LT1167CN8#TR [Linear]

IC INSTRUMENTATION AMPLIFIER, 80 uV OFFSET-MAX, 1 MHz BAND WIDTH, PDIP8, 0.300 INCH, PLASTIC, DIP-8, Instrumentation Amplifier;
LT1167CN8#TR
型号: LT1167CN8#TR
厂家: Linear    Linear
描述:

IC INSTRUMENTATION AMPLIFIER, 80 uV OFFSET-MAX, 1 MHz BAND WIDTH, PDIP8, 0.300 INCH, PLASTIC, DIP-8, Instrumentation Amplifier

仪表放大器 放大器电路
文件: 总20页 (文件大小:429K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1167  
Single Resistor Gain  
Programmable, Precision  
Instrumentation Amplifier  
U
FEATURES  
DESCRIPTION  
The LT®1167 is a low power, precision instrumentation  
amplifier that requires only one external resistor to set gains  
of 1 to 10,000. The low voltage noise of 7.5nV/Hz (at 1kHz)  
isnotcompromisedbylowpowerdissipation(0.9mAtypical  
for ±2.3V to ±15V supplies).  
Single Gain Set Resistor: G = 1 to 10,000  
Gain Error: G = 10, 0.08% Max  
Gain Nonlinearity: G = 10, 10ppm Max  
Input Offset Voltage: G = 10, 60µV Max  
Input Offset Voltage Drift: 0.3µV/°C Max  
Input Bias Current: 350pA Max  
PSRR at G = 1: 105dB Min  
CMRR at G = 1: 90dB Min  
Supply Current: 1.3mA Max  
Wide Supply Range: ±2.3V to ±18V  
1kHz Voltage Noise: 7.5nV/Hz  
0.1Hz to 10Hz Noise: 0.28µVP-P  
Available in 8-Pin PDIP and SO Packages  
Meets IEC 1000-4-2 Level 4 ESD Tests with  
Two External 5k Resistors  
The high accuracy of 10ppm maximum nonlinearity and  
0.08% max gain error (G = 10) is not degraded even for load  
resistors as low as 2k (previous monolithic instrumentation  
amps used 10k for their nonlinearity specifications). The  
LT1167 is laser trimmed for very low input offset voltage  
(40µV max), drift (0.3µV/°C), high CMRR (90dB, G = 1) and  
PSRR (105dB, G = 1). Low input bias currents of 350pA max  
are achieved with the use of superbeta processing. The  
output can handle capacitive loads up to 1000pF in any gain  
configuration while the inputs are ESD protected up to 13kV  
(human body). The LT1167 with two external 5k resistors  
passes the IEC 1000-4-2 level 4 specification.  
U
APPLICATIONS  
TheLT1167,offeredin8-pinPDIPandSOpackages,requires  
significantly less PC board area than discrete multi op amp  
andresistordesigns.TheseadvantagesmaketheLT1167the  
most cost effective solution for precision instrumentation  
amplifier applications.  
Bridge Amplifiers  
Strain Gauge Amplifiers  
Thermocouple Amplifiers  
Differential to Single-Ended Converters  
Medical Instrumentation  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATION  
Single Supply Barometer  
V
S
Gain Nonlinearity  
R5  
LUCAS NOVA SENOR  
NPC-1220-015-A-3L  
V
S
392k  
3
2
8
+
1
3
+
2
1
1
7
1/2  
LT1490  
4
1
2
5k  
5k  
LT1634CCZ-1.25  
R1  
4
6
825  
LT1167  
G = 60  
R6  
1k  
R2  
12Ω  
5k  
2
6
5k  
5
8
3
TO  
4-DIGIT  
DVM  
+
R
SET  
4
R4  
50k  
5
6
5
+
R3  
50k  
7
1/2  
LT1490  
1167 TA02  
R7  
50k  
R8  
100k  
VOLTS INCHES Hg  
0.2% ACCURACY AT 25°C  
1.2% ACCURACY AT 0°C TO 60°C  
= 8V TO 30V  
OUTPUT VOLTAGE (2V/DIV)  
G = 1000  
= 1k  
OUT  
2.800  
3.000  
3.200  
28.00  
30.00  
32.00  
R
L
V
S
V
= ±10V  
1167 TA01  
1
LT1167  
W W U W  
U
W U  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE/ORDER INFORMATION  
(Note 1)  
ORDER PART  
NUMBER  
Supply Voltage ...................................................... ±20V  
Differential Input Voltage (Within the  
TOP VIEW  
Supply Voltage) ..................................................... ±40V  
Input Voltage (Equal to Supply Voltage) ................ ±20V  
Input Current (Note 3) ........................................ ±20mA  
Output Short-Circuit Duration .......................... Indefinite  
Operating Temperature Range ................ 40°C to 85°C  
Specified Temperature Range  
LT1167AC/LT1167C (Note 4) .................. 0°C to 70°C  
LT1167AI/LT1167I ............................. 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
LT1167ACN8  
R
1
2
3
4
R
G
8
7
6
5
G
LT1167ACS8  
LT1167AIN8  
LT1167AIS8  
LT1167CN8  
LT1167CS8  
LT1167IN8  
LT1167IS8  
+
–IN  
+IN  
+V  
S
OUTPUT  
REF  
–V  
S
N8 PACKAGE  
8-LEAD PDIP  
S8 PACKAGE  
8-LEAD PLASTIC SO  
TJMAX = 150°C, θJA = 130°C/ W (N8)  
TJMAX = 150°C, θJA = 190°C/ W (S8)  
S8 PART MARKING  
1167  
1167I  
1167A  
1167AI  
Consult factory for Military grade parts.  
ELECTRICAL CHARACTERISTICS VS = ±15V, VCM = 0V, TA = 25°C, RL = 2k, unless otherwise noted.  
LT1167C/LT1167I  
LT1167AC/LT1167AI  
SYMBOL PARAMETER  
CONDITIONS (Note 7)  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
G
Gain Range  
Gain Error  
G = 1 + (49.4k/R )  
1
10k  
1
10k  
G
G = 1  
0.008  
0.010  
0.025  
0.040  
0.02  
0.08  
0.08  
0.10  
0.015  
0.020  
0.030  
0.040  
0.03  
0.10  
0.10  
0.10  
%
%
%
%
G = 10 (Note 2)  
G = 100 (Note 2)  
G = 1000 (Note 2)  
Gain Nonlinearity (Note 5)  
V
V
V
= ±10V, G = 1  
= ±10V, G = 10 and 100  
= ±10V, G = 1000  
1
2
15  
6
10  
40  
1.5  
3
20  
10  
15  
60  
ppm  
ppm  
ppm  
O
O
O
V
V
= ±10V, G = 1, R = 600  
= ±10V, G = 10 and 100,  
5
6
12  
15  
6
7
15  
20  
ppm  
ppm  
O
O
L
R = 600  
L
V
= ±10V, G = 1000,  
20  
65  
25  
80  
ppm  
O
R = 600  
L
V
V
V
Total Input Referred Offset Voltage  
Input Offset Voltage  
V
= V + V /G  
OST OSI OSO  
OST  
OSI  
G = 1000, V = ±5V to ±15V  
15  
40  
90  
50  
40  
20  
50  
60  
µV  
µV  
pA  
pA  
S
Output Offset Voltage  
Input Offset Current  
G = 1, V = ±5V to ±15V  
200  
320  
350  
300  
450  
500  
OSO  
S
I
I
100  
80  
OS  
Input Bias Current  
B
e
Input Noise Voltage, RTI  
0.1Hz to 10Hz, G = 1  
0.1Hz to 10Hz, G = 10  
0.1Hz to 10Hz, G = 100 and 1000  
2.00  
0.50  
0.28  
2.00  
0.50  
0.28  
µV  
µV  
µV  
n
P-P  
P-P  
P-P  
2
2
Total RTI Noise =  
e
+ (e /G)  
ni no  
e
e
Input Noise Voltage Density, RTI  
Output Noise Voltage Density, RTI  
f
f
= 1kHz  
7.5  
67  
12  
90  
7.5  
67  
12  
90  
nV/Hz  
nV/Hz  
ni  
O
O
= 1kHz (Note 3)  
no  
2
LT1167  
ELECTRICAL CHARACTERISTICS  
VS = ±15V, VCM = 0V, TA = 25°C, RL = 2k, unless otherwise noted.  
LT1167AC/LT1167AI LT1167C/LT1167I  
SYMBOL PARAMETER  
CONDITIONS (Note 7)  
f = 0.1Hz to 10Hz  
MIN  
TYP  
10  
MAX  
MIN  
TYP  
10  
MAX  
UNITS  
pA  
i
Input Noise Current  
Input Noise Current Density  
Input Resistance  
n
O
P-P  
f = 10Hz  
O
124  
1000  
1.6  
124  
1000  
1.6  
fA/Hz  
GΩ  
pF  
R
V
= ±10V  
IN  
200  
200  
IN  
C
C
Differential Input Capacitance f = 100kHz  
O
IN(DIFF)  
IN(CM)  
Common Mode Input  
Capacitance  
f = 100kHz  
O
1.6  
1.6  
pF  
V
CM  
Input Voltage Range  
G = 1, Other Input Grounded  
V = ±2.3V to ±5V  
–V + 1.9  
–V + 1.9  
S
+V – 1.2 V + 1.9  
+V – 1.2  
+V – 1.4  
S
V
V
S
S
S
S
S
V = ±5V to ±18V  
S
+V – 1.4 V + 1.9  
S
S
CMRR  
PSRR  
Common Mode  
Rejection Ratio  
1k Source Imbalance,  
V
= 0V to ±10V  
G = 1  
CM  
90  
95  
85  
95  
dB  
dB  
dB  
dB  
G = 10  
G = 100  
G = 1000  
106  
120  
126  
115  
125  
140  
100  
110  
120  
115  
125  
140  
Power Supply  
Rejection Ratio  
V = ±2.3 to ±18V  
S
G = 1  
105  
125  
131  
135  
120  
135  
140  
150  
100  
120  
126  
130  
120  
135  
140  
150  
dB  
dB  
dB  
dB  
G = 10  
G = 100  
G = 1000  
I
Supply Current  
V = ±2.3V to ±18V  
S
0.9  
1.3  
0.9  
1.3  
mA  
S
V
OUT  
Output Voltage Swing  
R = 10k  
L
V = ±2.3V to ±5V  
–V + 1.1  
–V + 1.2  
S
+V – 1.2 V + 1.1  
+V – 1.2  
+V – 1.3  
S
V
V
S
S
S
S
S
V = ±5V to ±18V  
S
+V – 1.3 V + 1.2  
S
S
I
Output Current  
Bandwidth  
20  
27  
20  
27  
mA  
OUT  
BW  
G = 1  
G = 10  
G = 100  
G = 1000  
1000  
800  
120  
12  
1000  
800  
120  
12  
kHz  
kHz  
kHz  
kHz  
SR  
Slew Rate  
G = 1, V  
= ±10V  
0.75  
1.2  
0.75  
1.2  
V/µs  
OUT  
Settling Time to 0.01%  
10V Step  
G = 1 to 100  
G = 1000  
14  
130  
14  
130  
µs  
µs  
R
Reference Input Resistance  
Reference Input Current  
Reference Voltage Range  
Reference Gain to Output  
20  
50  
20  
50  
kΩ  
µA  
V
REFIN  
I
V
= 0V  
REF  
REFIN  
V
A
–V + 1.6  
+V – 1.6 V + 1.6  
+V – 1.6  
S
REF  
S
S
S
1 ± 0.0001  
1 ± 0.0001  
VREF  
3
LT1167  
ELECTRICAL CHARACTERISTICS  
VS = ±15V, VCM = 0V, 0°C TA 70°C, RL = 2k, unless otherwise noted.  
LT1167AC  
TYP  
LT1167C  
TYP  
SYMBOL PARAMETER  
CONDITIONS (Note 7)  
MIN  
MAX  
MIN  
MAX  
UNITS  
Gain Error  
G = 1  
0.01  
0.08  
0.09  
0.14  
0.03  
0.30  
0.30  
0.33  
0.012  
0.100  
0.120  
0.140  
0.04  
0.33  
0.33  
0.35  
%
%
%
%
G = 10 (Note 2)  
G = 100 (Note 2)  
G = 1000 (Note 2)  
Gain Nonlinearity  
V
V
V
= ±10V, G = 1  
= ±10V, G = 10 and 100  
= ±10V, G = 1000  
1.5  
3
20  
10  
15  
60  
2
4
25  
15  
20  
80  
ppm  
ppm  
ppm  
OUT  
OUT  
OUT  
G/T  
Gain vs Temperature  
G < 1000 (Note 2)  
= V + V /G  
20  
50  
20  
50  
ppm/°C  
V
OST  
Total Input Referred  
Offset Voltage  
V
OST  
OSI  
OSO  
V
V
V
V
V
V
Input Offset Voltage  
V = ±5V to ±15V  
18  
3.0  
60  
60  
23  
3.0  
70  
80  
µV  
µV  
OSI  
S
Input Offset Voltage Hysteresis  
Output Offset Voltage  
(Notes 3, 6)  
OSIH  
OSO  
OSOH  
V = ±5V to ±15V  
S
380  
500  
µV  
Output Offset Voltage Hysteresis (Notes 3, 6)  
30  
30  
µV  
/T  
Input Offset Drift (RTI)  
Output Offset Drift  
(Note 3)  
(Note 3)  
0.05  
0.7  
100  
0.3  
75  
0.3  
3
0.06  
0.8  
120  
0.4  
105  
0.4  
0.4  
4
µV/°C  
µV/°C  
pA  
OSI  
/T  
OSO  
I
I
I
Input Offset Current  
Input Offset Current Drift  
Input Bias Current  
400  
550  
OS  
/T  
pA/°C  
pA  
OS  
450  
600  
B
I /T  
B
Input Bias Current Drift  
Input Voltage Range  
0.4  
pA/°C  
V
CM  
G = 1, Other Input Grounded  
V = ±2.3V to ±5V  
V = ±5V to ±18V  
S
–V +2.1  
–V +2.1  
S
+V –1.3 V +2.1  
+V –1.3  
+V –1.4  
S
V
V
S
S
S
S
S
+V –1.4 V +2.1  
S
S
CMRR  
PSRR  
Common Mode  
Rejection Ratio  
1k Source Imbalance,  
V
= 0V to ±10V  
G = 1  
CM  
88  
92  
83  
97  
113  
114  
92  
dB  
dB  
dB  
dB  
G = 10  
G = 100  
G = 1000  
100  
115  
117  
110  
120  
135  
110  
120  
135  
Power Supply Rejection Ratio  
V = ±2.3V to ±18V  
S
G = 1  
103  
123  
127  
129  
115  
130  
135  
145  
98  
115  
130  
135  
145  
dB  
dB  
dB  
dB  
G = 10  
G = 100  
G = 1000  
118  
124  
126  
I
Supply Current  
V = ±2.3V to ±18V  
S
1.0  
1.5  
1.0  
1.5  
mA  
S
V
OUT  
Output Voltage Swing  
R = 10k  
L
V = ±2.3V to ±5V  
–V +1.4  
–V +1.6  
S
+V –1.3 V +1.4  
+V 1.3  
+V –1.5  
S
V
V
S
S
S
S
S
V = ±5V to ±18V  
S
+V –1.5 V +1.6  
S
S
I
Output Current  
Slew Rate  
16  
21  
16  
0.65  
+V –1.6 V +1.6  
21  
mA  
V/µs  
V
OUT  
SR  
G = 1, V  
= ±10V  
0.65  
1.1  
1.1  
OUT  
V
REF Voltage Range  
(Note 3)  
–V +1.6  
S
+V –1.6  
S
REF  
S
S
4
LT1167  
ELECTRICAL CHARACTERISTICS  
VS = ±15V, VCM = 0V, 40°C TA 85°C, RL = 2k, unless otherwise noted. (Note 4)  
LT1167AI  
TYP  
LT1167I  
TYP  
SYMBOL PARAMETER  
CONDITIONS (Note 7)  
MIN  
MAX  
MIN  
MAX  
UNITS  
Gain Error  
G = 1  
0.014  
0.130  
0.140  
0.160  
0.04  
0.40  
0.40  
0.40  
0.015  
0.140  
0.150  
0.180  
0.05  
0.42  
0.42  
0.45  
%
%
%
%
G = 10 (Note 2)  
G = 100 (Note 2)  
G = 1000 (Note 2)  
G
Gain Nonlinearity (Notes 2, 4)  
Gain vs Temperature  
V = ±10V, G = 1  
2
5
15  
20  
70  
3
6
20  
30  
ppm  
ppm  
ppm  
N
O
V = ±10V, G = 10 and 100  
O
V = ±10V, G = 1000  
26  
30  
100  
O
G/T  
G < 1000 (Note 2)  
20  
50  
20  
50  
ppm/°C  
V
OST  
Total Input Referred  
Offset Voltage  
V = V + V /G  
OST OSI OSO  
V
V
V
V
V
V
Input Offset Voltage  
20  
3.0  
180  
30  
75  
25  
3.0  
200  
30  
100  
600  
µV  
µV  
OSI  
Input Offset Voltage Hysteresis  
Output Offset Voltage  
(Notes 3, 6)  
OSIH  
OSO  
OSOH  
500  
µV  
Output Offset Voltage Hysteresis (Notes 3, 6)  
µV  
/T  
Input Offset Drift (RTI)  
Output Offset Drift  
(Note 3)  
(Note 3)  
0.05  
0.8  
110  
0.3  
180  
0.5  
0.3  
5
0.06  
1
0.4  
6
µV/°C  
µV/°C  
pA  
OSI  
/T  
OSO  
I
I
I
Input Offset Current  
Input Offset Current Drift  
Input Bias Current  
550  
120  
0.3  
220  
0.6  
700  
OS  
/T  
pA/°C  
pA  
OS  
B
600  
800  
I /T  
B
Input Bias Current Drift  
Input Voltage Range  
pA/°C  
V
CM  
V = ±2.3V to ±5V  
–V + 2.1  
S
+V – 1.3 V + 2.1  
+V – 1.3  
V
V
S
S
S
S
S
S
V = ±5V to ±18V  
–V + 2.1  
+V – 1.4 V + 2.1  
+V – 1.4  
S
S
S
CMRR  
PSRR  
Common Mode Rejection Ratio 1k Source Imbalance,  
V
= 0V to ±10V  
CM  
G = 1  
G = 10  
G = 100  
G = 1000  
86  
98  
90  
81  
90  
dB  
dB  
dB  
dB  
105  
118  
133  
95  
105  
118  
133  
114  
116  
112  
112  
Power Supply Rejection Ratio  
V = ±2.3V to ±18V  
S
G = 1  
100  
120  
125  
128  
112  
125  
132  
140  
95  
112  
125  
132  
140  
dB  
dB  
dB  
dB  
G = 10  
G = 100  
G = 1000  
115  
120  
125  
I
Supply Current  
1.1  
1.6  
+V – 1.3 V + 1.4  
1.1  
1.6  
mA  
S
V
Output Voltage Swing  
V = ±2.3V to ±5V  
S
–V + 1.4  
S
+V – 1.3  
V
V
OUT  
S
S
S
S
S
V = ±5V to ±18V  
–V + 1.6  
+V – 1.5 V + 1.6  
+V – 1.5  
S
S
S
I
Output Current  
Slew Rate  
15  
20  
15  
0.55  
+V – 1.6 V + 1.6  
20  
mA  
V/µs  
V
OUT  
SR  
G = 1, V  
= ±10V  
0.55  
0.95  
0.95  
OUT  
V
REF Voltage Range  
(Note 3)  
–V + 1.6  
S
+V – 1.6  
S
REF  
S
S
The  
denotes specifications that apply over the full specified  
magnitude of these thermal effects are dependent on the package used,  
heat sinking and air flow conditions.  
temperature range.  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
Note 6: Hysteresis in offset voltage is created by package stress that  
differs depending on whether the IC was previously at a higher or lower  
temperature. Offset voltage hysteresis is always measured at 25°C, but  
the IC is cycled to 85°C I-grade (or 70°C C-grade) or 40°C I-grade  
(0°C C-grade) before successive measurement. 60% of the parts will  
pass the typical limit on the data sheet.  
of a device may be imparied.  
Note 2: Does not include the effect of the external gain resistor R .  
G
Note 3: This parameter is not 100% tested.  
Note 4: The LT1167AC/LT1167C are designed, characterized and expected  
to meet the industrial temperature limits, but are not tested at 40°C and  
85°C. I-grade parts are guaranteed.  
Note 5: This parameter is measured in a high speed automatic tester that  
does not measure the thermal effects with longer time constants. The  
Note 7: Typical parameters are defined as the 60% of the yield parameter  
distribution.  
5
LT1167  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Gain Nonlinearity, G = 100  
Gain Nonlinearity, G = 1  
Gain Nonlinearity, G = 10  
1167 G01  
1167 G02  
1167 G03  
OUTPUT VOLTAGE (2V/DIV)  
OUTPUT VOLTAGE (2V/DIV)  
OUTPUT VOLTAGE (2V/DIV)  
G = 10  
L = 2k  
OUT = ±10V  
G = 100  
L = 2k  
VOUT = ±10V  
G = 1  
L = 2k  
R
R
R
V
VOUT = ±10V  
Gain Error vs Temperature  
Gain Nonlinearity, G = 1000  
Gain Nonlinearity vs Temperature  
80  
0.20  
0.15  
V
V
= ±15V  
OUT  
= 2k  
S
= 10V TO 10V  
70  
60  
R
L
0.10  
50  
40  
30  
20  
10  
0.05  
G = 1  
0
0.05  
0.10  
0.15  
0.20  
V
V
= ±15V  
OUT  
= 2k  
S
G = 10*  
G = 1000  
= ±10V  
R
L
G = 100*  
G = 1000*  
1167 G04  
*DOES NOT INCLUDE  
OUTPUT VOLTAGE (2V/DIV)  
G = 1000  
RL = 2k  
G = 1, 10  
TEMPERATURE EFFECTS  
OF R  
G
G = 100  
25  
V
OUT = ±10V  
0
25  
0
50  
75 100 150  
50  
50  
25  
0
25  
100  
50  
75  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1167 G05  
1167 G06  
Distribution of Input  
Offset Voltage, TA = 40°C  
Distribution of Input  
Offset Voltage, TA = 85°C  
Distribution of Input  
Offset Voltage, TA = 25°C  
40  
35  
30  
25  
20  
15  
10  
5
40  
30  
25  
V
= ±15V  
137 N8 (2 LOTS)  
V
= ±15V  
V = ±15V  
S
G = 1000  
137 N8 (2 LOTS)  
137 N8 (2 LOTS)  
165 S8 (3 LOTS)  
302 TOTAL PARTS  
S
S
G = 1000  
165 S8 (3 LOTS)  
G = 1000  
165 S8 (3 LOTS)  
35  
30  
25  
20  
15  
10  
5
302 TOTAL PARTS  
302 TOTAL PARTS  
20  
15  
10  
5
0
0
0
0
0
80 60 40 20  
20  
40  
60  
60 40 20  
0
20  
40  
60  
80 60 40 20  
20 40  
60  
INPUT OFFSET VOLTAGE (µV)  
INPUT OFFSET VOLTAGE (µV)  
INPUT OFFSET VOLTAGE (µV)  
1167 G40  
1167 G41  
1167 G42  
6
LT1167  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Distribution of Output  
Offset Voltage, TA = 40°C  
Distribution of Output  
Offset Voltage, TA = 25°C  
Distribution of Output  
Offset Voltage, TA = 85°C  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
V
= ±15V  
V = ±15V  
S
G = 1  
137 N8 (2 LOTS)  
165 S8 (3 LOTS)  
302 TOTAL PARTS  
137 N8 (2 LOTS)  
165 S8 (3 LOTS)  
302 TOTAL PARTS  
V = ±15V  
S
G = 1  
137 N8 (2 LOTS)  
165 S8 (3 LOTS)  
302 TOTAL PARTS  
S
G = 1  
0
0
0
400 300 200 –100  
0
100 200 300 400  
200 150 100 50  
0
50 100 150 200  
400 300 200 –100  
0
100 200 300 400  
OUTPUT OFFSET VOLTAGE (µV)  
OUTPUT OFFSET VOLTAGE (µV)  
OUTPUT OFFSET VOLTAGE (µV)  
1167 G43  
1167 G44  
1167 G45  
Distribution of Input Offset  
Voltage Drift  
Distribution of Output Offset  
Voltage Drift  
Warm-Up Drift  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
14  
12  
V
T
= ±15V  
137 N8 (2 LOTS)  
V
T
= ±15V  
137 N8 (2 LOTS)  
S
A
V
= ±15V  
S
S
A
= 40°C TO 85°C  
165 S8 (3 LOTS)  
= 40°C TO 85°C  
165 S8 (3 LOTS)  
T
= 25°C  
A
G = 1000  
302 TOTAL PARTS  
G = 1  
302 TOTAL PARTS  
G = 1  
S8  
N8  
10  
8
6
4
2
0
0
0
0.4  
0.2 0.1  
0
0.1 0.2 0.3  
0.3  
–5 –4 –3 –2 –1  
0
1
2
3
4
5
1
2
5
0
3
4
INPUT OFFSET VOLTAGE (µV)  
OUTPUT OFFSET VOLTAGE (µV)  
TIME AFTER POWER ON (MINUTES)  
1167 G46  
1167 G47  
1167 G09  
Input Bias and Offset Current  
vs Temperature  
Input Bias Current  
Input Offset Current  
500  
400  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
V
T
= ±15V  
= 25°C  
270 S8  
122 N8  
V
T
= ±15V  
= 25°C  
270 S8  
122 N8  
V
V
= ±15V  
CM  
S
A
S
A
S
= 0V  
392 TOTAL PARTS  
392 TOTAL PARTS  
300  
200  
I
OS  
100  
0
I
B
100  
200  
300  
400  
500  
125  
100  
100  
60  
20  
20  
60  
100  
100  
60  
20  
20  
60  
100  
–75 –50  
50  
TEMPERATURE (°C)  
–25  
0
25  
75  
INPUT BIAS CURRENT (pA)  
INPUT OFFSET CURRENT (pA)  
1167 G10  
1167 G11  
1167 G12  
7
LT1167  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Negative Power Supply Rejection  
Ratio vs Frequency  
Common Mode Rejection Ratio  
vs Frequency  
Input Bias Current  
vs Common Mode Input Voltage  
500  
400  
160  
140  
120  
100  
160  
140  
120  
100  
+
V
T
= ±15V  
= 25°C  
V
T
= 15V  
= 25°C  
S
A
G = 1000  
G = 100  
G = 10  
G = 100  
G = 10  
G = 1  
A
1k SOURCE  
IMBALANCE  
300  
200  
G = 1000  
G = 1  
100  
70°C  
85°C  
0
80  
60  
80  
60  
–100  
200  
300  
400  
500  
0°C  
25°C  
40  
20  
0
40  
20  
0
40°C  
3
6
9
12 15  
0.1  
1
10  
1k  
10k 100k  
0.1  
1
10  
1k  
10k 100k  
–15 –12 –9 –6 –3  
0
100  
100  
COMMON MODE INPUT VOLTAGE (V)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1167 G13  
1167 G14  
1167 G15  
Positive Power Supply Rejection  
Ratio vs Frequency  
Supply Current vs Supply Voltage  
Gain vs Frequency  
60  
50  
1.50  
1.25  
1.00  
0.75  
0.50  
160  
140  
120  
100  
G = 1000  
V
= 15V  
= 25°C  
T
A
G = 1000  
G = 100  
G = 10  
G = 1  
G = 10  
G = 1  
40  
G = 100  
85°C  
25°C  
30  
20  
80  
60  
40°C  
10  
0
40  
20  
0
V
= ±15V  
= 25°C  
–10  
20  
S
A
T
1
10  
1k  
0.01  
0.1  
1
10  
100  
1000  
0.1  
10k 100k  
10  
100  
0
15  
20  
5
FREQUENCY (kHz)  
FREQUENCY (Hz)  
SUPPLY VOLTAGE (±V)  
1167 G17  
1167 G16  
1167 G18  
Voltage Noise Density  
vs Frequency  
0.1Hz to 10Hz Noise Voltage,  
G = 1  
0.1Hz to 10Hz Noise Voltage, RTI  
G = 1000  
1000  
100  
V
= ±15V  
= 25°C  
V
= ±15V  
= 25°C  
V
= ±15V  
= 25°C  
S
A
S
A
S
A
T
T
T
1/f  
CORNER  
= 10Hz  
GAIN = 1  
1/f  
= 9Hz  
= 7Hz  
CORNER  
GAIN = 10  
1/f  
CORNER  
GAIN = 100, 1000  
10  
0
BW LIMIT  
GAIN = 1000  
1
10  
100  
1k  
10k  
100k  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (Hz)  
TIME (SEC)  
TIME (SEC)  
1167 G19  
1167 G20  
1167 G21  
8
LT1167  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Current Noise Density  
vs Frequency  
0.1Hz to 10Hz Current Noise  
Short-Circuit Current vs Time  
1000  
100  
10  
50  
40  
V
= ±15V  
S
V
T
= ±15V  
= 25°C  
V
T
= ±15V  
= 25°C  
S
A
S
A
T
= 40°C  
A
30  
T
= 25°C  
= 85°C  
A
A
20  
T
T
10  
0
10  
20  
30  
40  
50  
R
S
= 85°C  
A
T
A
= 40°C  
T
A
= 25°C  
1
10  
100  
1000  
0
1
2
3
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (Hz)  
TIME FROM OUTPUT SHORT TO GROUND (MINUTES)  
TIME (SEC)  
1167 G22  
1167 G24  
1167 G23  
Overshoot vs Capacitive Load  
Large-Signal Transient Response  
Small-Signal Transient Response  
100  
90  
V
V
= ±15V  
OUT  
= ∞  
L
S
= ±50mV  
R
80  
70  
60  
50  
A
= 1  
V
40  
30  
20  
10  
0
A
= 10  
V
1167 G28  
1167 G29  
10µs/DIV  
10µs/DIV  
G = 1  
G = 1  
VS = ±15V  
V
S = ±15V  
A
100  
V
R
L = 2k  
RL = 2k  
L = 60pF  
C
L = 60pF  
C
10  
100  
1000  
10000  
CAPACITIVE LOAD (pF)  
1167 G25  
Output Impedance vs Frequency  
Large-Signal Transient Response  
Small-Signal Transient Response  
1000  
100  
V
= ±15V  
= 25°C  
S
A
T
G = 1 TO 1000  
10  
1
1167 G31  
1167 G32  
10µs/DIV  
10µs/DIV  
G = 10  
S = ±15V  
RL = 2k  
L = 60pF  
G = 10  
S = ±15V  
RL = 2k  
L = 60pF  
V
V
0.1  
C
C
1
10  
100  
1000  
FREQUENCY (kHz)  
1167 G26  
9
LT1167  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Undistorted Output Swing  
vs Frequency  
Large-Signal Transient Response  
Small-Signal Transient Response  
35  
30  
25  
20  
15  
10  
5
V
= ±15V  
= 25°C  
S
A
T
G = 10, 100, 1000  
G = 1  
1167 G35  
1167 G34  
10µs/DIV  
10µs/DIV  
G = 100  
S = ±15V  
RL = 2k  
L = 60pF  
G = 100  
V
VS = ±15V  
R
L = 2k  
0
C
CL = 60pF  
1
10  
100  
1000  
FREQUENCY (kHz)  
1167 G27  
Settling Time vs Gain  
Large-Signal Transient Response  
Small-Signal Transient Response  
1000  
100  
10  
V
= ±15V  
= 25°C  
S
A
T
V  
= 10V  
OUT  
1mV = 0.01%  
1167 G37  
1167 G38  
50µs/DIV  
50µs/DIV  
G = 1000  
S = ±15V  
L = 2k  
CL = 60pF  
G = 1000  
S = ±15V  
L = 2k  
CL = 60pF  
V
V
R
R
1
1
10  
100  
1000  
GAIN (dB)  
1167 G30  
Output Voltage Swing  
vs Load Current  
Settling Time vs Step Size  
Slew Rate vs Temperature  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
10  
8
+V  
S
V
= ±15V  
S
85°C  
V
= ±15V  
S
V
= ±15  
TO 0.1%  
S
V
= ±10V  
OUT  
25°C  
G = 1  
+V – 0.5  
S
G = 1  
40°C  
T
= 25°C  
= 30pF  
= 1k  
A
6
+V – 1.0  
S
C
L
L
TO 0.01%  
V
R
4
+V – 1.5  
S
SOURCE  
SINK  
OUT  
2
0V  
+V – 2.0  
S
+SLEW  
0
–V + 2.0  
S
0V  
–2  
–4  
–6  
–8  
–10  
V
OUT  
–V + 1.5  
S
SLEW  
TO 0.01%  
–V + 1.0  
S
–V + 0.5  
S
TO 0.1%  
–V  
S
50 –25  
0
25  
50  
75 100 125  
2
3
4
5
6
7
8
9
10 11 12  
0.01  
0.1  
1
10  
100  
TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
SETTLING TIME (µs)  
1167 G39  
1167 G36  
1167 G33  
10  
LT1167  
W
BLOCK DIAGRAM  
+
VB  
V
R5  
10k  
R6  
10k  
+
OUTPUT  
6
A1  
R3  
C1  
400Ω  
–IN  
2
Q1  
R1  
24.7k  
+
V
A3  
1
8
R
R
G
V
V
VB  
G
+
V
R7  
10k  
R8  
10k  
+
REF  
A2  
5
R4  
400Ω  
C2  
+IN  
3
Q2  
R2  
24.7k  
+
V
7
4
V
V
1167 F01  
PREAMP STAGE  
DIFFERENCE AMPLIFIER STAGE  
Figure 1. Block Diagram  
U
THEORY OF OPERATIO  
The LT1167 is a modified version of the three op amp  
instrumentation amplifier. Laser trimming and monolithic  
construction allow tight matching and tracking of circuit  
parameters over the specified temperature range. Refer to  
the block diagram (Figure 1) to understand the following  
circuitdescription. ThecollectorcurrentsinQ1andQ2are  
trimmed to minimize offset voltage drift, thus assuring a  
high level of performance. R1 and R2 are trimmed to an  
absolute value of 24.7k to assure that the gain can be set  
accurately (0.05% at G = 100) with only one external  
resistor RG. The value of RG in parallel with R1 (R2)  
determines the transconductance of the preamp stage. As  
RG is reduced for larger programmed gains, the transcon-  
ductanceoftheinputpreampstageincreasestothatofthe  
input transistors Q1 and Q2. This increases the open-loop  
gain when the programmed gain is increased, reducing  
the input referred gain related errors and noise. The input  
voltage noise at gains greater than 50 is determined only  
by Q1 and Q2. At lower gains the noise of the difference  
amplifier and preamp gain setting resistors increase the  
noise. The gain bandwidth product is determined by C1,  
C2 and the preamp transconductance which increases  
withprogrammedgain.Therefore,thebandwidthdoesnot  
drop proportional to gain.  
The input transistors Q1 and Q2 offer excellent matching,  
which is inherent in NPN bipolar transistors, as well as  
picoampere input bias current due to superbeta process-  
ing. The collector currents in Q1 and Q2 are held constant  
due to the feedback through the Q1-A1-R1 loop and  
Q2-A2-R2 loop which in turn impresses the differential  
input voltage across the external gain set resistor RG.  
SincethecurrentthatflowsthroughRG alsoflowsthrough  
R1andR2, theratios provide agained-updifferential volt-  
age,G=(R1+R2)/RG, totheunity-gaindifferenceamplifier  
A3. The common mode voltage is removed by A3, result-  
ing in a single-ended output voltage referenced to the  
voltage on the REF pin. The resulting gain equation is:  
VOUT – VREF = G(VIN+ – VIN  
)
where:  
G = (49.4k/RG) + 1  
solving for the gain set resistor gives:  
RG = 49.4k/(G – 1)  
11  
LT1167  
U
THEORY OF OPERATIO  
Input and Output Offset Voltage  
Output Offset Trimming  
The offset voltage of the LT1167 has two components: the  
output offset and the input offset. The total offset voltage  
referred to the input (RTI) is found by dividing the output  
offset by the programmed gain (G) and adding it to the  
input offset. At high gains the input offset voltage domi-  
nates, whereas at low gains the output offset voltage  
dominates. The total offset voltage is:  
The LT1167 is laser trimmed for low offset voltage so that  
no external offset trimming is required for most applica-  
tions. In the event that the offset needs to be adjusted, the  
circuitinFigure2isanexampleofanoptionaloffsetadjust  
circuit. Theopampbufferprovidesalowimpedancetothe  
REF pin where resistance must be kept to minimum for  
best CMRR and lowest gain error.  
Total input offset voltage (RTI)  
= input offset + (output offset/G)  
2
–IN  
1
Total output offset voltage (RTO)  
= (input offset • G) + output offset  
6
R
LT1167  
REF  
OUTPUT  
+
G
V
8
3
5
+
+IN  
Reference Terminal  
2
10mV  
1
1/2  
LT1112  
The reference terminal is one end of one of the four 10k  
resistors around the difference amplifier. The output volt-  
age of the LT1167 (Pin 6) is referenced to the voltage on  
the reference terminal (Pin 5). Resistance in series with  
the REF pin must be minimized for best common mode  
rejection. For example, a 2resistance from the REF pin  
to ground will not only increase the gain error by 0.02%  
but will lower the CMRR to 80dB.  
100Ω  
3
+
±10mV  
10k  
ADJUSTMENT RANGE  
100Ω  
–10mV  
V
1167 F02  
Figure 2. Optional Trimming of Output Offset Voltage  
Single Supply Operation  
Input Bias Current Return Path  
Forsinglesupplyoperation, theREFpincanbeatthesame  
potential as the negative supply (Pin 4) provided the  
output of the instrumentation amplifier remains inside the  
specified operating range and that one of the inputs is at  
least2.5Vaboveground.Thebarometerapplicationonthe  
front page of this data sheet is an example that satisfies  
these conditions. The resistance Rb from the bridge trans-  
ducer to ground sets the operating current for the bridge  
and also has the effect of raising the input common mode  
voltage. The output of the LT1167 is always inside the  
specified range since the barometric pressure rarely goes  
low enough to cause the output to rail (30.00 inches of Hg  
corresponds to 3.000V). For applications that require the  
output to swing at or below the REF potential, the voltage  
on the REF pin can be level shifted. An op amp is used to  
buffer the voltage on the REF pin since a parasitic series  
resistance will degrade the CMRR. The application in the  
back of this data sheet, Four Digit Pressure Sensor, is an  
example.  
The low input bias current of the LT1167 (350pA) and the  
high input impedance (200G) allow the use of high  
impedance sources without introducing additional offset  
voltage errors, even when the full common mode range is  
required. However, a path must be provided for the input  
bias currents of both inputs when a purely differential  
signal is being amplified. Without this path the inputs will  
float to either rail and exceed the input common mode  
range of the LT1167, resulting in a saturated input stage.  
Figure 3 shows three examples of an input bias current  
path. The first example is of a purely differential signal  
sourcewitha10kinputcurrentpathtoground.Sincethe  
impedance of the signal source is low, only one resistor is  
needed. Two matching resistors are needed for higher  
impedance signal sources as shown in the second  
example. Balancing the input impedance improves both  
common mode rejection and DC offset. The need for input  
resistors is eliminated if a center tap is present as shown  
in the third example.  
12  
LT1167  
U
THEORY OF OPERATIO  
+
+
MICROPHONE,  
HYDROPHONE,  
ETC  
R
G
R
G
R
G
LT1167  
THERMOCOUPLE  
LT1167  
LT1167  
+
200k  
200k  
10k  
CENTER-TAP PROVIDES  
BIAS CURRENT RETURN  
1167 F03  
Figure 3. Providing an Input Common Mode Current Path  
U
W U U  
APPLICATIONS INFORMATION  
The LT1167 is a low power precision instrumentation  
amplifier that requires only one external resistor to accu-  
rately set the gain anywhere from 1 to 1000. The output  
can handle capacitive loads up to 1000pF in any gain  
configuration and the inputs are protected against ESD  
strikes up to 13kV (human body).  
A2N4393drain/sourcetogateisagoodlowleakagediode  
for use with 1k resistors, see Figure 4. The input resistors  
should be carbon and not metal film or carbon film.  
RFI Reduction  
In many industrial and data acquisition applications,  
instrumentation amplifiers are used to accurately amplify  
small signals in the presence of large common mode  
voltages or high levels of noise. Typically, the sources of  
these very small signals (on the order of microvolts or  
millivolts) are sensors that can be a significant distance  
from the signal conditioning circuit. Although these sen-  
sors may be connected to signal conditioning circuitry,  
using shielded or unshielded twisted-pair cabling, the ca-  
bling may act as antennae, conveying very high frequency  
interference directly into the input stage of the LT1167.  
Input Protection  
The LT1167 can safely handle up to ±20mA of input  
current in an overload condition. Adding an external 5k  
input resistor in series with each input allows DC input  
fault voltages up to ±100V and improves the ESD immu-  
nityto8kV(contact)and15kV(airdischarge), whichisthe  
IEC 1000-4-2 level 4 specification. If lower value input  
resistors are needed, a clamp diode from the positive  
supply to each input will maintain the IEC 1000-4-2  
specification to level 4 for both air and contact discharge.  
The amplitude and frequency of the interference can have  
an adverse effect on an instrumentation amplifier’s input  
stage by causing an unwanted DC shift in the amplifier’s  
input offset voltage. This well known effect is called RFI  
rectification and is produced when out-of-band interfer-  
ence is coupled (inductively, capacitively or via radiation)  
and rectified by the instrumentation amplifier’s input tran-  
sistors. These transistors act as high frequency signal  
detectors, in the same way diodes were used as RF  
envelope detectors in early radio designs. Regardless of  
the type of interference or the method by which it is  
coupled into the circuit, an out-of-band error signal ap-  
pearsinserieswiththeinstrumentationamplifier’sinputs.  
V
CC  
V
CC  
OPTIONAL FOR HIGHEST  
ESD PROTECTION  
J1  
2N4393  
J2  
2N4393  
V
CC  
R
IN  
IN  
+
OUT  
R
LT1167  
G
REF  
R
1167 F04  
V
EE  
Figure 4. Input Protection  
13  
LT1167  
U
W U U  
APPLICATIONS INFORMATION  
To significantly reduce the effect of these out-of-band  
signals on the input offset voltage of instrumentation  
amplifiers, simple lowpass filters can be used at the  
inputs. This filter should be located very close to the input  
pins of the circuit. An effective filter configuration is  
illustrated in Figure 5, where three capacitors have been  
added to the inputs of the LT1167. Capacitors CXCM1 and  
signal to be processed, set the common mode time  
constant an order of magnitude (or more) larger than the  
differentialmodetimeconstant.Toavoidanypossibilityof  
common mode to differential mode signal conversion,  
match the common mode time constants to 1% or better.  
If the sensor is an RTD or a resistive strain gauge, then the  
series resistors RS1, 2 can be omitted, if the sensor is in  
proximity to the instrumentation amplifier.  
CXCM2 form lowpass filters with the external series resis-  
tors RS1, 2 to any out-of-band signal appearing on each of  
the input traces. Capacitor CXD forms a filter to reduce any  
unwantedsignalthatwouldappearacrosstheinputtraces.  
An added benefit to using CXD is that the circuit’s AC  
common mode rejection is not degraded due to common  
mode capacitive imbalance. The differential mode and  
commonmodetimeconstantsassociatedwiththecapaci-  
tors are:  
“Roll Your Own”—Discrete vs Monolithic LT1167  
Error Budget Analysis  
The LT1167 offers performance superior to that of “roll  
your own” three op amp discrete designs. A typical appli-  
cation that amplifies and buffers a bridge transducer’s  
differential output is shown in Figure 6. The amplifier, with  
itsgainsetto100, amplifiesadifferential, full-scaleoutput  
voltage of 20mV over the industrial range. To make the  
comparisonchallenging,thelowcostversionoftheLT1167  
will be compared to a discrete instrumentation amp made  
withtheAgradeofoneofthebestprecisionquadopamps,  
the LT1114A. The LT1167C outperforms the discrete  
amplifier that has lower VOS, lower IB and comparable VOS  
drift. The error budget comparison in Table 1 shows how  
various errors are calculated and how each error affects  
the total error budget. The table shows the greatest  
differences between the discrete solution and the LT1167  
are input offset voltage and CMRR. Note that for the  
discrete solution, the noise voltage specification is multi-  
pliedby 2whichistheRMSsumoftheuncorelatednoise  
of the two input amplifiers. Each of the amplifier errors is  
referenced to a full-scale bridge differential voltage of  
20mV. The common mode range of the bridge is 5V. The  
LT1114 data sheet provides offset voltage, offset voltage  
drift and offset current specifications for the matched op  
amp pairs used in the error-budget table. Even with an  
excellent matching op amp like the LT1114, the discrete  
solution’s total error is significantly higher than the  
LT1167’s total error. The LT1167 has additional advan-  
tages over the discrete design, including lower compo-  
nent cost and smaller size.  
tDM(LPF) = (2)(RS)(CXD)  
tCM(LPF) = (RS1, 2)(CXCM1, 2  
)
Setting the time constants requires a knowledge of the  
frequency, or frequencies of the interference. Once this  
frequency is known, the common mode time constants  
can be set followed by the differential mode time constant.  
To avoid any possibility of inadvertently affecting the  
+
V
C
R
XCM1  
S1  
100pF  
1.6k  
+
+
IN  
IN  
C
XD  
R
LT1167  
V
G
OUT  
10pF  
R
S2  
1.6k  
C
XCM2  
100pF  
V
1167 F05  
EXTERNAL RFI  
FILTER  
Figure 5. Adding a Simple RC Filter at the Inputs to an  
Instrumentation Amplifier is Effective in Reducing Rectification  
of High Frequency Out-of-Band Signals  
14  
LT1167  
U
W U U  
APPLICATIONS INFORMATION  
+
10k*  
10k*  
1/4  
LT1114A  
10V  
+
10k**  
10k**  
350Ω  
350Ω  
1/4  
LT1114A  
R
G
LT1167C  
REF  
100**  
499Ω  
+
350Ω  
350Ω  
10k*  
10k*  
1/4  
LT1114A  
+
LT1167 MONOLITHIC  
PRECISION BRIDGE TRANSDUCER  
INSTRUMENTATION AMPLIFIER  
“ROLL YOUR OWN” INST AMP, G = 100  
G = 100, R = ±10ppm TC  
G
* 0.02 RESISTOR MATCH, 3ppm/°C TRACKING  
** DISCRETE 1% RESISTOR, ±100ppm/°C TC  
100ppm TRACKING  
SUPPLY CURRENT = 1.3mA MAX  
SUPPLY CURRENT = 1.35mA FOR 3 AMPLIFIERS  
1167 F06  
Figure 6. “Roll Your Own” vs LT1167  
Table 1. “Roll Your Own” vs LT1167 Error Budget  
ERROR, ppm OF FULL SCALE  
LT1167C “ROLL YOUR OWN”  
“ROLL YOUR OWN”’ CIRCUIT  
CALCULATION  
ERROR SOURCE  
LT1167C CIRCUIT CALCULATION  
Absolute Accuracy at T = 25  
°C  
A
Input Offset Voltage, µV  
Output Offset Voltage, µV  
Input Offset Current, nA  
CMR, dB  
60µV/20mV  
(300µV/100)/20mV  
[(450pA)(350/2)]/20mV  
110dB[(3.16ppm)(5V)]/20mV  
100µV/20mV  
3000  
150  
4
5000  
60  
4
[(60µV)(2)/100]/20mV  
[(450pA)(350)/2]/20mV  
[(0.02% Match)(5V)]/20mV  
790  
500  
Total Absolute Error  
3944  
5564  
Drift to 85  
Gain Drift, ppm/°C  
Input Offset Voltage Drift, µV/°C  
Output Offset Voltage Drift, µV/°C  
°C  
(50ppm + 10ppm)(60°C)  
[(0.4µV/°C)(60°C)]/20mV  
[6µV/°C)(60°C)]/100/20mV  
(100ppm/°C Track)(60°C)  
[(1.6µV/°C)(60°C)]/20mV  
[(1.1µV/°C)(2)(60°C)]/100/20mV  
3600  
1200  
180  
6000  
4800  
66  
Total Drift Error  
4980  
10866  
Resolution  
Gain Nonlinearity, ppm of Full Scale  
Typ 0.1Hz to 10Hz Voltage Noise, µV  
15ppm  
0.28µV /20mV  
10ppm  
15  
14  
10  
21  
(0.3µV )(2)/20mV  
P-P  
P-P  
P-P  
Total Resolution Error  
Grand Total Error  
29  
8953  
31  
16461  
G = 100, V = ±15V  
S
All errors are min/max and referred to input.  
Current Source  
current. The 50µA bias current flowing from Pin 5 is  
buffered by the LT1464 JFET operational amplifier. This  
has the effect of improving the resolution of the current  
source to 3pA, which is the maximum IB of the LT1464A.  
Replacing RG with a programmable resistor greatly  
increases the range of available output currents.  
Figure 7 shows a simple, accurate, low power program-  
mable current source. The differential voltage across Pins  
2 and 3 is mirrored across RG. The voltage across RG is  
amplified and applied across RX, defining the output  
15  
LT1167  
U
W U U  
APPLICATIONS INFORMATION  
V
S
important, R6 and C2 make up a 0.3Hz highpass filter.  
The AC signal at LT1112’s Pin 5 is amplified by a gain of  
101 set by (R7/R8) +1. The parallel combination of C3  
and R7 form a lowpass filter that decreases this gain at  
frequencies above 1kHz. The ability to operate at ±3V on  
0.9mA of supply current makes the LT1167 ideal for  
battery-powered applications. Total supply current for  
this application is 1.7mA. Proper safeguards, such as  
isolation, must be added to this circuit to protect the  
patient from possible harm.  
3
8
+
+IN  
7
R
V
X
6
R
LT1167  
4
G
REF  
5
X
2
1
2
–IN  
I
L
+
–V  
S
1
1/2  
LT1464  
3
V
R
[(+IN) – (–IN)]G  
X
I
=
=
L
R
X
X
LOAD  
49.4kΩ  
G =  
+ 1  
R
G
Low IB Favors High Impedance Bridges,  
Lowers Dissipation  
1167 F07  
Figure 7. Precision Voltage-to-Current Converter  
The LT1167’s low supply current, low supply voltage  
operation and low input bias currents optimize it for  
battery-powered applications. Low overall power dissi-  
pationnecessitatesusinghigherimpedancebridges.The  
single supply pressure monitor application (Figure 9)  
shows the LT1167 connected to the differential output of  
a 3.5k bridge. The bridge’s impedance is almost an order  
of magnitude higher than that of the bridge used in the  
error-budget table. The picoampere input bias currents  
keep the error caused by offset current to a negligible  
level. The LT1112 level shifts the LT1167’s reference pin  
and the ADC’s analog ground pins above ground. The  
LT1167’s and LT1112’s combined power dissipation is  
still less than the bridge’s. This circuit’s total supply  
current is just 2.8mA.  
Nerve Impulse Amplifier  
The LT1167’s low current noise makes it ideal for high  
source impedance EMG monitors. Demonstrating the  
LT1167’s ability to amplify low level signals, the circuit in  
Figure 8 takes advantage of the amplifier’s high gain and  
low noise operation. This circuit amplifies the low level  
nerve impulse signals received from a patient at Pins 2  
and 3. RG and the parallel combination of R3 and R4 set  
a gain of ten. The potential on LT1112’s Pin 1 creates a  
ground for the common mode signal. C1 was chosen to  
maintainthestabilityofthepatientground. TheLT1167’s  
high CMRR ensures that the desired differential signal is  
amplified and unwanted common mode signals are at-  
tenuated. Since the DC portion of the signal is not  
3V  
PATIENT/CIRCUIT  
PROTECTION/ISOLATION  
3
8
0.3Hz  
HIGHPASS  
7
+IN  
+
3V  
C1  
0.01µF  
C2  
0.47µF  
R3  
R1  
12k  
30k  
6
5
6
8
R
LT1167  
G = 10  
G
+
6k  
R2  
1M  
7
1/2  
OUTPUT  
1V/mV  
R4  
30k  
R6  
1M  
LT1112  
1
2
5
4
4
R7  
10k  
+
2
3
–3V  
1/2  
LT1112  
1
–3V  
PATIENT  
GROUND  
R8  
100Ω  
A
= 101  
C3  
15nF  
V
POLE AT 1kHz  
–IN  
1167 F08  
Figure 8. Nerve Impulse Amplifier  
16  
LT1167  
U
W U U  
APPLICATIONS INFORMATION  
BI TECHNOLOGIES  
67-8-3 R40KQ  
(0.02% RATIO MATCH)  
5V  
1
3
8
40k  
+
7
3.5k  
3.5k  
3.5k  
3.5k  
REF  
IN  
G = 200  
249Ω  
6
LT1167  
4
DIGITAL  
DATA  
OUTPUT  
ADC  
20k  
3
LTC®1286  
1
2
5
+
1
1/2  
AGND  
40k  
LT1112  
2
1167 F09  
Figure 9. Single Supply Pressure Monitor  
U
TYPICAL APPLICATION  
AC Coupled Instrumentation Amplifier  
2
1
–IN  
+IN  
6
R
LT1167  
REF  
OUTPUT  
G
R1  
500k  
8
3
C1  
0.3µF  
5
+
+
2
1
1/2  
LT1112  
1
f
=
–3dB  
3
(2π)(R1)(C1)  
= 1.06Hz  
1167 TA04  
17  
LT1167  
U
PACKAGE DESCRIPTION  
Dimensions in inches (millimeters) unless otherwise noted.  
N8 Package  
8-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
0.400*  
(10.160)  
MAX  
8
7
6
5
4
0.255 ± 0.015*  
(6.477 ± 0.381)  
1
2
3
0.130 ± 0.005  
0.300 – 0.325  
0.045 – 0.065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
0.020  
(0.508)  
MIN  
(3.175)  
MIN  
+0.035  
0.325  
–0.015  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
(0.457 ± 0.076)  
+0.889  
8.255  
(
)
N8 1197  
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
18  
LT1167  
U
PACKAGE DESCRIPTION  
Dimensions in inches (millimeters) unless otherwise noted.  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
7
5
8
6
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
1
0.053 – 0.069  
3
4
2
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
SO8 0996  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
19  
LT1167  
U
TYPICAL APPLICATION  
4-Digit Pressure Sensor  
9V  
R8  
LUCAS NOVA SENOR  
392k  
9V  
NPC-1220-015A-3L  
3
2
4
+
2
1
1
3
1
4
1/4  
LT1114  
1
2
7
5k  
5k  
LT1634CCZ-1.25  
R1  
11  
825Ω  
6
LT1167  
G = 60  
R9  
1k  
R2  
12Ω  
5k  
2
6
5k  
8
3
5
TO  
+
4-DIGIT  
DVM  
+
4
R
SET  
10  
9
+
8
1/4  
LT1114  
5
12  
13  
+
14  
1/4  
0.2% ACCURACY AT ROOM TEMP  
LT1114  
1.2% ACCURACY AT 0°C TO 60°C  
R7  
180k  
R6  
50k  
R5  
100k  
R4  
100k  
VOLTS INCHES Hg  
2.800  
3.000  
3.200  
28.00  
30.00  
32.00  
C1  
1µF  
1167 TA03  
R3  
51k  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1100  
Precision Chopper-Stabilized Instrumentation Amplifier  
Best DC Accuracy  
LT1101  
Precision, Micropower, Single Supply Instrumentation Amplifier  
High Speed, JFET Instrumentation Amplifier  
Fixed Gain of 10 or 100, I < 105µA  
S
LT1102  
Fixed Gain of 10 or 100, 30V/µs Slew Rate  
LTC®1418  
14-Bit, Low Power, 200ksps ADC with Serial and Parallel I/O  
Single Supply 5V or ±5V Operation, ±1.5LSB INL  
and ±1LSB DNL Max  
LT1460  
LT1468  
Precision Series Reference  
Micropower; 2.5V, 5V, 10V Versions; High Precision  
16-Bit Accurate Op Amp, Low Noise Fast Settling  
16-Bit Accuracy at Low and High Frequencies, 90MHz GBW,  
22V/µs, 900ns Settling  
LTC1562  
LTC1605  
Active RC Filter  
Lowpass, Bandpass, Highpass Responses; Low Noise,  
Low Distortion, Four 2nd Order Filter Sections  
16-Bit, 100ksps, Sampling ADC  
Single 5V Supply, Bipolar Input Range: ±10V,  
Power Dissipation: 55mW Typ  
1167f LT/GP 1298 4K • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1998  
20 Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

LT1167CN8#TRPBF

IC INSTRUMENTATION AMPLIFIER, 80 uV OFFSET-MAX, 1 MHz BAND WIDTH, PDIP8, 0.300 INCH, LEAD FREE, PLASTIC, DIP-8, Instrumentation Amplifier
Linear

LT1167CS8

Single Resistor Gain Programmable, Precision Instrumentation Amplifier
Linear

LT1167CS8#PBF

LT1167 - Single Resistor Gain Programmable, Precision Instrumentation Amplifier; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1167CS8#TRPBF

Single Resistor Gain Programmable, Precision Instrumentation Amplifier
Linear

LT1167CS8-1#PBF

Single Resistor Gain Programmable, Precision Instrumentation Amplifier
Linear

LT1167CS8-1#TRPBF

LT1167 - Single Resistor Gain Programmable, Precision Instrumentation Amplifier; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1167I

Single Resistor Gain Programmable, Precision Instrumentation Amplifier
Linear

LT1167IN8

Single Resistor Gain Programmable, Precision Instrumentation Amplifier
Linear

LT1167IN8#TR

IC INSTRUMENTATION AMPLIFIER, 80 uV OFFSET-MAX, 1 MHz BAND WIDTH, PDIP8, 0.300 INCH, PLASTIC, DIP-8, Instrumentation Amplifier
Linear

LT1167IN8#TRPBF

IC INSTRUMENTATION AMPLIFIER, 80 uV OFFSET-MAX, 1 MHz BAND WIDTH, PDIP8, 0.300 INCH, LEAD FREE, PLASTIC, DIP-8, Instrumentation Amplifier
Linear

LT1167IS8

Single Resistor Gain Programmable, Precision Instrumentation Amplifier
Linear

LT1167IS8#PBF

LT1167 - Single Resistor Gain Programmable, Precision Instrumentation Amplifier; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear