LT1127AM [Linear]

Dual/Quad Decompensated Low Noise, High Speed Precision Op Amps; 双核/四失低噪声,高速精密运算放大器
LT1127AM
型号: LT1127AM
厂家: Linear    Linear
描述:

Dual/Quad Decompensated Low Noise, High Speed Precision Op Amps
双核/四失低噪声,高速精密运算放大器

运算放大器
文件: 总8页 (文件大小:252K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1126/LT1127  
Dual/Quad  
Decompensated Low Noise,  
High Speed Precision Op Amps  
U
DESCRIPTIO  
EATURE  
S
F
100% Tested Low Voltage Noise  
2.7nV/Hz Typ  
The LT1126 dual and LT1127 quad are high performance,  
decompensated op amps that offer higher slew rate and  
bandwidth than the LT1124 dual and the LT1125 quad  
operational amplifiers. The enhanced AC performance is  
available without degrading DC specs of the LT1124/  
LT1125. Both LT1126/LT1127 are stable in a gain of 10 or  
more.  
4.2nV/Hz Max  
11V/µs Typ  
65MHz Typ  
70µV Max  
Slew Rate  
Gain-Bandwidth Product  
Offset Voltage, Prime Grade  
Low Grade  
100µV Max  
5 Million Min  
3.1mA Max  
112dB Min  
116dB Min  
High Voltage Gain  
Supply Current Per Amplifier  
Common Mode Rejection  
Power Supply Rejection  
Available in 8-Pin SO Package  
In the design, processing, and testing of the device,  
particularattentionhasbeenpaidtotheoptimizationofthe  
entire distribution of several key parameters. Slew rate,  
gain-bandwidth, and 1kHz noise are 100% tested for each  
individual amplifier. Consequently, the specifications of  
eventhelowestcostgrades(theLT1126CandtheLT1127C)  
have been enhanced.  
O U  
PPLICATI  
S
A
Two and Three Op Amp Instrumentation Amplifiers  
Low Noise Signal Processing  
Active Filters  
Microvolt Accuracy Threshold Detection  
Strain Gauge Amplifiers  
Direct Coupled Audio Gain Stages  
Tape Head Preamplifiers  
Microphone Preamplifiers  
Accelerometer Amplifiers  
Infrared Detectors  
Power consumption of the dual LT1126 is less than one  
halfoftwoOP-37s.Lowpowerandhighperformanceinan  
8-pin SO package makes the LT1126 a first choice for  
surface mounted systems and where board space is  
restricted.  
Protected by U.S. patents 4,775,884 and 4,837,496.  
Low Noise, Wide Bandwidth Instrumentation Amplifier  
Voltage Noise vs Frequency  
– INPUT  
+
620Ω  
10k  
1/4  
100  
LT1127  
V
T
= ±15V  
= 25°C  
S
A
6.2k  
30  
200Ω  
10  
3
MAXIMUM  
TYPICAL  
1/4  
LT1127  
6.2k  
OUTPUT  
620Ω  
1/4  
LT1127  
+
1/f CORNER  
2.3Hz  
+ INPUT  
+
10k  
1
0.1  
1.0  
10  
FREQUENCY (Hz)  
100  
1000  
GAIN = 1000, BANDWIDTH = 480kHz  
INPUT REFERRED NOISE = 4.5nV/ Hz AT 1kHz, 6µV  
LT1126 • TA01  
LT1126 • TA07  
OVER BANDWIDTH  
RMS  
1
LT1126/LT1127  
W W W  
U
ABSOLUTE AXI U RATI GS  
Supply Voltage ..................................................... ±22V  
Input Voltage ............................ Equal to Supply Voltage  
Output Short Circuit Duration .......................... Indefinite  
Differential Input Current (Note 5) ......................±25mA  
Lead Temperature (Soldering, 10 sec.)................. 300°C  
Operating Temperature Range  
LT1126AM/LT1126M  
LT1127AM/LT1127M ........................ –55°C to 125°C  
LT1126AC/LT1126C  
LT1127AC/LT1127C ............................ –40°C to 85°C  
Storage Temperature Range  
All Grades ......................................... –65°C to 150°C  
W
U
/O  
PACKAGE RDER I FOR ATIO  
TOP VIEW  
ORDER PART  
NUMBER  
ORDER PART  
TOP VIEW  
1
2
3
4
8
7
6
5
–IN A  
+IN A  
NUMBER  
+
OUT A  
–IN A  
+IN A  
1
2
3
4
8
7
6
5
V
A
B
OUT A  
V
OUT B  
+
LT1126CS8  
+IN B  
–IN B  
LT1126AMJ8  
LT1126MJ8  
LT1126CJ8  
LT1126ACN8  
LT1126CN8  
V
A
–IN B  
+IN B  
OUT B  
B
V
S8 PACKAGE  
8-LEAD PLASTIC SOIC  
S8 PART  
MARKING  
J8 PACKAGE  
N8 PACKAGE  
8-LEAD CERAMIC DIP 8-LEAD PLASTIC DIP  
NOTE: THIS PIN CONFIGURATION DIFFERS FROM THE  
8-PIN DIP CONFIGURATION. INSTEAD, IT FOLLOWS  
THE INDUSTRY STANDARD LT1013DS8 SO PACKAGE  
LT1126 • POI02  
1126  
PIN LOCATIONS  
LT1126 • POI01  
TOP VIEW  
TOP VIEW  
1
2
3
4
5
6
7
8
16 OUT D  
15  
OUT A  
–IN A  
+IN A  
LT1127AMJ  
LT1127MJ  
LT1127CJ  
LT1127ACN  
LT1127CN  
LT1127CS  
OUT A  
–IN A  
+IN A  
1
2
3
4
5
6
7
14 OUT D  
13 –IN D  
–IN D  
D
C
A
B
D
C
A
B
14 +IN D  
12  
11  
10  
9
+IN D  
+
13  
12  
11  
V
V
+
V
V
+IN C  
–IN C  
+IN B  
–IN B  
+IN B  
–IN B  
+IN C  
–IN C  
OUT C  
10 OUT C  
NC  
OUT B  
NC  
OUT B  
8
9
J PACKAGE  
N PACKAGE  
S PACKAGE  
16-LEAD PLASTIC SOL  
14-LEAD CERAMIC DIP 14-LEAD PLASTIC DIP  
LT1126 • POI04  
LT1126 • POI03  
E
LECTRICAL CHARACTERISTICS VS = ±15V, TA = 25°C, unless otherwise noted.  
LT1126AM/AC  
LT1127AM/AC  
LT1126M/C  
LT1127M/C  
SYMBOL  
PARAMETER  
CONDITIONS (Note 1)  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
V
OS  
Input Offset Voltage  
LT1126  
LT1127  
20  
25  
70  
90  
25  
30  
100  
140  
µV  
µV  
V  
Time  
Long Term Input Offset  
Voltage Stability  
0.3  
0.3  
µV/Mo  
OS  
I
Input Offset Current  
LT1126  
LT1127  
5
6
15  
20  
6
7
20  
30  
nA  
nA  
OS  
I
e
Input Bias Current  
Input Noise Voltage  
± 7  
70  
± 20  
200  
± 8  
70  
± 30  
nA  
nVp-p  
B
0.1Hz to 10Hz (Notes 7 and 8)  
n
2
LT1126/LT1127  
V = ±15V, T = 25°C, unless otherwise noted.  
ELECTRICAL CHARACTERISTICS  
S
A
LT1126AM/AC  
LT1127AM/AC  
LT1126M/C  
LT1127M/C  
SYMBOL  
PARAMETER  
CONDITIONS (Note 1)  
f = 10Hz (Note 3)  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
Input Noise Voltage Density  
3.0  
2.7  
5.5  
4.2  
3.0  
2.7  
5.5  
4.2  
nV/Hz  
nV/Hz  
O
f = 1000Hz (Note 2)  
O
i
Input Noise Current Density  
f = 10Hz  
f = 1000Hz  
O
1.3  
0.3  
1.3  
0.3  
pA/Hz  
pA/Hz  
V
n
O
V
Input Voltage Range  
± 12.0 ± 12.8  
± 12.0 ± 12.8  
CM  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large Signal Voltage Gain  
V
= ±12V  
112  
116  
5.0  
126  
126  
17.0  
4.0  
106  
110  
3.0  
124  
124  
15.0  
3.0  
dB  
dB  
CM  
V = ±4V to ±18V  
S
A
VOL  
R 10k, V = ±10V  
R 2k, V = ±10V  
R 2kΩ  
R 2k(Notes 2 and 6)  
V/µV  
V/µV  
V
V/µs  
MHz  
L
O
2.0  
1.5  
L
O
V
OUT  
Maximum Output Voltage Swing  
Slew Rate  
Gain-Bandwidth Product  
Open Loop Output Resistance  
Supply Current Per Amplifier  
Channel Separation  
± 13.0 ± 13.8  
8.0  
45  
± 12.5 ± 13.8  
8.0  
45  
L
SR  
GBW  
11  
65  
75  
2.6  
150  
11  
65  
75  
2.6  
150  
L
f = 10kHz (Note 2)  
O
Z
O
V = 0, I = 0  
O
O
I
3.1  
3.1  
mA  
dB  
S
f 10Hz (Note 8)  
V = ±10V, R = 2kΩ  
134  
130  
O
L
V = ±15V, 55°C T 125°C, unless otherwise noted.  
ELECTRICAL CHARACTERISTICS  
S
A
LT1126AM  
LT1127AM  
LT1126M  
LT1127M  
TYP  
60  
70  
0.4  
SYMBOL  
PARAMETER  
CONDITIONS (Note 1)  
LT1126  
MIN  
TYP  
MAX  
MIN  
MAX  
250  
290  
1.5  
UNITS  
µV  
µV  
µV/°C  
V
Input Offset Voltage  
50  
55  
0.3  
170  
190  
1.0  
OS  
LT1127  
V  
Temp  
Average Input Offset Voltage Drift  
Input Offset Current  
(Note 4)  
OS  
I
LT1126  
LT1127  
18  
18  
45  
55  
20  
20  
60  
70  
nA  
nA  
OS  
I
V
Input Bias Current  
Input Voltage Range  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large Signal Voltage Gain  
± 18 ± 55  
± 11.3 ± 12  
± 20 ± 70  
± 11.3 ± 12  
nA  
V
dB  
dB  
V/µV  
V/µV  
V
V/µs  
mA  
B
CM  
CMRR  
PSRR  
A
V
= ±11.3V  
106  
110  
3.0  
122  
100  
104  
2.0  
120  
CM  
V = ±4V to ±18V  
R 10kΩ, V = ±10V  
R 2kΩ, V = ±10V  
R 2kΩ  
122  
10.0  
3.0  
120  
10.0  
2.0  
S
VOL  
L
O
1.0  
0.7  
L
O
V
SR  
I
Maximum Output Voltage Swing  
Slew Rate  
Supply Current Per Amplifier  
± 12.5 ± 13.6  
± 12.0 ± 13.6  
OUT  
L
R 2k(Notes 2 and 6)  
7.2  
10  
7.0  
10  
L
2.8  
3.5  
2.8  
3.5  
S
Note 6: Slew rate is measured in A = –10; input signal is ±1V, output  
The denotes the specifications which apply over the full operating  
temperature range.  
V
measured at ±5V.  
Note 7: 0.1Hz to 10Hz noise can be inferred from the 10Hz noise voltage  
density test. See the test circuit and frequency response curve for 0.1Hz to  
10Hz tester in the Applications Information section of the LT1007 or  
LT1028 datasheets.  
Note 1: Typical parameters are defined as the 60% yield of parameter  
distributions of individual amplifiers; i.e., out of 100 LT1127s (or 100  
LT1126s) typically 240 op amps (or 120) will be better than the indicated  
specification.  
Note 2: This parameter is 100% tested for each individual amplifier.  
Note 3: This parameter is sample tested only.  
Note 8: This parameter is guaranteed but not tested.  
Note 9: The LT1126 and LT1127 are not tested and are not quality  
assurance sampled at –40°C and at 85°C. These specifications are  
guaranteed by design, correlation and/or inference from 55°C, 0°C, 25°C,  
70°C and/or 125°C tests.  
Note 4: This parameter is not 100% tested.  
Note 5: The inputs are protected by back-to-back diodes. Current limiting  
resistors are not used in order to achieve low noise. If differential input  
voltage exceeds ±1.4V, the input current should be limited to 25mA.  
3
LT1126/LT1127  
ELECTRICAL CHARACTERISTICS V = ±15V, 0°C T 70°C, unless otherwise noted.  
S
A
LT1126AC  
LT1127AC  
LT1126C  
LT1127C  
TYP  
SYMBOL  
PARAMETER  
CONDITIONS (Note 1)  
MIN TYP  
MAX  
MIN  
MAX  
UNITS  
V
Input Offset Voltage  
LT1126  
LT1127  
35  
40  
120  
140  
45  
50  
170  
210  
µV  
µV  
OS  
V /T  
Average Input Offset Voltage Drift  
Input Offset Current  
(Note 4)  
LT1126  
LT1127  
0.3  
6
7
1.0  
25  
35  
0.4  
7
8
1.5  
35  
45  
µV/°C  
OS  
I
nA  
nA  
OS  
I
V
Input Bias Current  
Input Voltage Range  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large Signal Voltage Gain  
± 8  
± 11.5 ± 12.4  
± 35  
± 9  
± 11.5 ± 12.4  
± 45  
nA  
V
dB  
dB  
V/µV  
V/µV  
B
CM  
CMRR  
PSRR  
A
V
= ±11.5V  
109  
112  
125  
125  
102  
107  
122  
122  
CM  
V = ±4V to ±18V  
R 10kΩ, V = ±10V  
R 2kΩ, V = ±10V  
S
4.0  
1.5  
15.0  
3.5  
2.5  
1.0  
14.0  
2.5  
VOL  
L
L
O
O
V
SR  
Maximum Output Voltage Swing  
Slew Rate  
Supply Current Per Amplifier  
R 2kΩ  
R 2k(Notes 2 and 6)  
L
± 12.5 ± 13.7  
± 12.0 ± 13.7  
V
V/µs  
mA  
OUT  
L
7.5  
10.5  
2.7  
7.3  
10.5  
2.7  
I
3.3  
3.3  
S
ELECTRICAL CHARACTERISTICS VS = ±15V, 40°C TA 85°C, unless otherwise noted. (Note 9)  
LT1126AC  
LT1127AC  
TYP  
LT1126C  
LT1127C  
TYP  
SYMBOL  
PARAMETER  
CONDITIONS (Note 1)  
MIN  
MAX  
MIN  
MAX  
UNITS  
V
OS  
Input Offset Voltage  
LT1126  
LT1127  
40  
45  
140  
160  
50  
55  
200  
240  
µV  
µV  
V /T  
Average Input Offset Voltage Drift  
Input Offset Current  
0.3  
15  
15  
1.0  
40  
50  
0.4  
17  
17  
1.5  
55  
65  
µV/°C  
OS  
I
LT1126  
LT1127  
nA  
nA  
OS  
I
V
Input Bias Current  
Input Voltage Range  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large Signal Voltage Gain  
± 15 ± 50  
± 11.4 ± 12.2  
± 17 ± 65  
± 11.4 ± 12.2  
nA  
V
dB  
dB  
V/µV  
V/µV  
B
CM  
CMRR  
PSRR  
A
V
= ±11.4V  
107  
111  
124  
124  
101  
106  
121  
121  
CM  
V = ±4V to ±18V  
R 10kΩ, V = ±10V  
R 2kΩ, V = ±10V  
S
3.5  
1.2  
12.0  
3.2  
2.2  
0.8  
12.0  
2.3  
VOL  
L
L
O
O
V
SR  
Maximum Output Voltage Swing  
Slew Rate  
Supply Current Per Amplifier  
R 2kΩ  
R 2k(Note 6)  
L
± 12.5 ± 13.6  
± 12.0 ± 13.6  
V
V/µs  
mA  
OUT  
L
7.3  
10.2  
2.8  
7.1  
10.2  
2.8  
I
3.4  
3.4  
S
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
The typical behavior of many LT1126/LT1127 parameters  
is identical to the LT1124/LT1125. Please refer to the  
LT1124/LT1125 data sheet for the following performance  
characteristics:  
Input Bias Current Over the Common Mode Range  
Voltage Gain vs Temperature  
Input Offset Voltage Drift Distribution  
Offset Voltage Drift with Temperature of Representative  
Units  
0.1Hz to 10Hz Voltage Noise  
0.01Hz to 1Hz Voltage Noise  
Current Noise vs Frequency  
Input Bias or Offset Current vs Temperature  
Output Short Circuit Current vs Time  
Output Voltage Swing vs Load Current  
Common Mode Limit vs Temperature  
Channel Separation vs Frequency  
Warm-Up Drift  
Power Supply Rejection Ratio vs Frequency  
4
LT1126/LT1127  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Gain, Phase Shift vs Frequency  
Small-Signal Transient Response  
Large-Signal Transient Response  
50  
40  
60  
80  
V
= ±15V  
= 25°C  
= 10pF  
S
10V  
Ø
T
50mV  
A
C
L
30  
20  
100  
120  
0V  
0mV  
– 10V  
GAIN  
50mV  
10  
0
140  
160  
180  
LT1126 • TPC02  
LT1126 • TPC03  
AVCL = –10V  
A
VCL = –10V  
VS = ±15V OR ±5V  
VS = ±15V  
C
L = 15pF  
–10  
0.1  
1.0  
10  
100  
FREQUENCY (MHz)  
LT1126 • TPC01  
Common Mode Rejection Ratio vs  
Frequency  
Voltage Gain vs Frequency  
Supply Current vs Supply Voltage  
3
2
1
0
160  
140  
120  
100  
80  
180  
160  
140  
120  
100  
80  
125°C  
V
T
= ±15V  
T
V
V
= 25°C  
= ±15V  
= ±10V  
S
A
A
S
CM  
= 25°C  
25°C  
–55°C  
60  
60  
40  
40  
20  
20  
0
–20  
0
0
±5  
±10  
±15  
±20  
0.01  
1
100  
10k  
1M  
100M  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
SUPPLY VOLTAGE (V)  
FREQUENCY (Hz)  
LT1126 • TPC05  
LT1126 • TPC06A  
LT1126 • TPC04  
Total Harmonic Distortion  
Total Harmonic Distortion  
and Noise vs Frequency for  
Inverting Gain  
and Noise vs Frequency for  
Non-Inverting Gain  
Intermodulation Distortion  
(CCIF Method)* vs Frequency  
0.1  
0.010  
0.1  
0.1  
0.010  
Z
V
A
= 2k/15pF  
= 20Vp-p  
= +10, +100  
Z
V
A
= 2k/15pF  
= 20Vp-p  
= –10, –100  
Z
= 2k/15pF  
L
O
V
L
O
V
L
f (IM) = 1kHz  
= 13.5kHz  
f
V
A
O
MEASUREMENT BANDWIDTH  
= 10Hz TO 80kHz  
MEASUREMENT BANDWIDTH  
= 10Hz TO 80kHz  
= 20Vp-p  
= –10  
O
V
0.010  
0.001  
MEASUREMENT BANDWIDTH  
= 10Hz TO 80kHz  
A
= +100  
V
A
= –100  
V
0.001  
0.001  
A
= –10  
V
A
= +10  
V
LT1126  
0.0001  
0.0001  
0.0001  
20  
100  
1k  
FREQUENCY (Hz)  
10k 20k  
20  
100  
1k  
FREQUENCY (Hz)  
10k 20k  
3k  
10k  
20k  
FREQUENCY (Hz)  
LT1126 • TPC08  
LT1126 • TPC07  
LT1126 • TPC09  
*See LT1115 data sheet for definition of CCIF testing  
5
LT1126/LT1127  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
Matching Specifications  
High Speed Operation  
In many applications the performance of a system de-  
pends on the matching between two op amps, rather than  
the individual characteristics of the two devices. The three  
op amp instrumentation amplifier configuration shown in  
thisdatasheetisanexample. Matchingcharacteristicsare  
not 100% tested on the LT1126/LT1127.  
When the feedback around the op amp is resistive (RF), a  
pole will be created with RF, the source resistance and  
capacitance (RS, CS), and the amplifier input capacitance  
(CIN 2pF). In low closed loop gain configurations and  
with RS and RF in the kilohm range, this pole can create  
excess phase shift and even oscillation. A small capacitor  
(CF) in parallel with RF eliminates this problem. With  
RS (CS + CIN) = RF CF, the effect of the feedback pole is  
completely removed.  
Some specifications are guaranteed by definition. For  
example, 70µV maximum offset voltage implies that mis-  
match cannot be more than 140µV. 112dB (= 2.5µV/V)  
CMRR means that worst case CMRR match is 106dB  
(5µV/V). However, the following table can be used to  
estimate the expected matching performance between the  
two sides of the LT1126, and between amplifiers A and D,  
and between amplifiers B and C of the LT1127.  
C
F
R
F
+
C
OUTPUT  
IN  
R
C
S
S
LT1126 • TA02  
Expected Match  
LT1126AM/AC  
LT1127AM/AC  
LT1126M/C  
LT1127M/C  
PARAMETER  
Match, V  
50% YIELD  
98% YIELD  
50% YIELD  
98% YIELD  
UNITS  
V
LT1126  
LT1127  
20  
30  
110  
150  
30  
50  
130  
180  
µV  
µV  
OS  
OS  
Temperature Coefficient Match  
Average Non-Inverting I  
0.35  
6
1.0  
18  
0.5  
7
1.5  
25  
µV/°C  
nA  
B
Match of Non-Inverting I  
CMRR Match  
PSRR Match  
7
126  
127  
22  
115  
118  
8
123  
127  
30  
112  
114  
nA  
dB  
dB  
B
U
O
TYPICAL APPLICATI S  
Gain 1000 Amplifier with 0.01% Accuracy, DC to 5Hz  
Gain Error vs Frequency  
Closed Loop Gain = 1000  
1.0  
20k  
TRIM  
340k  
1%  
15k  
5%  
TYPICAL  
PRECISION  
OP AMP  
365Ω  
1%  
+15V  
0.1  
0.01  
+
LT1126  
OUTPUT  
RN60C FILM RESISTORS  
LT1126/LT1127  
INPUT  
–15V  
THE HIGH GAIN AND WIDE BANDWIDTH OF THE LT1126/LT1127 IS USEFUL IN LOW FREQUENCY HIGH CLOSED  
LOOP GAIN AMPLIFIER APPLICATIONS. A TYPICAL PRECISION OP AMP MAY HAVE AN OPEN LOOP GAIN OF ONE  
MILLION WITH 500kHz BANDWIDTH. AS THE GAIN ERROR PLOT SHOWS, THIS DEVICE IS CAPABLE OF 0.1%  
AMPLIFYING ACCURACY UP TO 0.3Hz ONLY. EVEN INSTRUMENTATION RANGE SIGNALS CAN VARY AT A FASTER  
CLOSED LOOP GAIN  
OPEN LOOP GAIN  
GAIN ERROR =  
0.001  
0.1  
1
10  
100  
RATE. THE LT1126/LT1127 “GAIN PRECISION — BANDWIDTH PRODUCT” IS 330 TIMES HIGHER, AS SHOWN.  
LT1126 • TA03  
FREQUENCY (Hz)  
LT1126 • TA04  
6
LT1126/LT1127  
U
O
TYPICAL APPLICATI S  
Low Noise, Wideband, Gain = 100 Amplifier with High Input Impedance  
1.1k  
120  
120  
120  
+
500Ω  
2.4k  
2.4k  
7.5k  
1/4  
LT1127  
1.1k  
+
1/4  
LT1127  
OUTPUT  
+
1/4  
LT1127  
INPUT  
1.1k  
2.4k  
–3dB BANDWIDTH = 910 kHz  
GAIN BANDWIDTH PRODUCT = 91.0MHz  
+
1/4  
LT1127  
3.2nV/Hz  
WIDEBAND NOISE =  
= 1.85nV/Hz REFERRED TO INPUT  
3  
RMS NOISE DC TO FULL BANDWIDTH = 21.2µV REFERRED TO INPUT  
LT1126 • TA05  
W
W
SCHE ATIC DIAGRA (1/2 LT1126, 1/4 LT1127)  
+
V
360µA  
570µA  
100µA  
Q7  
Q28  
20  
200pF  
21k  
21k  
3.6k  
3.6k  
5pF  
Q27  
Q18  
Q9  
Q3  
Q25  
OUTPUT  
Q17  
Q10  
Q8  
Q26  
Q19  
Q20  
20  
V
NON-INVERTING  
INPUT (+)  
Q2A  
Q1A Q1B  
400  
Q30  
Q2B  
67pF  
20pF  
+
V
Q13  
INVERTING  
INPUT (–)  
Q29  
+
V
Q22  
Q11  
Q23  
6k  
Q12 Q15  
Q16  
Q24  
200µA  
200µA  
100µA  
200  
6k  
200  
50  
V
LT1126 • TA06  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
7
LT1126/LT1127  
U
PACKAGE DESCRIPTIO Dimensions in inches (millimeters) unless otherwise noted.  
0.405  
(10.287)  
0.200  
(5.080)  
MAX  
0.005  
(0.127)  
MIN  
MAX  
0.290 – 0.320  
(7.366 – 8.128)  
J8 Package  
6
5
8
7
8-Lead Ceramic DIP  
0.015 – 0.060  
(0.381 – 1.524)  
0.025  
(0.635)  
RAD TYP  
0.220 – 0.310  
(5.588 – 7.874)  
TJ MAX  
θJA  
0.008 – 0.018  
(0.203 – 0.460)  
160°C  
100°C/W  
0° – 15°  
1
2
3
4
0.038 – 0.068  
(0.965 – 1.727)  
0.385 ± 0.025  
(9.779 ± 0.635)  
0.055  
(1.397)  
MAX  
0.125  
3.175  
MIN  
0.014 – 0.026  
0.100 ± 0.010  
(0.360 – 0.660)  
(2.540 ± 0.254)  
J8 1291  
0.300 – 0.320  
(7.620 – 8.128)  
0.130 ± 0.005  
(3.302 ± 0.127)  
0.400  
(10.160)  
MAX  
0.045 – 0.065  
(1.143 – 1.651)  
N8 Package  
8-Lead Plastic DIP  
0.065  
(1.651)  
TYP  
8
1
7
6
5
4
0.009 - 0.015  
(0.229 - 0.381)  
TJ MAX  
θJA  
0.250 ± 0.010  
(6.350 ± 0.254)  
0.125  
(3.175)  
MIN  
0.020  
(0.508)  
MIN  
140°C  
130°C/W  
+0.025  
–0.015  
0.045 ± 0.015  
(1.143 ± 0.381)  
0.325  
+0.635  
8.255  
(
)
3
2
–0.381  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
(0.457 ± 0.076)  
N8 1291  
0.189 – 0.197  
(4.801 – 5.004)  
S8 Package  
8
7
6
5
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
8-Lead Plastic SOIC  
0.053 – 0.069  
(1.346 – 1.753)  
0.008 – 0.010  
(0.203 – 0.254)  
0.004 – 0.010  
(0.102 – 0.254)  
0.228 – 0.244  
(5.791 – 6.198)  
TJ MAX  
θJA  
0.150 – 0.157  
(3.810 – 3.988)  
140°C  
190°C/W  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.356 – 0.483)  
0°– 8° TYP  
1
2
3
4
S8 1291  
0.785  
0.200  
(5.080)  
MAX  
0.290 – 0.320  
(7.366 – 8.128)  
(19.939)  
MAX  
0.005  
(0.127)  
MIN  
J Package  
14-Lead Ceramic DIP  
14  
13  
12  
11  
10  
9
6
8
7
0.220 – 0.310  
(5.588 – 7.874)  
0.025  
(0.635)  
RAD TYP  
TJ MAX  
θJA  
0.008 – 0.018  
(0.203 – 0.460)  
0° – 15°  
0.015 – 0.060  
(0.381 – 1.524)  
160°C  
80°C/W  
0.385 ± 0.025  
(9.779 ± 0.635)  
0.038 – 0.068  
(0.965 – 1.727)  
0.100 ± 0.010  
(2.540 ± 0.254)  
2
3
4
5
1
0.125  
(3.175)  
MIN  
0.098  
(2.489)  
MAX  
0.014 – 0.026  
(0.360 – 0.660)  
J14 1291  
0.065  
0.770  
(19.558)  
MAX  
(1.651)  
TYP  
0.300 – 0.325  
(7.620 – 8.255)  
0.045 – 0.065  
(1.143 – 1.651)  
0.015  
(0.380)  
MIN  
N Package  
14  
13  
12  
11  
10  
9
6
8
7
0.130 ± 0.005  
14-Lead Plastic DIP  
(3.302 ± 0.127)  
0.260 ± 0.010  
(6.604 ± 0.254)  
0.009 - 0.015  
(0.229 - 0.381)  
TJ MAX  
θJA  
+0.025  
–0.015  
140°C  
110°C/W  
0.325  
0.075 ± 0.015  
(1.905 ± 0.381)  
0.018 ± 0.003  
(0.457 ± 0.076)  
0.125  
(3.175)  
MIN  
1
2
3
5
4
+0.635  
8.255  
(
)
–0.381  
0.100 ± 0.010  
(2.540 ± 0.254)  
N14 1291  
0.398 – 0.413  
(10.109 – 10.490)  
(NOTE 2)  
0.291 – 0.299  
(7.391 – 7.595)  
(NOTE 2)  
0.037 – 0.045  
(0.940 – 1.143)  
0.093 – 0.104  
(2.362 – 2.642)  
15 14  
12  
10  
9
16  
13  
11  
0.005  
(0.127)  
RAD MIN  
0.010 – 0.029  
× 45°  
(0.254 – 0.737)  
SOL Package  
16-Lead Plastic SOL  
0° – 8° TYP  
0.050  
(1.270)  
TYP  
0.394 – 0.419  
(10.007 – 10.643)  
NOTE 1  
TJ MAX  
θJA  
0.004 – 0.012  
(0.102 – 0.305)  
0.009 – 0.013  
(0.229 – 0.330)  
NOTE 1  
0.014 – 0.019  
140°C  
130°C/W  
0.016 – 0.050  
(0.356 – 0.482)  
TYP  
(0.406 – 1.270)  
NOTE:  
1. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.  
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS.  
2. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006 INCH (0.15mm).  
2
3
5
7
8
1
4
6
BA/GP 0192 10K REV 0  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7487  
8
(408) 432-1900 FAX: (408) 434-0507 TELEX: 499-3977  
LINEAR TECHNOLOGY CORPORATION 1992  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY