT1129  
700mA Micropower Low Dropout Regulator  
LT1175  
500mA Negative Low Dropout Micropower Regulator  
300mA Low Dropout Micropower Regulator with Shutdown  
45μA I , 0.26V Dropout Voltage, SOT-223 Package  
Q
LT1521  
15μA I , Reverse Battery Protection  
Q
LT1529  
3A Low Dropout Regulator with 50μA I  
500mV Dropout Voltage  
Q
LT1611  
Inverting 1.4MHz Switching Regulator  
5V to 5V at 150mA, Low Output Noise, SOT-23 Package  
SOT-23 Package, Internally Compensated  
Burst ModeTM Operation, Monolithic, 100% Duty Cycle  
LT1613  
1.4MHz Single-Cell Micropower DC/DC Converter  
High Efficiency Synchronous Step-Down Switching Regulator  
Doubler Charge Pump with Low Noise Linear Regulator  
150mA, Low Noise, LDO Micropower Regulator  
500mA, Low Noise, LDO Micropower Regulator  
3A Fast Transient Response LDO  
LTC1627  
LT1682  
Low Output Noise: 60μV  
(100kHz BW)  
RMS  
LT1762 Series  
LT1763 Series  
LT1764 Series  
LT1962 Series  
LT1963 Series  
25μA Quiescent Current, 20μV  
30μA Quiescent Current, 20μV  
Noise  
Noise  
RMS  
RMS  
300mV Dropout, 40μV  
Noise  
RMS  
300mA, Low Noise, LDO Micropower Regulator  
1.5A Fast Transient Response LDO  
30μA Quiescent Current, 20μV  
Noise  
RMS  
300mV Dropout, 40μV  
Noise  
RMS  
Burst Mode is a trademark of Linear Technology Corporation.  
1121fe  
LT 0407 REV E • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  
© LINEAR TECHNOLOGY CORPORATION 1994  

相关型号:

LT1121CZ3-3#PBF

IC VREG FIXED POSITIVE LDO REGULATOR, Fixed Positive Single Output LDO Regulator
Linear

LT1121CZ3-3#TRPBF

IC VREG FIXED POSITIVE LDO REGULATOR, Fixed Positive Single Output LDO Regulator
Linear

LT1121HV

500mA, Low Voltage, Very Low Dropout Linear Regulator
Linear

LT1121HVCS8

Micropower Low Dropout Regulators with Shutdown
Linear

LT1121HVCS8#PBF

LT1121 - Micropower Low Dropout Regulators with Shutdown; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1121HVCS8#TR

LT1121 - Micropower Low Dropout Regulators with Shutdown; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1121HVCS8#TRPBF

暂无描述
Linear

LT1121HVIS8

Micropower Low Dropout Regulators with Shutdown
Linear

LT1121HVIS8#PBF

LT1121 - Micropower Low Dropout Regulators with Shutdown; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1121HVIS8#TR

LT1121 - Micropower Low Dropout Regulators with Shutdown; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1121IN8

Micropower Low Dropout Regulators with Shutdown
Linear

LT1121IN8#PBF

LT1121 - Micropower Low Dropout Regulators with Shutdown; Package: PDIP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear