LT1125CSW#PBF [Linear]

LT1125 - Quad Low Noise, High Speed Precision Op Amps; Package: SO; Pins: 16; Temperature Range: 0°C to 70°C;
LT1125CSW#PBF
型号: LT1125CSW#PBF
厂家: Linear    Linear
描述:

LT1125 - Quad Low Noise, High Speed Precision Op Amps; Package: SO; Pins: 16; Temperature Range: 0°C to 70°C

运算放大器
文件: 总16页 (文件大小:231K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1124/LT1125  
Dual/Quad Low Noise,  
High Speed Precision Op Amps  
U
FEATURES  
DESCRIPTIO  
The LT®1124 dual and LT1125 quad are high performance  
op amps that offer higher gain, slew rate and bandwidth  
than the industry standard OP-27 and competing OP-270/  
OP-470 op amps. In addition, the LT1124/LT1125 have  
lower IB and IOS than the OP-27; lower VOS and noise  
than the OP-270/OP-470.  
100% Tested Low Voltage Noise: 2.7nV/Hz Typ  
4.2nV/Hz Max  
Slew Rate: 4.5V/µs Typ  
Gain Bandwidth Product: 12.5MHz Typ  
Offset Voltage, Prime Grade: 70µV Max  
Low Grade: 100µV Max  
High Voltage Gain: 5 Million Min  
In the design, processing and testing of the device, par-  
ticular attention has been paid to the optimization of the  
entire distribution of several key parameters. Slew rate,  
gain bandwidth and 1kHz noise are 100% tested for each  
individual amplifier. Consequently, the specifications of  
even the lowest cost grades (the LT1124C and the  
LT1125C) have been spectacularly improved compared  
Supply Current Per Amplifier: 2.75mA Max  
Common Mode Rejection: 112dB Min  
Power Supply Rejection: 116dB Min  
Available in 8-Pin SO Package  
U
APPLICATIO S  
Two and Three Op Amp Instrumentation Amplifiers  
Low Noise Signal Processing  
Active Filters  
Microvolt Accuracy Threshold Detection  
Strain Gauge Amplifiers  
Direct Coupled Audio Gain Stages  
Tape Head Preamplifiers  
to equivalent grades of competing amplifiers.  
Power consumption of the LT1124 is one half of two  
OP-27s. Low power and high performance in an 8-pin SO  
packagemaketheLT1124afirstchoiceforsurfacemounted  
systems and where board space is restricted.  
For a decompensated version of these devices, with three  
times higher slew rate and bandwidth, please see the  
LT1126/LT1127 data sheet.  
Infrared Detectors  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Protected by U.S. patents 4,775,884 and 4,837,496.  
U
TYPICAL APPLICATIO  
Instrumentation Amplifier with Shield Driver  
Input Offset Voltage Distribution  
3
+
(All Packages, LT1124 and LT1125)  
1k  
30k  
1
1/4  
LT1125  
2
R
F
758 DUALS  
200 QUADS  
V
= ±15V  
= 25°C  
S
A
15V  
4
3.4k  
T
30  
20  
10  
0
2316 UNITS  
TESTED  
5
6
GUARD  
+
R
G
7
1/4  
LT1125  
100  
OUTPUT  
30k  
10  
+
+
11  
8
1/4  
LT1125  
R
G
INPUT  
100Ω  
9
–15V  
GUARD  
GAIN = 30 (1 + R /R ) 1000  
F
G
POWER BW = 170kHz  
SMALL-SIGNAL BW = 400kHz  
R
F
13  
12  
NOISE = 3.8µV/Hz AT OUTPUT  
= 35µV  
3.4k  
V
OS  
14  
–100  
60  
20  
20  
60  
100  
1/4  
LT1125  
INPUT OFFSET VOLTAGE (µV)  
1k  
+
1124/25 TA02  
1124/25 TA01  
1
LT1124/LT1125  
W W W  
U
ABSOLUTE AXI U RATI GS (Note 1)  
Supply Voltage ..................................................... ±22V  
Input Voltages ......................... Equal to Supply Voltage  
Output Short-Circuit Duration......................... Indefinite  
Differential Input Current (Note 6) ..................... ±25mA  
Lead Temperature (Soldering, 10 sec)................. 300°C  
Storage Temperature Range ................ 65°C to 150°C  
Operating Temperature Range  
LT1124AC/LT1124C  
LT1125AC/LT1125C (Note 10) .......... 40°C to 85°C  
LT1124AI/LT1124I ............................ 40°C to 85°C  
LT1124AM/LT1124M  
LT1125AM/LT1125M ...................... 55°C to 125°C  
W
U
/O  
PACKAGE RDER I FOR ATIO  
TOP VIEW  
ORDER PART  
ORDER PART  
NUMBER  
NUMBER  
TOP VIEW  
+IN A  
1
2
3
4
8
7
6
5
–IN A  
+
V
A
B
OUT A  
OUT A  
–IN A  
+IN A  
1
2
3
4
V
8
7
6
5
LT1124CS8  
LT1124AIS8  
LT1124IS8  
LT1124CJ8  
LT1124ACN8  
LT1124CN8  
LT1124AMJ8  
LT1124MJ8  
+
+IN B  
–IN B  
V
OUT B  
–IN B  
+IN B  
A
OUT B  
B
V
S8 PACKAGE  
8-LEAD PLASTIC SO  
TJMAX = 140°C, θJA = 190°C  
S8 PART MARKING  
J8 PACKAGE  
N8 PACKAGE  
8-LEAD CERDIP 8-LEAD PDIP  
1124  
1124AI  
1124I  
NOTE: THIS PIN CONFIGURATION DIFFERS FROM THE  
8-PIN PDIP CONFIGURATION. INSTEAD, IT FOLLOWS  
THE INDUSTRY STANDARD LT1013DS8 SO PACKAGE  
PIN LOCATIONS  
TJMAX = 160°C, θJA = 100°C (J8)  
TJMAX = 140°C, θJA = 130°C (N8)  
TOP VIEW  
TOP VIEW  
LT1125CS  
LT1125CJ  
LT1125ACN  
LT1125CN  
LT1125AMJ  
LT1125MJ  
OUT A  
–IN A  
+IN A  
1
2
3
4
5
6
7
8
16 OUT D  
15 –IN D  
OUT A  
–IN A  
+IN A  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT D  
–IN D  
+IN D  
A
B
D
C
A
B
D
C
14  
13  
12  
11  
10  
9
+IN D  
+
V
+
V
V
V
+IN B  
–IN B  
OUT B  
NC  
+IN C  
–IN C  
OUT C  
NC  
+IN B  
–IN B  
OUT B  
+IN C  
–IN C  
OUT C  
8
J PACKAGE  
N PACKAGE  
14-LEAD CERDIP 14-LEAD PDIP  
SW PACKAGE  
16-LEAD PLASTIC (WIDE) SO  
TJMAX = 160°C, θJA = 80°C (J)  
JMAX = 140°C, θJA = 110°C (N)  
T
T
JMAX = 140°C, θJA = 130°C  
ELECTRICAL CHARACTERISTICS TA = 25°C, VS = ±15V, unless otherwise noted.  
LT1124AC/AI/AM  
LT1124/C/I/M  
LT1125AC/AM  
LT1125/C/M  
TYP  
SYMBOL  
PARAMETER  
CONDITIONS (Note 2)  
MIN  
TYP  
MAX  
MIN  
MAX  
UNITS  
V
Input Offset Voltage  
LT1124  
LT1125  
20  
25  
70  
90  
25  
30  
100  
140  
µV  
µV  
OS  
V  
Time  
Long Term Input Offset  
Voltage Stability  
0.3  
0.3  
µV/Mo  
OS  
I
Input Offset Current  
LT1124  
LT1125  
5
6
15  
20  
6
7
20  
30  
nA  
nA  
OS  
2
LT1124/LT1125  
ELECTRICAL CHARACTERISTICS TA = 25°C, VS = ±15V, unless otherwise noted.  
LT1124AC/AI/AM  
LT1124C/I/M  
LT1125C/M  
LT1125AC/AM  
SYMBOL  
PARAMETER  
CONDITIONS (Note 2)  
MIN  
TYP  
±7  
MAX  
±20  
200  
MIN  
TYP  
MAX  
UNITS  
I
Input Bias Current  
Input Noise Voltage  
Input Noise Voltage Density  
±8  
±30  
nA  
B
e
n
0.1Hz to 10Hz (Notes 8, 9)  
70  
70  
nV  
P-P  
f = 10Hz (Note 4)  
O
3.0  
2.7  
5.5  
4.2  
3.0  
2.7  
5.5  
4.2  
nV/Hz  
nV/Hz  
f = 1000Hz (Note 3)  
O
i
Input Noise Current Density  
f = 10Hz  
f = 1000Hz  
O
1.3  
0.3  
1.3  
0.3  
pA/Hz  
pA/Hz  
n
O
V
Input Voltage Range  
±12  
112  
116  
±12.8  
126  
±12  
106  
110  
±12.8  
124  
V
dB  
dB  
CM  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
= ±12V  
CM  
V = ±4V to ±18V  
S
126  
124  
A
VOL  
R 10k, V = ±10V  
OUT  
R 2k, V  
5
2
17  
4
3.0  
1.5  
15  
3
V/µV  
V/µV  
L
= ±10V  
L
OUT  
V
Maximum Output Voltage Swing R 2k  
±13  
3
±13.8  
4.5  
±12.5 ±13.8  
V
V/µs  
MHz  
OUT  
L
SR  
Slew Rate  
R 2k (Notes 3, 7)  
L
2.7  
8
4.5  
12.5  
75  
GBW  
Gain Bandwidth Product  
Open-Loop Output Resistance  
Supply Current per Amplifier  
Channel Separation  
f = 100kHz (Note 3)  
9
12.5  
75  
O
Z
V
OUT  
= 0, I  
= 0  
O
OUT  
I
2.3  
2.75  
2.3  
2.75  
mA  
dB  
S
f 10Hz (Note 9)  
= ±10V, R = 2k  
134  
150  
130  
150  
V
OUT  
L
The denotes the specifications which apply over the –55°C TA 125°C temperature range, VS = ±15V, unless otherwise noted.  
LT1124AM  
LT1125AM  
LT1124M  
LT1125M  
TYP  
SYMBOL  
PARAMETER  
CONDITIONS (Note 2)  
MIN  
TYP  
MAX  
MIN  
MAX  
UNITS  
V
Input Offset Voltage  
LT1124  
LT1125  
50  
55  
170  
190  
60  
70  
250  
290  
µV  
µV  
OS  
V  
Temp  
Average Input Offset  
Voltage Drift  
(Note 5)  
0.3  
1.0  
0.4  
1.5  
µV/°C  
OS  
I
Input Offset Current  
LT1124  
LT1125  
18  
18  
45  
55  
20  
20  
60  
70  
nA  
nA  
OS  
B
I
Input Bias Current  
±18  
±12  
122  
122  
±55  
±20  
±12  
120  
120  
±70  
nA  
V
V
Input Voltage Range  
±11.3  
106  
±11.3  
100  
CM  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
= ±11.3V  
dB  
dB  
CM  
V = ±4V to ±18V  
S
110  
104  
A
R 10k, V = ±10V  
OUT  
3
1
10  
3
2.0  
0.7  
10  
2
V/µV  
V/µV  
VOL  
L
R 2k, V  
L
= ±10V  
OUT  
V
Maximum Output Voltage Swing R 2k  
±12.5 ±13.6  
±12  
±13.6  
3.8  
V
V/µs  
mA  
OUT  
L
SR  
Slew Rate  
R 2k (Notes 3, 7)  
L
2.3  
3.8  
2.5  
2
I
Supply Current per Amplifier  
3.25  
2.5  
3.25  
S
3
LT1124/LT1125  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the 0°C TA 70°C  
temperature range, VS = ±15V, unless otherwise noted.  
LT1124AC  
LT1125AC  
TYP  
LT1124C  
LT1125C  
TYP  
SYMBOL  
PARAMETER  
CONDITIONS (Note 2)  
MIN  
MAX  
MIN  
MAX  
UNITS  
V
Input Offset Voltage  
LT1124  
LT1125  
35  
40  
120  
140  
45  
50  
170  
210  
µV  
µV  
OS  
V  
Average Input Offset  
Voltage Drift  
(Note 5)  
0.3  
1
0.4  
1.5  
µV/°C  
OS  
Temp  
I
Input Offset Current  
LT1124  
LT1125  
6
7
25  
35  
7
8
35  
45  
nA  
nA  
OS  
I
Input Bias Current  
±8  
±35  
±9  
±45  
nA  
V
B
V
Input Voltage Range  
±11.5 ±12.4  
±11.5 ±12.4  
CM  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
= ±11.5V  
109  
112  
125  
125  
102  
107  
122  
122  
dB  
dB  
CM  
V = ±4V to ±18V  
S
A
R 10k, V = ±10V  
OUT  
R 2k, V  
4.0  
1.5  
15  
3.5  
2.5  
1.0  
14  
2.5  
V/µV  
V/µV  
VOL  
L
L
= ±10V  
OUT  
V
Maximum Output Voltage Swing R 2k  
±12.5 ±13.7  
±12  
±13.7  
4
V
V/µs  
mA  
OUT  
L
SR  
Slew Rate  
R 2k (Notes 3, 7)  
L
2.6  
4
2.4  
I
Supply Current per Amplifier  
2.4  
3
2.4  
3
S
The denotes the specifications which apply over the –40°C TA 85°C temperature range, VS = ±15V,  
unless otherwise noted. (Note 10)  
LT1124AC/AI  
LT1125AC  
LT1124C/I  
LT1125C  
TYP  
SYMBOL  
PARAMETER  
CONDITIONS (Note 2)  
MIN  
TYP  
MAX  
MIN  
MAX  
UNITS  
V
Input Offset Voltage  
LT1124  
LT1125  
40  
45  
140  
160  
50  
55  
200  
240  
µV  
µV  
OS  
V  
Average Input Offset  
Voltage Drift  
(Note 5)  
0.3  
1
0.4  
1.5  
µV/°C  
OS  
Temp  
I
Input Offset Current  
LT1124  
LT1125  
15  
15  
40  
50  
17  
17  
55  
65  
nA  
nA  
OS  
I
Input Bias Current  
±15  
±50  
±17  
±65  
nA  
V
B
V
Input Voltage Range  
±11.4 ±12.2  
±11.4 ±12.2  
CM  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
= ±11.4V  
107  
111  
124  
124  
101  
106  
121  
121  
dB  
dB  
CM  
V = ±4V to ±18V  
S
A
R 10k, V = ±10V  
OUT  
R 2k, V  
3.5  
1.2  
12  
3.2  
2.2  
0.8  
12  
2.3  
V/µV  
V/µV  
VOL  
L
L
= ±10V  
OUT  
V
Maximum Output Voltage Swing R 2k  
±12.5 ±13.6  
±12  
±13.6  
3.9  
V
V/µs  
mA  
OUT  
L
SR  
Slew Rate  
R 2k (Notes 3, 7)  
L
2.4  
3.9  
2.4  
2.1  
I
Supply Current per Amplifier  
3.25  
2.4  
3.25  
S
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 7: Slew rate is measured in A = –1; input signal is ±7.5V, output  
measured at ±2.5V.  
V
Note 2: Typical parameters are defined as the 60% yield of parameter  
distributions of individual amplifiers; i.e., out of 100 LT1125s (or 100  
LT1124s) typically 240 op amps (or 120) will be better than the indicated  
specification.  
Note 8: 0.1Hz to 10Hz noise can be inferred from the 10Hz noise voltage  
density test. See the test circuit and frequency response curve for 0.1Hz to  
10Hz tester in the Applications Information section of the LT1007 or  
LT1028 data sheets.  
Note 3: This parameter is 100% tested for each individual amplifier.  
Note 4: This parameter is sample tested only.  
Note 5: This parameter is not 100% tested.  
Note 6: The inputs are protected by back-to-back diodes. Current limiting  
resistors are not used in order to achieve low noise. If differential input  
voltage exceeds ±1.4V, the input current should be limited to 25mA.  
Note 9: This parameter is guaranteed but not tested.  
Note 10: The LT1124C/LT1125C and LT1124AC/LT1125AC are guaranteed  
to meet specified performance from 0°C to 70°C and are designed,  
characterized and expected to meet these extended temperature limits, but  
are not tested at –40°C and 85°C. The LT1124AI and LT1124I are  
guaranteed to meet the extended temperature limits.  
4
LT1124/LT1125  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
0.1Hz to 10Hz Voltage Noise  
0.01Hz to 1Hz Voltage Noise  
Voltage Noise vs Frequency  
100  
30  
V
= ±15V  
= 25°C  
S
A
T
10  
3
MAXIMUM  
TYPICAL  
1/f CORNER  
2.3Hz  
1
0.1  
1.0  
10  
FREQUENCY (Hz)  
100  
1000  
0
2
4
6
8
10  
0
20  
40  
60  
80  
100  
TIME (SECONDS)  
TIME (SECONDS)  
1124/25 G03  
1124/25 G01  
1124/25 G02  
Input Bias or Offset Current  
vs Temperature  
Output Short-Circuit Current  
vs Time  
Current Noise vs Frequency  
10.0  
3.0  
30  
20  
10  
0
50  
40  
V
S
= ±15V  
= 25°C  
V = ±15V  
S
V
S
= ±15V  
T
A
25°C  
55°C  
30  
20  
10  
125°C  
1.0  
0.3  
0
–10  
–20  
–30  
MAXIMUM  
TYPICAL  
125°C  
25°C  
LT1124M/LT1125M  
1/f CORNER  
100Hz  
LT1124AM/LT1125AM  
–55°C  
–40  
–50  
0.1  
10  
100  
1k  
10k  
–75 –50 –25  
0
25 50 75 100 125  
0
1
2
3
4
TIME FROM OUTPUT SHORT TO GND (MINUTES)  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
1124 G04  
1124/25 G05  
LT1124 G06  
Input Bias Current Over the  
Common Mode Range  
Common Mode Rejection Ratio  
vs Frequency  
Power Supply Rejection Ratio  
vs Frequency  
20  
15  
10  
5
160  
140  
120  
100  
80  
160  
V
T
= ±15V  
= 25°C  
T
V
V
= 25°C  
= ±15V  
= ±10V  
T
= 25°C  
S
A
A
S
A
140  
120  
100  
80  
CM  
DEVICE WITH POSITIVE  
INPUT CURRENT  
0
PSRR  
+PSRR  
–5  
60  
60  
DEVICE WITH NEGATIVE  
INPUT CURRENT  
40  
10  
–15  
–20  
40  
20  
0
20  
0
2
3
4
5
6
7
8
–15 –10  
–5  
0
5
10  
15  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
1
10 10 10 10 10 10 10 10  
FREQUENCY (Hz)  
COMMON MODE INPUT VOLTAGE (V)  
1124/25 G08  
1124/25 G07  
1124/25 G09  
5
LT1124/LT1125  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Voltage Gain vs Frequency  
Voltage Gain vs Temperature  
Gain, Phase Shift vs Frequency  
50  
40  
20  
18  
16  
14  
12  
10  
8
80  
180  
140  
V
= ±15V  
= 25°C  
V
= ±15V  
= 25°C  
= 10pF  
S
A
S
A
L
LT1124AM/LT1125AM  
T
T
100  
C
Ø
R = 10k  
L
120  
30  
20  
LT1124M/LT1125M  
100  
60  
V
OUT  
= ±15V  
S
140  
160  
±
= 10V  
V
GAIN  
10  
6
R = 2k  
L
LT1124AM/LT1125AM  
20  
4
0
180  
200  
2
LT1124M/LT1125M  
–10  
0
20  
0.01  
0.1  
1
10  
100  
–75 –50 –25  
0
25 50 75 100 125  
1
100  
10k  
1M  
100M  
FREQUENCY (MHz)  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
1124/25 G12  
1124/25 G11  
1124/25 G10  
Offset Voltage Drift with  
Temperature of Representative  
Units  
Input Offset Voltage Drift  
Distribution  
Supply Current vs Supply Voltage  
50  
40  
3
2
1
0
40  
V = ±15V  
S
V
S
= ±15V  
200 N8  
100 S8  
96 J8  
125°C  
25°C  
30  
396 UNITS TESTED  
30  
20  
20  
10  
–55°C  
0
–10  
–20  
–30  
–40  
–50  
10  
0
–50 –25  
0
25  
50  
75 100 125  
0
±5  
±10  
±15  
±20  
–0.8  
–0.4  
0
0.4  
0.8  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
INPUT OFFSET VOLTAGE DRIFT (µV/°C)  
1124/25 G14  
1124/25 G15  
1124/25 G13  
Output Voltage Swing vs  
Load Current  
Small-Signal Transient Response  
Large-Signal Transient Response  
+
V
–0.8  
–1.0  
–1.2  
–1.4  
–1.6  
V
S
= ±3V TO ±18V  
125°C  
50mV  
0
10V  
25°C  
–55°C  
0
10V  
1.2  
1.0  
0.8  
0.6  
0.4  
50mV  
–55°C  
125°C  
25°C  
1124/25 G16  
1124/25 G17  
AVCL = +1  
AVCL = –1  
VS = ±15V  
VS = ±15V or ±5V  
CL = 15pF  
V
–10 –8 –6 –4 –2  
0
2
4
6
8
10  
I
I
SOURCE  
SINK  
OUTPUT CURRENT (mA)  
1124/25 G18  
6
LT1124/LT1125  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Common Mode Limit vs  
Temperature  
Channel Separation vs Frequency  
Warm-Up Drift  
+
V
180  
160  
140  
10  
8
–0.5  
–1.0  
V
= ±15V  
= 25°C  
S
A
LIMITED BY  
THERMAL INTERACTION  
T
–1.5  
–2.0  
–2.5  
+
SO PACKAGE  
V
= 3V TO 18V  
120  
100  
80  
V
= ±15V  
S
L
6
R
= 2k  
V
T
= 7V  
OUT  
P-P  
= 25°C  
A
N, J PACKAGES  
4
2.5  
2.0  
V
= –3V TO –18V  
60  
40  
20  
0
LIMITED BY PIN  
TO PIN CAPACITANCE  
1.5  
2
0
1.0  
0.5  
V
–60  
–20  
20  
60  
100  
140  
0
100  
1k  
10k 100k 1M  
10M  
0
1
2
3
4
5
TEMPERATURE (°C)  
FREQUENCY (Hz)  
TIME AFTER POWER ON (MINUTES)  
1124/25 G19  
1124/25 G20  
1124/25 G21  
Total Harmonic Distortion  
and Noise vs Frequency for  
Noninverting Gain  
Total Harmonic Distortion  
and Noise vs Frequency for  
Inverting Gain  
Total Harmonic Distortion  
and Noise vs Frequency for  
Competitive Devices  
0.1  
0.010  
0.1  
0.1  
0.010  
Z
V
A
= 2k/15pF  
= 20Vp-p  
= –10  
Z
= 2k/15pF  
Z
= 2k/15pF  
L
O
V
L
O
V
L
O
V
V
A
= 20V  
V
A
= 20Vp-p  
P-P  
= +1, +10, +100  
= –1, –10, –100  
MEASUREMENT BANDWIDTH  
= 10Hz TO 80kHz  
MEASUREMENT BANDWIDTH  
= 10Hz TO 80kHz  
MEASUREMENT BANDWIDTH  
= 10Hz TO 80kHz  
0.010  
0.001  
A
= +100  
V
A
= –100  
A
OP270  
V
A
= +10  
V
OP27  
LT1124  
= –10  
V
0.001  
0.001  
A
= +1  
V
A
= –1  
V
0.0001  
0.0001  
0.0001  
20  
100  
1k  
FREQUENCY (Hz)  
10k 20k  
20  
100  
1k  
FREQUENCY (Hz)  
10k 20k  
20  
100  
1k  
FREQUENCY (Hz)  
10k 20k  
1124/25 G24  
1124/25 G22  
1124/25 G23  
Total Harmonic Distortion and  
Noise vs Output Amplitude for  
Noninverting Gain  
Total Harmonic Distortion and  
Noise vs Output Amplitude for  
Inverting Gain  
Intermodulation Distortion  
(CCIF Method)* vs Frequency  
LT1124 and OP270  
1
0.1  
0.010  
0.001  
1
0.1  
Z
f
= 2k/15pF  
= 1kHz  
Z = 2k/15pF  
L
f (IM) = 1kHz  
Z
f
= 2k/15pF  
= 1kHz  
L
L
O
O
A
= +1, +10, +100  
f
V
A
= 13.5kHz  
= 20Vp-p  
= –10  
A
= –1, –10, –100  
V
O
O
V
V
MEASUREMENT BANDWIDTH  
= 10Hz TO 22kHz  
MEASUREMENT BANDWIDTH  
= 10Hz TO 22kHz  
MEASUREMENT BANDWIDTH  
= 10Hz TO 80kHz  
A
= +100  
V
OP270  
0.010  
0.001  
0.0001  
0.010  
0.001  
0.0001  
A
= –100  
V
A
= +10  
V
A
= –10  
V
A
= –1  
LT1124  
A
= +1  
1
V
V
0.0001  
0.3  
10  
)
30  
0.3  
1
10  
OUTPUT SWING (Vp-p)  
30  
3k  
10k  
20k  
OUTPUT SWING (V  
FREQUENCY (Hz)  
P-P  
1124/25 G25  
1124/25 G26  
1124/25 G27  
*See LT1115 data sheet for definition of CCIF testing  
7
LT1124/LT1125  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
The LT1124 may be inserted directly into OP-270 sockets.  
The LT1125 plugs into OP-470 sockets. Of course, all  
standard dual and quad bipolar op amps can also be  
replaced by these devices.  
(5µV/V). However, Table 1 can be used to estimate the  
expected matching performance between the two sides of  
the LT1124, and between amplifiers A and D, and between  
amplifiers B and C of the LT1125.  
Matching Specifications  
Offset Voltage and Drift  
In many applications the performance of a system de-  
pends on the matching between two op amps, rather than  
the individual characteristics of the two devices. The three  
op amp instrumentation amplifier configuration shown in  
thisdatasheetisanexample. Matchingcharacteristicsare  
not 100% tested on the LT1124/LT1125.  
Thermocouple effects, caused by temperature gradients  
across dissimilar metals at the contacts to the input  
terminals, can exceed the inherent drift of the amplifier  
unless proper care is exercised. Air currents should be  
minimized, package leads should be short, the two input  
leadsshouldbeclosetogetherandmaintainedatthesame  
temperature.  
Some specifications are guaranteed by definition. For  
example, 70µV maximum offset voltage implies that mis-  
match cannot be more than 140µV. 112dB (= 2.5µV/V)  
CMRR means that worst case CMRR match is 106dB  
The circuit shown in Figure 1 to measure offset voltage is  
also used as the burn-in configuration for the LT1124/  
LT1125, with the supply voltages increased to ±16V.  
50k*  
15V  
+
100*  
V
OUT  
50k*  
–15V  
V
= 1000V  
OS  
OUT  
*RESISTORS MUST HAVE LOW  
THERMOELECTRIC POTENTIAL  
1124/25 F01  
Figure 1. Test Circuit for Offset Voltage  
and Offset Voltage Drift with Temperature  
Table 1. Expected Match  
PARAMETER  
LT1124AC/AM  
LT1125AC/AM  
LT1124C/M  
LT1125C/M  
50% YIELD  
98% YIELD  
110  
50% YIELD  
98% YIELD  
130  
UNITS  
µV  
V
Match, V  
LT1124  
LT1125  
20  
30  
30  
50  
0.5  
7
OS  
OS  
150  
180  
µV  
Temperature Coefficient Match  
Average Noninverting I  
0.35  
6
1.0  
1.5  
µV/°C  
nA  
18  
25  
B
Match of Noninverting I  
CMRR Match  
7
22  
8
30  
nA  
B
126  
127  
115  
123  
127  
112  
dB  
PSRR Match  
118  
114  
dB  
8
LT1124/LT1125  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
High Speed Operation  
During the fast feedthrough-like portion of the output, the  
input protection diodes effectively short the output to the  
input and a current, limited only by the output short circuit  
protection, will be drawn by the signal generator. With RF  
500, the output is capable of handling the current  
requirements (IL 20mA at 10V) and the amplifier stays  
in its active mode and a smooth transition will occur.  
When the feedback around the op amp is resistive (RF),  
a pole will be created with RF, the source resistance and  
capacitance (RS, CS), and the amplifier input capacitance  
(CIN 2pF). In low closed loop gain configurations and  
with RS and RF in the kilohm range, this pole can create  
excessphaseshiftandevenoscillation. Asmallcapacitor  
(CF) in parallel with RF eliminates this problem (see  
Figure 2). With RS (CS + CIN) = RFCF, the effect of the  
feedback pole is completely removed.  
Noise Testing  
Each individual amplifier is tested to 4.2nV/Hz voltage  
noise; i.e., for the LT1124 two tests, for the LT1125 four  
tests are performed. Noise testing for competing multiple  
op amps, if done at all, may be sample tested or tested  
using the circuit shown in Figure 4.  
C
F
R
F
e
n OUT = (enA)2 + (enB)2 + (enC)2 + (enD)2  
+
If the LT1125 were tested this way, the noise limit would  
be 4 • (4.2nV/Hz)2 = 8.4nV/Hz. But is this an effective  
screen? What if three of the four amplifiers are at a typical  
2.7nV/Hz, and the fourth one was contaminated and has  
6.9nV/Hz noise?  
C
IN  
OUTPUT  
R
S
C
S
1124/25 F02  
Figure 2. High Speed Operation  
RMS Sum = (2.7)2 + (2.7)2 + (2.7)2 + (6.9)2 = 8.33nV/Hz  
Unity Gain Buffer Applications  
This passes an 8.4nV/Hz spec, yet one of the amplifiers  
is 64% over the LT1125 spec limit. Clearly, for proper  
noise measurement, the op amps have to be tested  
individually.  
When RF 100and the input is driven with a fast, large  
signal pulse (>1V), the output waveform will look as  
shown in Figure 3.  
R
F
OUT  
D
+
C
+
+
+
B
4.5V/µs  
OUTPUT  
+
A
1124/25 F03  
1124/25 F04  
Figure 3. Unity-Gain Buffer Applications  
Figure 4. Competing Quad Op Amp Noise Test Method  
9
LT1124/LT1125  
W U  
W
U
PERFOR A CE CO PARISO  
Table 2 summarizes the performance of the LT1124/  
LT1125 compared to the low cost grades of alternate  
approaches.  
but in most cases are superior. Normally dual and quad  
performance is degraded when compared to singles, for  
the LT1124/LT1125 this is not the case.  
The comparison shows how the specs of the LT1124/  
LT1125 not only stand up to the industry standard OP-27,  
Table 2. Guaranteed Performance, VS = ±15V, TA = 25°C, Low Cost Devices  
LT1124CN8  
LT1125CN  
PARAMETER/UNITS  
OP-27 GP  
OP-270 GP  
OP-470 GP  
UNITS  
Voltage Noise, 1kHz  
4.2  
4.5  
5.0  
nV/Hz  
100% Tested  
Sample Tested  
No Limit  
Sample Tested  
Slew Rate  
2.7  
1.7  
Not Tested  
1.7  
1.4  
V/µs  
100% Tested  
Gain Bandwidth Product  
8.0  
5.0  
Not Tested  
MHz  
100% Tested  
No Limit  
No Limit  
Offset Voltage  
Offset Current  
LT1124  
LT1125  
100  
140  
100  
250  
µV  
µV  
1000  
LT1124  
LT1125  
20  
30  
75  
20  
30  
nA  
nA  
Bias Current  
30  
2.75  
80  
5.67  
0.7  
60  
3.25  
0.35  
90  
60  
2.75  
0.4  
100  
105  
nA  
mA  
V/µV  
dB  
Supply Current/Amp  
Voltage Gain, R = 2k  
1.5  
L
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
SO-8 Package  
106  
100  
94  
110  
104  
No  
dB  
Yes - LT1124  
Yes  
U
O
TYPICAL APPLICATI S  
Gain 1000 Amplifier with 0.01% Accuracy, DC to 1Hz  
Gain Error vs Frequency Closed-Loop Gain = 1000  
1.0  
20k  
TRIM  
340k  
1%  
15k  
5%  
TYPICAL  
PRECISION  
OP AMP  
15V  
6 (S0-8)  
8 (N8)  
365Ω  
0.1  
1%  
2
1/2 LT1124  
OUTPUT  
7 (SO-8)  
1 (N8)  
3
LT1124/LT1125  
0.01  
+
4
RN60C FILM RESISTORS  
–15V  
INPUT  
CLOSED-LOOP GAIN  
GAIN ERROR =  
THE HIGH GAIN AND WIDE BANDWIDTH OF THE LT1124/LT1125, IS USEFUL IN LOW  
FREQUENCY HIGH CLOSED-LOOP GAIN AMPLIFIER APPLICATIONS. A TYPICAL  
PRECISION OP AMP MAY HAVE AN OPEN-LOOP GAIN OF ONE MILLION WITH 500kHz  
BANDWIDTH. AS THE GAIN ERROR PLOT SHOWS, THIS DEVICE IS CAPABLE OF 0.1%  
AMPLIFYING ACCURACY UP TO 0.3Hz ONLY. EVEN INSTRUMENTATION RANGE  
SIGNALS CAN VARY AT A FASTER RATE. THE LT1124/LT1125 “GAIN PRECISION —  
OPEN-LOOP GAIN  
0.001  
0.1  
1
10  
100  
FREQUENCY (Hz)  
1124/25 TA04  
BANDWIDTH PRODUCT” IS 75 TIMES HIGHER, AS SHOWN.  
1124/25 TA03  
10  
LT1124/LT1125  
W
W
SCHE ATIC DIAGRA  
(1/2 LT1124, 1/4 LT1125)  
+
V
360µA  
570µA  
100µA  
Q7  
Q28  
200pF  
21k  
21k  
3.6k  
3.6k  
35pF  
Q27  
Q18  
20Ω  
Q9  
Q13  
Q8  
Q25  
OUTPUT  
Q26  
Q17  
Q10  
900Ω  
Q19  
Q20  
20Ω  
V
NONINVERTING  
INPUT (+)  
Q2A  
Q1A Q1B  
400Ω  
Q30  
Q2B  
67pF  
20pF  
+
V
Q3  
INVERTING  
INPUT (–)  
Q29  
+
V
Q22  
Q11  
Q23  
6k  
Q12 Q15  
Q16  
Q24  
200µA  
200µA  
100µA  
2006k  
200Ω  
50Ω  
V
1124/25 SS  
11  
LT1124/LT1125  
U
PACKAGE DESCRIPTIO  
Dimensions in inches (millimeters) unless otherwise noted.  
J8 Package  
8-Lead CERDIP (Narrow 0.300, Hermetic)  
(LTC DWG # 05-08-1110)  
0.405  
(10.287)  
MAX  
CORNER LEADS OPTION  
(4 PLCS)  
0.005  
(0.127)  
MIN  
6
5
4
8
7
2
0.023 – 0.045  
(0.584 – 1.143)  
HALF LEAD  
OPTION  
0.025  
(0.635)  
RAD TYP  
0.220 – 0.310  
(5.588 – 7.874)  
0.045 – 0.068  
(1.143 – 1.727)  
FULL LEAD  
OPTION  
1
3
0.200  
0.300 BSC  
(5.080)  
MAX  
(0.762 BSC)  
0.015 – 0.060  
(0.381 – 1.524)  
0.008 – 0.018  
(0.203 – 0.457)  
0° – 15°  
0.045 – 0.068  
(1.143 – 1.727)  
0.125  
3.175  
MIN  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE  
OR TIN PLATE LEADS  
0.100 ± 0.010  
0.014 – 0.026  
J8 1197  
(2.540 ± 0.254)  
(0.360 – 0.660)  
N8 Package  
8-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
0.400*  
(10.160)  
MAX  
8
7
6
5
4
0.255 ± 0.015*  
(6.477 ± 0.381)  
1
2
3
0.130 ± 0.005  
0.300 – 0.325  
0.045 – 0.065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
0.020  
(0.508)  
MIN  
(3.175)  
MIN  
+0.035  
0.325  
–0.015  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
(0.457 ± 0.076)  
+0.889  
8.255  
(
)
N8 1197  
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
12  
LT1124/LT1125  
U
PACKAGE DESCRIPTIO  
Dimensions in inches (millimeters) unless otherwise noted.  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
7
5
8
6
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
1
0.053 – 0.069  
3
4
2
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
SO8 0996  
13  
LT1124/LT1125  
U
PACKAGE DESCRIPTIO  
Dimensions in inches (millimeters) unless otherwise noted.  
J Package  
14-Lead CERDIP (Narrow 0.300, Hermetic)  
(LTC DWG # 05-08-1110)  
0.785  
(19.939)  
MAX  
0.005  
(0.127)  
MIN  
14  
13  
12  
11  
10  
9
8
0.220 – 0.310  
0.025  
(5.588 – 7.874)  
(0.635)  
RAD TYP  
2
3
4
5
6
1
7
0.200  
(5.080)  
MAX  
0.300 BSC  
(0.762 BSC)  
0.015 – 0.060  
(0.381 – 1.524)  
0.008 – 0.018  
(0.203 – 0.457)  
0° – 15°  
0.045 – 0.068  
0.100 ± 0.010  
0.125  
(1.143 – 1.727)  
(2.540 ± 0.254)  
(3.175)  
MIN  
0.014 – 0.026  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE  
OR TIN PLATE LEADS  
(0.360 – 0.660)  
J14 1197  
N Package  
14-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
0.770*  
(19.558)  
MAX  
14  
13  
12  
11  
10  
9
8
7
0.255 ± 0.015*  
(6.477 ± 0.381)  
1
2
3
5
6
4
0.300 – 0.325  
(7.620 – 8.255)  
0.045 – 0.065  
(1.143 – 1.651)  
0.130 ± 0.005  
(3.302 ± 0.127)  
0.020  
(0.508)  
MIN  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
+0.035  
0.325  
0.005  
(0.125)  
MIN  
0.100 ± 0.010  
(2.540 ± 0.254)  
–0.015  
0.125  
(3.175)  
MIN  
0.018 ± 0.003  
(0.457 ± 0.076)  
+0.889  
8.255  
(
)
–0.381  
N14 1197  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
14  
LT1124/LT1125  
U
PACKAGE DESCRIPTIO  
Dimensions in inches (millimeters) unless otherwise noted.  
SW Package  
16-Lead Plastic Small Outline (Wide 0.300)  
(LTC DWG # 05-08-1620)  
0.398 – 0.413*  
(10.109 – 10.490)  
15 14 12  
10  
11  
9
16  
13  
0.394 – 0.419  
(10.007 – 10.643)  
NOTE 1  
2
3
5
7
8
1
4
6
0.291 – 0.299**  
(7.391 – 7.595)  
0.037 – 0.045  
(0.940 – 1.143)  
0.093 – 0.104  
(2.362 – 2.642)  
0.010 – 0.029  
(0.254 – 0.737)  
× 45°  
0° – 8° TYP  
0.050  
(1.270)  
TYP  
0.004 – 0.012  
(0.102 – 0.305)  
0.009 – 0.013  
NOTE 1  
(0.229 – 0.330)  
0.014 – 0.019  
0.016 – 0.050  
(0.356 – 0.482)  
TYP  
(0.406 – 1.270)  
NOTE:  
1. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.  
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS  
S16 (WIDE) 0396  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT1124/LT1125  
U
TYPICAL APPLICATION  
Strain Gauge Signal Conditioner with Bridge Excitation  
15V  
5k  
1k  
3
THE LT1124/LT1125 IS CAPABLE OF PROVIDING EXCITATION CURRENT DIRECTLY  
+
2.5V  
TO BIAS THE 350BRIDGE AT 5V WITH ONLY 5V ACROSS THE BRIDGE (AS OPPOSED  
TO THE USUAL 10V) TOTAL POWER DISSIPATION AND BRIDGE WARM-UP DRIFT IS  
REDUCED. THE BRIDGE OUTPUT SIGNAL IS HALVED, BUT THE LT1124/LT1125 CAN  
AMPLIFY THE REDUCED SIGNAL ACCURATELY.  
1
1/4  
LT1125  
LT1009  
2
–15V  
REFERENCE  
OUTPUT  
350Ω  
BRIDGE  
15V  
5
6
4
+
7
1/4  
LT1125  
0V TO 10V  
OUTPUT  
301k*  
10k  
ZERO  
TRIM  
13  
–15V  
1µF  
301k*  
15V  
1/4  
13  
12  
50k  
14  
499*  
GAIN  
TRIM  
LT1125  
+
1k  
*RN60C FILM RESISTORS  
1124/25 TA05  
–15V  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1007  
Single Low Noise, Precision Op Amp  
Single Low Noise, Precision Op Amps  
Dual/Quad Precision Picoamp Input  
Dual Low Noise JFET Op Amp  
Decompensated LT1124/LT1125  
Dual Low Noise JFET Op Amp  
Single LT1113  
2.5nV/Hz 1kHz Voltage Noise  
0.85nV/Hz Voltage Noise  
LT1028/LT1128  
LT1112/LT1114  
LT1113  
250pA Max I  
B
4.5nV/Hz Voltage Noise, 10fA/Hz Current Noise  
11V/µs Slew Rate  
LT1126/LT1127  
LT1169  
6nV/Hz Voltage Noise, 1fA/Hz Current Noise, 10pA Max I  
4.2nV/Hz Voltage Noise, 10fA/Hz Current Noise  
6nV/Hz Voltage Noise, 1fA/Hz Current Noise, 10pA Max I  
B
LT1792  
LT1793  
Single LT1169  
B
11245fas, sn11245 LT/TP 0699 REV A 2K • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1992  
16 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY