LT1122DC [Linear]

Fast Settling, JFET Input Operational Amplifier; 快速稳定, JFET输入运算放大器
LT1122DC
型号: LT1122DC
厂家: Linear    Linear
描述:

Fast Settling, JFET Input Operational Amplifier
快速稳定, JFET输入运算放大器

运算放大器
文件: 总8页 (文件大小:251K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1122  
Fast Settling, JFET Input  
Operational Amplifier  
U
EATURE  
S
F
DESCRIPTIO  
100% Tested Settling Time  
to 1mV at Sum Node, 10V Step  
Tested with Fixed Feedback Capacitor  
Slew Rate  
340ns Typ  
540ns Max  
The LT1122 JFET input operational amplifier combines  
high speed and precision performance.  
A unique poly-gate JFET process minimizes gate series  
resistance and gate-to-drain capacitance, facilitating wide  
bandwidth performance, without degrading JFET transis-  
tor matching.  
60V/µs Min  
14MHz  
Gain Bandwidth Product  
Power Bandwidth (20Vp-p)  
Unity Gain Stable; Phase Margin  
Input Offset Voltage  
Input Bias Current  
Input Offset Current  
Low Distortion  
1.2 MHz  
60°  
600µV Max  
75pA Max  
600pA Max  
40pA Max  
150pA Max  
It slews at 80V/µs and settles in 340ns. The LT1122 is  
internally compensated to be unity gain stable, yet it has a  
bandwidth of 14MHz at a supply current of only 7mA. Its  
speed makes the LT1122 an ideal choice for fast settling  
12-bit data conversion and acquisition systems.  
25°C  
70°C  
25°C  
70°C  
The LT1122 offset voltage of 120µV, and voltage gain of  
500,000 also support the 12-bit accurate applications.  
O U  
PPLICATI  
S
A
The input bias current of 10pA and offset current of 4pA  
combined with its speed allow the LT1122 to be used in  
such applications as high speed sample and hold amplifi-  
ers, peak detectors, and integrators.  
Fast 12-Bit D/A Output Amplifiers  
High Speed Buffers  
Fast Sample and Hold Amplifiers  
High Speed Integrators  
Voltage to Frequency Converters  
Active Filters  
Log Amplifiers  
Peak Detectors  
U
O
TYPICAL APPLICATI  
Large-Signal Response  
12-Bit Voltage Output D/A Converter  
+
C
f
2
+
V
6
OUT  
0mA TO 2mA  
OR 4mA  
LT1122  
0V TO 10V  
3
12-BIT CURRENT OUTPUT D/A CONVERTER  
C = 5pF TO 17pF  
f
200ns/DIV  
AV = –1  
LT1122•TA01  
(DEPENDING ON D/A CONVERTER USED)  
1122 TA07  
1
LT1122  
W W W  
U
ABSOLUTE AXI U RATI GS  
Supply Voltage .................................................... ± 20V  
Differential Input Voltage ...................................... ± 40V  
Input Voltage ........................................................ ± 20V  
Output Short Circuit Duration .......................... Indefinite  
Lead Temperature (Soldering, 10 sec.)................. 300°C  
Operating Temperature Range  
LT1122AM/BM/CM/DM .................... – 55°C to 125°C  
LT1122AC/BC/CC/DC/CS/DS .............. – 40°C to 85°C  
Storage Temperature Range  
All Devices....................................... – 65°C to 150°C  
W
U
/O  
PACKAGE RDER I FOR ATIO  
ORDER PART  
ORDER PART  
TOP VIEW  
TOP VIEW  
NUMBER  
V
SPEED BOOST/  
OVERCOMP  
V
V
SPEED BOOST/  
OVERCOMP  
V
NUMBER  
OS  
OS  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
TRIM  
–IN  
TRIM  
–IN  
+
+
LT1122AMJ8 LT1122CCJ8  
LT1122BMJ8 LT1122DCJ8  
LT1122CMJ8 LT1122ACN8  
LT1122DMJ8 LT1122BCN8  
LT1122ACJ8 LT1122CCN8  
LT1122BCJ8 LT1122DCN8  
LT1122CS8  
LT1122DS8  
LT1122  
LT1122  
+IN  
OUT  
+IN  
OUT  
V
V
TRIM  
V
V
TRIM  
OS  
OS  
PART MARKING  
N8 PACKAGE  
8-LEAD PLASTIC DIP 8-LEAD HERMETIC DIP  
J8 PACKAGE  
S8 PACKAGE  
8-LEAD PLASTIC SOIC  
1122C  
1122D  
TJMAX = 150°C, θJA = 130°C/W (N8)  
JMAX = 175°C, θJA = 100°C/W (J8)  
TJMAX = 150°C, θJA = 190°C/W  
T
Consult factory for Industrial grade parts.  
VS = ± 15V, TA = 25°C, VCM = 0V unless otherwise noted. (Note 1)  
ELECTRICAL CHARACTERISTICS  
LT1122CM/DM  
LT1122AM/BM  
LT1122AC/BC  
LT1122CC/DC  
LT1122CS/DS  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN TYP MAX  
MIN  
TYP MAX  
UNITS  
µV  
V
Input Offset Voltage  
Input Offset Current  
Input Bias Current  
120  
600  
130  
900  
OS  
I
I
4
40  
5
50  
pA  
OS  
10  
75  
12  
100  
pA  
B
Input Resistance  
Differential  
Common Mode  
12  
12  
10  
10  
10  
10  
10  
10  
12  
11  
12  
11  
V
CM  
V
CM  
= – 10V to + 8V  
= + 8V to + 11V  
Input Capacitance  
Slew Rate  
4
4
pF  
S
A = – 1  
V
60  
80  
50  
75  
V/µs  
R
Settling Time (Note 2)  
+ 10V to 0V, – 10V to 0V  
100% Tested: A and C Grades  
to 1mV at Sum Node  
B and D Grades to 1mV at Sum Node  
All Grades to 0.5mV at Sum Node  
340  
350  
450  
540  
350  
360  
470  
590  
ns  
ns  
ns  
GBW  
Gain Bandwidth Product  
Power Bandwidth  
14  
1.2  
13  
1.1  
MHz  
MHz  
V
OUT  
= 20Vp-p  
A
Large Signal Voltage Gain  
V
OUT  
V
OUT  
= ± 10V, R = 2kΩ  
180  
130  
500  
250  
150  
110  
450  
220  
V/mV  
V/mV  
VOL  
L
= ± 10V, R = 600Ω  
L
CMRR  
PSRR  
Common Mode Rejection Ratio  
Input Voltage Range  
V
= ± 10V  
83  
99  
80  
98  
dB  
V
CM  
(Note 3)  
= ± 10V to ± 18V  
± 10.5 ± 11  
86 103  
± 10.5 ± 11  
82 101  
Power Supply Rejection Ratio  
Input Noise Voltage  
V
S
dB  
0.1Hz to 10Hz  
3.0  
3.3  
µV  
P-P  
Input Noise Voltage Density  
f
f
= 100Hz  
= 10kHz  
25  
14  
27  
15  
nV/Hz  
nV/Hz  
O
O
Input Noise Current Density  
f
= 100Hz, f = 10kHz  
2
2
fA/Hz  
O
O
2
LT1122  
ELECTRICAL CHARACTERISTICS  
VS = ± 15V, TA = 25°C, VCM = 0V unless otherwise noted.  
LT1122CM/DM  
LT1122AM/BM  
LT1122AC/BC  
LT1122CC/DC  
LT1122CS/DS  
SYMBOL  
PARAMETER  
CONDITIONS  
R = 2kΩ  
MIN TYP MAX  
MIN  
± 12  
TYP MAX  
UNITS  
V
OUT  
Output Voltage Swing  
± 12  
± 12.5  
± 12.5  
V
V
L
R = 600Ω  
L
± 11.5 ± 12  
± 11.5 ± 12  
I
S
Supply Current  
7.5  
10  
7.8  
11  
mA  
V
Minimum Supply voltage  
Offset Adjustment Range  
(Note 4)  
± 5  
± 4  
± 5  
+
R
POT  
10k, Wiper to V  
± 10  
± 4  
± 10  
mV  
VS = ± 15V, VCM = 0V, 0°C TA 70°C, unless otherwise noted. (Note 1)  
LT1122CC/DC  
LT1122CS/DS  
LT1122AC/BC  
SYMBOL  
OS  
PARAMETER  
Input Offset Voltage  
CONDITIONS  
MIN TYP MAX  
MIN  
TYP MAX  
UNITS  
V
350 1400  
400  
2000  
µV  
Average Temperature Coefficient  
of Input Offset Voltage  
5
18  
6
25  
µV/°C  
I
Input Offset Current  
12  
80  
150  
600  
15  
90  
200  
800  
pA  
pA  
OS  
I
B
Input Bias Current  
A
Large Signal Voltage Gain  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Input Voltage Range  
Output Voltage Swing  
Slew Rate  
V
V
V
= ± 10V, R 2kΩ  
120  
82  
380  
98  
100  
340  
96  
V/mV  
dB  
VOL  
OUT  
L
CMRR  
PSRR  
= ± 10V  
78  
80  
CM  
= ± 10V to ± 17V  
84  
101  
± 10.8  
99  
dB  
S
± 10  
± 10  
± 10.8  
V
V
R = 2kΩ  
± 11.5 ± 12.4  
50 70  
± 11.5 ± 12.4  
40 65  
V
OUT  
L
S
A
= – 1  
V
V/µs  
R
VS = ± 15V, VCM = 0V, – 55°C TA 125°C, unless otherwise noted. (Note 1)  
LT1122AM/BM  
MIN TYP MAX  
LT1122CM/DM  
SYMBOL  
PARAMETER  
Input Offset Voltage  
CONDITIONS  
MIN TYP MAX  
UNITS  
µV  
V
OS  
650  
6
2400  
18  
800  
7
3400  
25  
Average Temperature Coefficient  
of Input Offset Voltage  
µV/°C  
I
Input Offset Current  
0.5  
6
6
0.6  
7
9
nA  
nA  
OS  
I
B
Input Bias Current  
25  
35  
A
Large Signal Voltage Gain  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Input Voltage Range  
Output Voltage Swing  
Slew Rate  
V
V
V
= ± 10V, R 2kΩ  
70  
80  
230  
97  
60  
76  
200  
94  
V/mV  
dB  
VOL  
OUT  
L
CMRR  
PSRR  
= ± 10V  
CM  
= ± 10V to ± 17V  
83  
100  
± 10.5  
78  
98  
dB  
S
± 10  
± 10  
± 10.5  
V
V
R = 2kΩ  
± 11.3 ± 12.1  
45 60  
± 11.3 ± 12.1  
35 55  
V
OUT  
L
S
A
= – 1  
V
V/µs  
R
The denotes the specifications which apply over the full operating  
temperature range.  
Note 3: Input voltage range functionality is assured by testing offset  
voltage at the input voltage range limits to a maximum of 4mV (A, B  
grades), to 5.7mV (C, D grades).  
Note 4: Minimum supply voltage is tested by measuring offset voltage to  
7mV maximum at ± 5V supplies.  
Note 5: The LT1122 is not tested and not quality-assurance-sampled at  
– 40°C and at 85°C. These specifications are guaranteed by design,  
correlation and/or inference from – 55°C, 0°C, 25°C, 70°C and/or 125°C  
tests.  
Note 1: The LT1122 is measured in an automated tester in less than one  
second after application of power. Depending on the package used, power  
dissipation, heat sinking, and air flow conditions, the fully warmed up chip  
temperature can be 10°C to 50°C higher than the ambient temperature.  
Note 2: Settling time is 100% tested for A and C grades using the settling  
time test circuit shown. This test is not included in quality assurance  
sample testing.  
3
LT1122  
ELECTRICAL CHARACTERISTICS  
VS = ± 15V, VCM = 0V, – 40°C TA 85°C, unless otherwise noted. (Note 5)  
LT1122CC/DC  
LT1122CS/DS  
LT1122AC/BC  
SYMBOL  
PARAMETER  
Input Offset Voltage  
CONDITIONS  
MIN TYP MAX  
MIN TYP MAX  
UNITS  
µV  
V
OS  
450  
1900  
500  
2700  
Average Temperature Coefficient  
of Input Offset Voltage  
6
20  
7
28  
µV/°C  
I
Input Offset Current  
30  
230  
340  
98  
600  
40  
260  
300  
96  
900  
pA  
pA  
OS  
I
B
Input Bias Current  
2000  
2700  
A
Large Signal Voltage Gain  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Input Voltage Range  
Output Voltage Swing  
Slew Rate  
V
V
V
= ± 10V, R 2kΩ  
95  
80  
80  
76  
V/mV  
dB  
VOL  
OUT  
L
CMRR  
PSRR  
= ± 10V  
CM  
= ± 10V to ± 17V  
83  
100  
± 10.6  
78  
98  
dB  
S
± 10  
± 10  
± 10.6  
V
V
R = 2kΩ  
± 11.3 ± 12.2  
45 65  
± 11.3 ± 12.2  
35 60  
V
OUT  
L
S
A
= – 1  
V
V/µs  
R
Settling Time Test Fixture  
DEVICE UNDER TEST  
5pF  
2k  
1%  
+10V  
+15V  
(REGULATED)  
7
+15V  
7
1
2k  
1%  
51  
51  
8
2
4
+
HA5002  
6
2
LT1122  
4
3
1
2
3
4
5
6
7
8
6
16  
15  
14  
13  
12  
11  
10  
9
5
4
74LS00  
GROUND ALL  
OTHER INPUTS  
–15V  
5
–15V  
5.1k*  
1%  
5.1k  
1%  
V
IN  
(MEASURE INPUT  
PULSE HERE)  
1
LTC201A  
3
TTL  
IN  
2
+15V  
51  
7
+15V  
NO CONNECTION ON PINS  
10, 11, 12, 14, AND 15  
1
2
–10V  
SUMMING  
NODE  
51  
4
7
3
2
8
(REGULATED)  
HA5002  
5
+
1k  
OUTPUT  
6
+15V  
LT1223  
SETTLING  
TIME OUTPUT  
(20 TIMES SUM  
NODE OUTPUT)  
+
0.1µF  
1µF TANT  
4
–15V  
79  
–15V  
1.5k  
TYPICAL SUPPLY  
BYPASSING FOR  
EACH AMP/BUFFER  
1N5712  
1N5712  
–15V  
*THIS RESISTOR CAN BE ADJUSTED TO  
NULL OUT ALL OFFSETS AT THE SETTLING  
TIME OUTPUT. THE AUTOMATED TESTER  
USES A SEPARATE AUTOZERO CIRCUIT.  
0.1µF  
1µF TANT  
+
LT1122•TA02  
4
LT1122  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Settling Time  
(Input From –10V to 0V)  
Settling Time  
(Input From +10V to 0V)  
Settling Time  
(Input From 0V to +10V)  
100ns/DIV  
100ns/DIV  
100ns/DIV  
1122 G01  
1122 G02  
1122 G03  
Settling Time  
(Input From 0V to –10V)  
Undistorted Output Swing vs  
Frequency  
Large Signal Response  
30  
25  
20  
15  
10  
5
V
A
= ±15V  
= 25°C  
S
T
200ns/DIV  
AV = +1  
100ns/DIV  
1122 G04  
1122 G05  
0
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
LT1122•TPC01  
Common Mode Rejection vs  
Frequency  
Voltage Gain vs Frequency  
Gain, Phase vs Frequency  
120  
100  
120  
100  
80  
80  
V
A
= ±15V  
= 25°C  
S
100  
120  
20  
10  
V
A
= ±15V  
= 25°C  
S
T
T
80  
60  
60  
140  
160  
180  
40  
20  
0
40  
20  
0
V
A
C
= ±15V  
= 25°C  
= 15pF  
S
T
0
200  
L
–20  
–40  
–10  
100k  
FREQUENCY (Hz)  
10M  
100  
1k  
10k  
1M  
100M  
1
10 100 1k 10k 100k  
FREQUENCY (Hz)  
100M  
1M 10M  
1M  
100M  
10M  
FREQUENCY (Hz)  
LT1122•TPC03  
LT1122•TPC04  
LT1122•TPC02  
5
LT1122  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Distribution of Input Offset  
Voltage  
Input Bias and Offset Currents  
Over Temperature  
Bias and Offset Currents Over  
The Common-Mode Range  
120  
100  
100K  
30K  
10K  
3K  
800  
600  
V
T
= ±15V  
= 25°C  
3370 UNITS TESTED  
IN ALL PACKAGES  
S
A
V
CM  
= ±15V  
S
V
T
= ±15V  
= 25°C  
S
A
V
= 0V  
(NOT WARMED UP)  
(NOT-WARMED UP)  
80  
60  
BIAS  
CURRENT  
1K  
BIAS  
CURRENT  
300  
100  
30  
400  
40  
20  
0
OFFSET  
CURRENT  
OFFSET  
CURRENT  
200  
0
10  
3
1
10  
COMMON-MODE INPUT VOLTAGE (V)  
0
25  
50  
75  
100  
125  
–15  
–10  
–5  
0
5
15  
–900  
–500  
–100 100  
500  
900  
CHIP TEMPERATURE (°C)  
INPUT OFFSET VOLTAGE (µV)  
LT1122•TPC06  
LT1122•TPC07  
LT1122•TPC05  
Warm-up Drift  
Noise Spectrum  
0.1Hz to 10Hz Noise  
1000  
100  
10  
250  
200  
150  
100  
50  
V
A
= ±15V  
= 25°C  
S
V
A
= ±15V  
S
SO PACKAGE  
T
T
= 25°C  
N PACKAGE  
J PACKAGE  
IN STILL AIR (SO PACKAGE  
SOLDERED ONTO BOARD)  
1
0
2
4
6
8
10  
0
1
2
3
1
3
10  
3k 10k  
30 100 300 1k  
FREQUENCY (Hz)  
TIME (SECONDS)  
TIME AFTER POWER ON (MINUTES)  
LT1122•TPC10  
LT1122•TPC08  
LT1122•TPC09  
Total Harmonic Distortion  
+ Noise vs Frequency  
Inverting Gain  
Total Harmonic Distortion  
+ Noise vs Frequency  
Non-Inverting Gain  
Intermodulation Distortion  
(CCIF Method) vs Frequency  
LT1122 and LF156*  
0.1  
0.1  
0.01  
0.1  
0.01  
T
V
Z
V
= 25°C  
A
S
L
= ±15V  
= 5k//15pF  
= 7V RMS  
LF156  
O
0.01  
0.001  
A
= +50  
V
A
A
= –50  
V
V
V
T
A
V
Z
= ±15V  
S
A
V
O
L
= 25°C  
A
= +10  
= +1  
V
= –10  
= 7V RMS  
= 5k//15pF  
= –10  
= –1  
0.001  
0.0001  
0.001  
0.0001  
A
V
T
V
Z
V
= 25°C  
A
S
L
A
= ±15V  
V
= 5k//15pF  
= 7V RMS  
LT1122  
O
0.0001  
3k  
10k  
FREQUENCY (Hz)  
20k  
20  
100  
1k  
FREQUENCY (Hz)  
10k 20k  
20  
100  
1k  
FREQUENCY (Hz)  
10k 20k  
*SEE LT1115 DATA SHEET FOR DEFINITION  
OF CCIF TESTING  
LT1122•TPC11  
LT1122•TPC12  
LT1122•TPC13  
6
LT1122  
O U  
W
U
PPLICATI  
A
S
I FOR ATIO  
Settling Time Measurements  
The power supply connections to the LT1122 must main-  
tain a low impedance to ground over a bandwidth of  
20MHz.Thisisespeciallyimportantwhendrivingasignifi-  
cant resistive or capacitive load, since all current delivered  
to the load comes from the power supplies. Multiple high  
quality bypass capacitors are recommended for each  
power supply line in any critical application. A 0.1µF  
ceramic and a 1µF electrolytic capacitor, as shown, placed  
as close as possible to the amplifier (with short lead  
lengths to power supply common) will assure adequate  
high frequency bypassing, in most applications.  
Settling time test circuits shown on some competitive  
devices’ data sheets require:  
1. A “flat top” pulse generator. Unfortunately, flat top  
pulse generators are not commercially available.  
2. A variable feedback capacitor around the device under  
test. This capacitor varies over a four to one range.  
Presumably, as each op amp is measured for settling  
time, the capacitor is fine tuned to optimize settling  
time for that particular device.  
+
V
3. A small inductor load to optimize settling.  
+
1µF  
0.1µF  
7
The LT1122’s settling time is 100% tested in the test  
circuit shown. No “flat top” pulse generator is required.  
Thetestcircuitcanbereadilyconstructed, usingcommer-  
cially available ICs. Of course, standard high frequency  
board construction techniques should be followed. All  
LT1122s are measured with a constant feedback capaci-  
tor. No fine tuning is required.  
2
3
+
6
LT1122  
4
1µF  
0.1µF  
+
V
LT1122•TA03  
Speed Boost/Overcompensation Terminal  
When the feedback around the op amp is resistive (RF), a  
pole will be created with RF, the source resistance and  
capacitance (RS, CS), and the amplifier input capacitance  
(CIN 4pF). In low closed loop gain configurations and  
with RS and RF in the kilohm range, this pole can create  
excess phase shift and even oscillation. A small capacitor  
(CF) in parallel with RF eliminates this problem. With  
RS (CS + CIN) = RFCF, the effect of the feedback pole is  
completely removed.  
Pin 8 of the LT1122 can be used to change the input stage  
operating current of the device. Shorting pin 8 to the  
positive supply (Pin 7) increases slew rate and bandwidth  
by about 25%, but at the expense of a reduction in phase  
margin by approximately 18 degrees. Unity gain capaci-  
tive load handling decreases from typically 500pF to  
100pF.  
Conversely, connecting a 15k resistor from pin 8 to  
ground pulls 1mA out of pin 8 (with V+ = 15V). This  
reduces slew rate and bandwidth by 25%. Phase margin  
and capacitive load handling improve; the latter typically  
increasing to 800pF.  
C
F
R
F
+
High Speed Operation  
C
OUTPUT  
IN  
R
C
S
S
As with most high speed amplifiers, care should be taken  
with supply decoupling, lead dress and component  
placement.  
LT1122•TA04  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection of circuits as described herein will not infringe on existing patent rights.  
7
LT1122  
U
TYPICAL APPLICATIONS  
Quartz Stabilized Oscillator With 9ppm Distortion  
OUTPUT  
–15V  
4.7k  
LT1004  
2.5V  
OUTPUT  
AMPLITUDE  
TRIM  
10µF  
4.7k  
5k  
47k  
4kHz  
J
CUT  
+15V  
+
4.7k  
LT1122  
LT1010  
LT1006  
+
DISTORTION  
TRIM  
430pF  
MOUNT IN CLOSE  
PROXIMITY  
50k  
560k  
470Ω  
+15V  
2k  
GROUND CRYSTAL CASE  
+
1M  
+15V  
560k  
100k  
LT1122  
= VACTEC VTL5C10 OR  
CLAIREX CLM410  
–15V  
Q1  
2N3904  
1/4 LTC201  
= 1N4148  
LT1122•TA05  
Wide-Band, Filtered, Full Wave Rectifier  
200k  
1%  
1µF  
200k  
1%  
50k  
20k  
1%  
100k  
1%  
1k  
20k  
1%  
E
DC  
LT1122  
OUT  
+
V
IN  
+
LT1122  
OUTPUT DC = RMS VALUE OF INPUT  
BANDWIDTH WITH 10Vp-p INPUT = 2MHz  
LT1122•TA06  
U
PACKAGE DESCRIPTION  
Please see the 1994 Linear Databook Volume III for package descriptions.  
8

相关型号:

LT1122DCJ8

Fast Settling, JFET Input Operational Amplifier
Linear

LT1122DCJ8#PBF

IC OP-AMP, Operational Amplifier
Linear

LT1122DCJ8#TRPBF

IC OP-AMP, Operational Amplifier
Linear

LT1122DCN8

Fast Settling, JFET Input Operational Amplifier
Linear

LT1122DCN8#PBF

LT1122 - Fast Settling, JFET Input Operational Amplifier; Package: PDIP; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LT1122DCN8#TRPBF

IC OP-AMP, Operational Amplifier
Linear

LT1122DCS8

IC OP-AMP, 900 uV OFFSET-MAX, 13 MHz BAND WIDTH, PDSO8, Operational Amplifier
Linear

LT1122DM

Fast Settling, JFET Input Operational Amplifier
Linear

LT1122DMJ8

Fast Settling, JFET Input Operational Amplifier
Linear

LT1122DMJ8#TRPBF

IC OP-AMP, Operational Amplifier
Linear

LT1122DMN8

IC OP-AMP, PDIP8, PLASTIC, DIP-8, Operational Amplifier
Linear

LT1122DS

Fast Settling, JFET Input Operational Amplifier
Linear