LT1169 [Linear]

Dual Low Noise, Picoampere Bias Current, JFET Input Op Amp; 双路低噪声, Picoampere偏置电流, JFET输入运算放大器
LT1169
型号: LT1169
厂家: Linear    Linear
描述:

Dual Low Noise, Picoampere Bias Current, JFET Input Op Amp
双路低噪声, Picoampere偏置电流, JFET输入运算放大器

运算放大器
文件: 总12页 (文件大小:336K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1169  
Dual Low Noise,  
Picoampere Bias Current,  
JFET Input Op Amp  
U
DESCRIPTIO  
EATURE  
S
F
Input Bias Current, Warmed Up: 20pA Max  
100% Tested Low Voltage Noise: 8nV/Hz Max  
S8 and N8 Package Standard Pinout  
Very Low Input Capacitance: 1.5pF  
Voltage Gain: 1.2 Million Min  
TheLT1169achievesanew standardofexcellencein noise  
performance for a dual JFET op amp. For the first time low  
voltage noise (6nV/Hz) is simultaneously offered with  
extremely low current noise (1fA/Hz), providing the low-  
est total noise for high impedance transducer applications.  
Unlike most JFET op amps, the very low input bias current  
(5pA Typ) is maintained over the entire common mode  
range which results in an extremely high input resistance  
(1013). When combined with a very low input capaci-  
tance (1.5pF) an extremely high input impedance results,  
making the LT1169 the first choice for amplifying low level  
signals from high impedance transducers. The low input  
capacitancealsoassureshighgainlinearitywhenbuffering  
AC signals from high impedance transducers.  
Offset Voltage: 2mV Max  
Input Resistance: 1013Ω  
Gain-Bandwidth Product: 5.3MHz Typ  
Guaranteed Specifications with ±5V Supplies  
Guaranteed Matching Specifications  
O U  
PPLICATI  
A
S
Photocurrent Amplifiers  
Hydrophone Amplifiers  
High Sensitivity Piezoelectric Accelerometers  
Low Voltage and Current Noise Instrumentation  
Amplifier Front Ends  
Two and Three Op Amp Instrumentation Amplifiers  
Active Filters  
TheLT1169isunconditionallystableforgainsof1ormore,  
even with 1000pF capacitive loads. Other key features are  
0.6mV VOS and a voltage gain over 4 million. Each indi-  
vidual amplifier is 100% tested for voltage noise, slew rate  
(4.2V/µs), and gain-bandwidth product (5.3MHz).  
The LT1169 is offered in the S8 and N8 packages.  
A full set of matching specifications are provided for  
precision instrumentation amplifier front ends. Specifica-  
tions at ±5V supply operation are also provided. For an  
evenlowervoltagenoisepleaseseetheLT1113datasheet.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
O
TYPICAL APPLICATI  
Low Noise Light Sensor with DC Servo  
1kHz Output Voltage Noise  
Density vs Source Resistance  
C1  
2pF  
10k  
R1  
2
V
N
1M  
1k  
100  
10  
+
1
1/2 LT1169  
C2  
V
OUT  
R
SOURCE  
+
3
0.022µF  
D2  
1N914  
C
D
+V  
8
R2  
100k  
6
D1  
1N914  
R3  
1k  
V
N
7
SOURCE  
2N3904  
1/2 LT1169  
T
= 25°C  
= ±15V  
A
S
RESISTANCE  
ONLY  
+
5
V
HAMAMATSU  
R5  
10k 1k  
R4  
1
100  
4
–V  
S1336-5BK  
1k 10k 100k 1M 10M  
1G  
100M  
(908) 231-0960  
R2C2 > C1R1  
SOURCE RESISTANCE ()  
C
V
= PARASITIC PHOTODIODE CAPACITANCE  
D
2
2
V
=
(V  
OP AMP  
)
+ 4kTR + 2qI R  
= 100mV/µWATT FOR 200nm WAVE LENGTH  
N
S
B
S
V–  
OUT  
LT1169 • TA01  
330mV/µWATT FOR 633nm WAVE LENGTH  
LT1169 • TA02  
1
LT1169  
W W W  
U
/O  
ABSOLUTE AXI U RATI GS  
PACKAGE RDER I FOR ATIO  
Supply Voltage  
TOP VIEW  
ORDER PART  
55°C to 105°C ............................................... ±20V  
105°C to 125°C ............................................... ±16V  
Differential Input Voltage ...................................... ±40V  
Input Voltage (Equal to Supply Voltage)............... ±20V  
Output Short-Circuit Duration......................... Indefinite  
Operating Temperature Range............... 40°C to 85°C  
Storage Temperature Range................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec) ................ 300°C  
+
NUMBER  
OUT A  
–IN A  
+IN A  
1
2
3
4
V
8
7
6
5
OUT B  
–IN B  
+IN B  
A
LT1169CN8  
LT1169CS8  
B
V
S8 PACKAGE  
8-LEAD PLASTIC SO  
N8 PACKAGE  
8-LEAD PDIP  
S8 PART MARKING  
1169  
TJMAX = 150°C, θJA = 80°C/W (N8)  
JMAX = 160°C, θJA = 190°C/W (S8)  
T
Consult factory for Industrial and Military grade parts.  
ELECTRICAL CHARACTERISTICS VS = ±15V, VCM = 0V, TA = 25°C, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS (Note 1)  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
0.60  
0.65  
2.0  
2.2  
mV  
mV  
OS  
V = ±5V  
S
I
I
Input Offset Current  
Input Bias Current  
Warmed Up (Note 2)  
T = 25°C (Note 5)  
J
2.5  
0.7  
15  
4
pA  
pA  
OS  
Warmed Up (Note 2)  
T = 25°C (Note 5)  
J
4.0  
1.5  
20  
5
pA  
pA  
B
e
Input Noise Voltage  
0.1Hz to 10Hz  
2.4  
µV  
P-P  
n
Input Noise Voltage Density  
f = 10Hz  
f = 1000Hz  
O
17  
6
nV/Hz  
nV/Hz  
O
8
i
Input Noise Current Density  
f = 10Hz, f = 1kHz (Note 3)  
1
fA/Hz  
n
O
O
R
Input Resistance  
Differential Mode  
Common Mode  
IN  
14  
10  
13  
V
CM  
= –10V to 13V  
10  
C
V
Input Capacitance  
1.5  
2.0  
pF  
pF  
IN  
V = ±5V  
S
Input Voltage Range (Note 4)  
13.0  
–10.5  
13.5  
–11.0  
V
V
CM  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
= –10V to 13V  
82  
83  
95  
98  
dB  
dB  
CM  
V = ±4.5V to ± 20V  
S
A
V = ±12V, R = 10k  
V = ±10V, R = 1k  
1000  
500  
4500  
3000  
V/mV  
V/mV  
VOL  
O
L
O
L
V
Output Voltage Swing  
R = 10k  
R = 1k  
L
±13.0  
±12.0  
±13.8  
±13.0  
V
V
OUT  
L
SR  
Slew Rate  
R 2k (Note 6)  
2.4  
3.3  
4.2  
5.3  
V/µs  
MHz  
dB  
L
GBW  
Gain-Bandwidth Product  
Channel Separation  
Supply Current per Amplifier  
f = 100kHz  
O
f = 10Hz, V = ±10V, R = 1k  
126  
O
O
L
I
5.3  
5.3  
6.50  
6.45  
mA  
mA  
S
V = ±5V  
S
V  
Offset Voltage Match  
0.8  
3
3.5  
20  
mV  
pA  
dB  
dB  
OS  
+
I  
Noninverting Bias Current Match  
Common Mode Rejection Match  
Power Supply Rejection Match  
Warmed Up (Note 2)  
(Note 8)  
B
CMRR  
PSRR  
78  
80  
94  
95  
(Note 8)  
2
LT1169  
ELECTRICAL CHARACTERISTICS VS = ±15V, VCM = 0V, 0°C TA 70°C, (Note 9), unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS (Note 1)  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
0.7  
0.8  
3.2  
3.4  
mV  
mV  
OS  
V = ± 5V  
S
V  
Average Input Offset Voltage Drift  
(Note 5)  
20  
50  
µV/°C  
OS  
Temp  
I
I
Input Offset Current  
10  
50  
pA  
pA  
OS  
B
Input Bias Current  
180  
400  
V
Input Voltage Range  
12.9  
–10.0  
13.4  
–10.8  
V
V
CM  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
= –10V to 12.9V  
79  
81  
94  
97  
dB  
dB  
CM  
V = ±4.5V to ±20V  
S
A
V = ±12V, R = 10k  
V = ±10V, R = 1k  
800  
400  
3400  
2400  
V/mV  
V/mV  
VOL  
O
L
O
L
V
Output Voltage Swing  
R = 10k  
R = 1k  
L
±12.5  
±11.5  
±13.5  
±12.7  
V
V
OUT  
L
SR  
Slew Rate  
R 2k (Note 6)  
1.9  
3
4
V/µs  
L
GBW  
Gain-Bandwidth Product  
Supply Current per Amplifier  
f = 100kHz  
O
4.2  
MHz  
I
5.3  
5.3  
6.55  
6.50  
mA  
mA  
S
V = ±5V  
S
V  
Offset Voltage Match  
1.5  
5.5  
93  
5
mV  
pA  
dB  
dB  
OS  
+
I  
Noninverting Bias Current Match  
Common Mode Rejection Match  
Power Supply Rejection Match  
50  
B
CMRR  
PSRR  
(Note 8)  
(Note 8)  
74  
77  
93  
VS = ±15V, VCM = 0V, 40°C TA 85°C, (Note 7), unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS (Note 1)  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
0.8  
0.9  
3.8  
4.0  
mV  
mV  
OS  
V = ±5V  
S
V  
Average Input Offset Voltage Drift  
20  
50  
µV/°C  
OS  
Temp  
I
I
Input Offset Current  
30  
200  
pA  
pA  
OS  
B
Input Bias Current  
320  
1200  
V
Input Voltage Range  
12.6  
–10.0  
13.0  
–10.5  
V
V
CM  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
= –10V to 12.6V  
78  
79  
93  
96  
dB  
dB  
CM  
V = ±4.5V to ±20V  
S
A
V = ±12V, R = 10k  
V = ±10V, R = 1k  
750  
300  
3000  
2000  
V/mV  
V/mV  
VOL  
O
L
O
L
V
Output Voltage Swing  
R = 10k  
R = 1k  
L
±12.5  
±11.3  
±12.5  
±12.0  
V
V
OUT  
L
SR  
Slew Rate  
R 2k  
1.8  
2.7  
3.8  
4
V/µs  
L
GBW  
Gain-Bandwidth Product  
Supply Current per Amplifier  
f = 100kHz  
O
MHz  
I
5.30  
5.25  
6.55  
6.50  
mA  
mA  
S
V = ±5V  
S
3
LT1169  
V = ±15V, VCM = 0V, 40°C TA 85°C, (Note 7), unless otherwise noted.  
ELECTRICAL CHARACTERISTICS  
S
SYMBOL  
PARAMETER  
CONDITIONS (Note 1)  
MIN  
TYP  
1.8  
10  
MAX  
6
UNITS  
mV  
pA  
V  
Offset Voltage Match  
OS  
+
I  
Noninverting Bias Current Match  
Common Mode Rejection Match  
Power Supply Rejection Match  
180  
B
CMRR  
PSRR  
(Note 8)  
(Note 8)  
73  
75  
93  
dB  
92  
dB  
Note 6: Slew rate is measured in A = –1; input signal is ±7.5V, output  
The  
denotes specifications which apply over the full operating  
V
measured at ±2.5V.  
temperature range.  
Note 7: The LT1169 is designed, characterized and expected to meet these  
extended temperature limits, but is not tested at 40°C and 85°C.  
Guaranteed I grade parts are available; consult factory.  
Note 1: Typical parameters are defined as the 60% yield of parameter  
distributions of individual amplifiers, i.e., out of 100 LT1169s (200 op  
amps) typically 120 op amps will be better than the indicated specification.  
Note 8: CMRR and PSRR are defined as follows:  
(1) CMRR and PSRR are measured in µV/V on the individual  
amplifiers.  
(2) The difference is calculated between the matching sides in µV/V.  
(3) The result is converted to dB.  
Note 9: The LT1169 is measured in an automated tester in less than one  
second after application of power. Depending on the package used, power  
dissipation, heat sinking, and air flow conditions, the fully warmed-up chip  
temperature can be 10°C to 50°C higher than the ambient temperature.  
Note 2: I and I readings are extrapolated to a warmed-up temperature  
from 25°C measurements and 45°C characterization data.  
B
OS  
Note 3: Current noise is calculated from the formula:  
1/2  
i = (2qI )  
n
B
–19  
where q = 1.6 × 10  
coulomb. The noise of source resistors up to 200M  
swamps the contribution of current noise.  
Note 4: Input voltage range functionality is assured by testing offset  
voltage at the input voltage range limits to a maximum of 2.8mV.  
Note 5: This parameter is not 100% tested.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
1kHz Input Noise Voltage  
Distribution  
0.1Hz to 10Hz Voltage Noise  
Voltage Noise vs Frequency  
100  
10  
1
50  
40  
30  
20  
10  
0
T
A
= 25°C  
= ±15V  
T
= 25°C  
= ±15V  
A
S
V
S
V
510 OP AMPS TESTED  
TYPICAL  
1/f CORNER  
60Hz  
4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8 8.2  
INPUT VOLTAGE NOISE (nV/Hz)  
LT1169 • TPC02  
1
10  
100  
1k  
10k  
0
2
4
6
8
10  
FREQUENCY (Hz)  
TIME (SEC)  
LT1169 • TPC03  
LT1169 • TPC01  
4
LT1169  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Input Bias and Offset Currents  
vs Chip Temperature  
Input Bias and Offset Currents  
Over the Common Mode Range  
Voltage Noise vs Chip Temperature  
30n  
10n  
10  
9
10  
8
V
S
= ±15V  
V
V
= ±15V  
CM  
T
= 25°C  
V = ±15V  
S
S
A
= –10 TO 13V  
3n  
1n  
6
4
2
8
BIAS  
CURRENT  
7
BIAS CURRENT  
OFFSET CURRENT  
300p  
100p  
6
0
30p  
10p  
3p  
–2  
5
OFFSET  
CURRENT  
–4  
–6  
4
3
1p  
–8  
2
0.3p  
–10  
50 75  
TEMPERATURE (°C)  
25  
75  
TEMPERATURE (°C)  
–75 –50 –25  
0
25  
100 125  
0
50  
100  
125  
–15  
–10  
0
5
10  
15  
–5  
COMMON MODE RANGE (V)  
LT1169 • TPC04  
LT1169 • TPC05*  
LT1169 • TPC06  
Common Mode Limit  
vs Temperature  
Power Supply Rejection Ratio  
vs Frequency  
Common Mode Rejection Ratio  
vs Frequency  
+
120  
100  
80  
60  
40  
20  
0
V
0
–0.5  
–1.0  
–1.5  
120  
100  
80  
60  
40  
20  
0
T
= 25°C  
A
T
= 25°C  
= ±15V  
A
S
V
+
+PSRR  
V
= 5V TO 20V  
–2.0  
–PSRR  
3.0  
2.5  
2.0  
V
= 5V TO 20V  
1.5  
V
+1.0  
–60  
–20  
20  
60  
100  
140  
1k  
10k  
100k  
1M  
10M  
10  
1k  
10k 100k  
1M  
10M  
100  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
LT1169 • TPC08  
LT1169 • TPC07  
LT1169 • TPC09  
Gain and Phase Shift  
vs Frequency  
Voltage Gain vs Frequency  
Voltage Gain vs Chip Temperature  
10  
9
8
7
6
5
4
3
2
1
0
180  
140  
100  
60  
50  
40  
30  
20  
10  
0
60  
T
V
C
= 25°C  
= ±15V  
= 10pF  
T
= 25°C  
= ±15V  
A
S
L
A
S
V
S
V
O
V
O
= ±15V  
V
= ±10V, R = 1k  
L
80  
= ±12V, R = 10k  
L
100  
120  
140  
160  
R
L
=10k  
PHASE  
R
L
= 1k  
GAIN  
20  
–10  
180  
100  
–20  
0.01  
1
100  
10k  
1M  
100M  
125  
100  
0.1  
1
10  
–75  
50  
CHIP TEMPERATURE (°C)  
–50 –25  
0
25  
75  
FREQUENCY (MHz)  
FREQUENCY (Hz)  
LT1169 • TPC10  
LT1169 • TPC12  
LT1169 • TPC11  
5
LT1169  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Small-Signal Transient Response  
Large-Signal Transient Response  
Supply Current vs Supply Voltage  
6
5
4
25°C  
–55°C  
125°C  
LT1169 • TPC14  
LT1169 • TPC13  
AV = 1  
2µs/DIV  
AV = 1  
5µs/DIV  
C
L = 10pF  
C
L = 10pF  
VS = ±15V, ±5V  
VS = ±15V  
±10  
±15  
0
±20  
±5  
SUPPLY VOLTAGE (V)  
LT1169 • TPC15  
Output Voltage Swing  
vs Load Current  
Slew Rate and Gain-Bandwidth  
Product vs Temperature  
Capacitive Load Handling  
+
V
0.8  
–1.0  
–1.2  
1.4  
–1.6  
1.4  
50  
40  
30  
20  
10  
0
6
5
4
3
2
1
0
12  
10  
8
125°C  
V
= ±15V  
= 25°C  
10k  
25°C  
S
A
L
O
V
T
R
V
A
–55°C  
SLEW RATE  
= 100mV  
P-P  
= +10, R = 10k, C = 20pF  
F
F
GAIN-BANDWIDTH  
V
= ±5V TO ±20V  
S
6
1.2  
4
1.0  
A
= 1  
V
–55°C  
25°C  
0.8  
2
0.6  
A
= 10  
V
125°C  
–2  
V
+0.4  
0
0
2
4
8
50 75  
TEMPERATURE (°C)  
–10 –8  
6
I
10  
0.1  
1
100  
1000 10000  
–75 –50 –25  
0
25  
100 125  
–6 –4  
10  
I
SINK  
SOURCE  
OUTPUT CURRENT (mA)  
CAPACITIVE LOAD (pF)  
LT1169 • TPC16  
LT1169 • TPC17  
LT1169 • TPC18  
Distribution of Offset Voltage Drift  
with Temperature  
Warm-Up Drift  
Channel Separation vs Frequency  
50  
40  
30  
20  
10  
0
1000  
800  
600  
400  
140  
120  
100  
80  
V
= ±15V  
T
= 25°C  
= ±15V  
S
A
S
188 OP AMPS  
V
N8 PACKAGE  
LIMITED BY  
THERMAL  
INTERACTION  
LIMITED BY  
PIN-TO-PIN  
CAPACITANCE  
60  
40  
T
= 25°C  
= ±15V  
= 1k  
A
S
L
O
200  
0
V
20  
R
V
= 10V  
P-P  
0
0
2
3
4
5
6
–50  
–10  
10 20  
1
–40 –30 –20  
0
30  
100k  
FREQUENCY (Hz)  
10M  
10  
100  
1k  
10k  
1M  
TIME AFTER POWER ON (MIN)  
OFFSET VOLTAGE DRIFT WITH TEMPERATURE (µV/°C)  
LT1169 • TPC20  
LT1169 • TPC19  
LT1169 • TPC21  
6
LT1169  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
THD and Noise vs  
Frequency for Noninverting Gain  
THD and Noise vs  
Frequency for Inverting Gain  
1
0.1  
1
0.1  
Z
= 2k 15pF  
P-P  
= 1, 10, 100  
Z
= 2k 15pF  
L
O
V
L
O
V
V
A
= 20V  
V
A
= 20V  
P-P  
= –1, –10, –100  
MEASUREMENT BANDWIDTH  
= 10Hz TO 80kHz  
MEASUREMENT BANDWIDTH  
= 10Hz TO 80kHz  
A
= –100  
V
A
= 100  
V
0.01  
0.01  
A
= –10  
V
A
= 10  
V
A
= 1  
V
0.001  
0.0001  
0.001  
0.0001  
A
= –1  
V
NOISE FLOOR  
NOISE FLOOR  
20  
100  
1k  
FREQUENCY (Hz)  
10k 20k  
20  
100  
1k  
FREQUENCY (Hz)  
10k 20k  
LT1169 • TPC22  
LT1169 • TPC23  
THD and Noise vs Output  
Amplitude for Inverting Gain  
THD and Noise vs Output  
Amplitude for Noninverting Gain  
CCIF IMD Test (Equal Amplitude  
Tones at 13kHz, 14kHz)*  
1
0.1  
1
0.1  
1
0.1  
T
A
= 25°C  
= ±15V  
= 2k  
Z
O
A
= 2k 15pF  
= 1kHz  
= –1, –10, –100  
Z
= 2k 15pF  
= 1kHz  
O
L
L
V
S
f
f
R
L
A
= 1, 10, 100  
V
V
MEASUREMENT BANDWIDTH  
= 10Hz TO 22kHz  
MEASUREMENT BANDWIDTH  
= 10Hz TO 22kHz  
A
= 100  
A
= ±10  
V
V
A
= –100  
V
0.01  
0.01  
0.01  
A
= –10  
V
A
= 10  
V
A
= 1  
V
0.001  
0.0001  
0.001  
0.0001  
0.001  
0.0001  
A
= –1  
1
V
NOISE FLOOR  
10  
NOISE FLOOR  
10  
0.3  
30  
0.3  
1
30  
0.02  
0.1  
1
10  
30  
OUTPUT SWING (V  
)
P-P  
OUTPUT SWING (V )  
OUTPUT SWING (V  
)
P-P  
P-P  
LT1169 • TPC24  
LT1169 • TPC25  
LT1169 • TPC26  
*SEE LT1115 DATA SHEET FOR DEFINITION OF  
CCIF TESTING  
W
U
O U  
I FOR ATIO  
S
PPLICATI  
A
The extremely high input impedance (1013) assures that  
the input bias current is almost constant over the entire  
common mode range. Figure 1 shows how the LT1169  
standsuptothecompetition.Unlikethecompetition,asthe  
input voltage is swept across the entire common mode  
range the input bias current of the LT1169 hardly changes.  
As a result the current noise does not degrade. This makes  
the LT1169 the best choice in applications where an  
amplifier has to buffer signals from a high impedance  
transducer.  
LT1169 vs the Competition  
Withimprovednoiseperformance, theLT1169dualinthe  
plastic DIP directly replaces such JFET op amps as the  
OPA2111, OPA2604, OP215, and the AD822. The combi-  
nation of low current and voltage noise of the LT1169  
allows it to surpass most dual and single JFET op amps.  
The LT1169 can replace many of the lowest noise bipolar  
amps that are used in amplifying low level signals from  
high impedance transducers. The best bipolar op amps  
will eventually lose out to the LT1169 when transducer  
impedance increases due to higher current noise.  
7
LT1169  
W
U
O U  
I FOR ATIO  
S
PPLICATI  
A
100  
thetotalnoise. ThismeanstheLT1169issuperiortomost  
dualJFETopamps. Onlythelowestnoisebipolaropamps  
have the advantage at low source resistances. As the  
source resistance increases from 5k to 50k, the LT1169  
will match the best bipolar op amps for noise perfor-  
mance, since the thermal noise of the transducer (4kTR)  
begins to dominate the total noise. A further increase in  
source resistance, above 50k, is where the op amp’s  
current noise component (2qIBR2) will eventually domi-  
nate the total noise. At these high source resistances, the  
LT1169 will out perform the lowest noise bipolar op amps  
due to the inherently low current noise of FET input op  
amps. Clearly, the LT1169 will extend the range of high  
impedance transducers that can be used for high signal-  
to-noiseratios.ThismakestheLT1169thebestchoicefor  
high impedance, capacitive transducers.  
CURRENT NOISE = 2qI  
B
80  
60  
40  
20  
OP215  
LT1169  
0
–20  
AD822  
–40  
–60  
–80  
–100  
–15  
–10  
0
5
10  
15  
–5  
COMMON MODE RANGE (V)  
LT1169 • F01  
Figure 1. Comparison of LT1169, OP215, and AD822  
Input Bias Current vs Common Mode Range  
Amplifying Signals from High Impedance Transducers  
The low voltage and current noise offered by the LT1169  
makes it useful in a wide range of applications, especially  
where high impedance, capacitive transducers are used  
such as hydrophones, precision accelerometers, and  
photodiodes. The total output noise in such a system is  
thegaintimestheRMSsumoftheopamp’sinputreferred  
voltagenoise, thethermalnoiseofthetransducer, andthe  
op amp’s input bias current noise times the transducer  
impedance. Figure 2 shows total input voltage noise  
versus source resistance. In a low source resistance  
(<5k) application the op amp voltage noise will dominate  
Optimization Techniques for Charge Amplifiers  
The high input impedance JFET front end makes the  
LT1169 suitable in applications where very high charge  
sensitivity is required. Figure 3 illustrates the LT1169 in its  
inverting and noninverting modes of operation. A charge  
amplifier is shown in the inverting mode example; the gain  
depends on the principal of charge conservation at the  
input of the LT1169. The charge across the transducer  
capacitance CS is transferred to the feedback capacitor CF  
resultinginachangeinvoltagedV, whichisequaltodQ/CF.  
The gain therefore is 1 + CF/CS. For unity-gain, the CF  
should equal the transducer capacitance plus the input  
capacitance of the LT1169 and RF should equal RS.  
10k  
C
LT1124*  
S
+
R
LT1169*  
S
1k  
100  
10  
Inthenoninvertingmodeexample,thetransducercurrent  
is converted to a change in voltage by the transducer  
capacitance, CS. This voltage is then buffered by the  
LT1169 with a gain of 1 + R1/R2. A DC path is provided by  
RS, which is either the transducer impedance or an  
external resistor. Since RS is usually several orders of  
magnitude greater than the parallel combination of R1  
andR2,RB isaddedtobalancetheDCoffsetcausedbythe  
noninverting input bias current and RS. The input bias  
currents, although small at room temperature, can create  
significant errors over increasing temperature, especially  
with transducer resistances of up to 1000Mor more.  
The optimum value for RB is determined by equating the  
thermal noise (4kTRS) to the current noise (2qIB) times  
V
O
R
C
S
S
LT1124  
LT1169  
LT1169  
LT1124  
RESISTOR NOISE ONLY  
1
100 1k 10k 100k 1M 10M 100M 1G  
SOURCE RESISTANCE ()  
LT1169 • F02  
SOURCE RESISTANCE = 2R = R  
S
* PLUS RESISTOR  
PLUS RESISTOR  
2
1000pF CAPACITOR  
2
V = A V  
+ 4kTR + 2qI R  
B
n
V
n (OP AMP)  
Figure 2. Comparison of LT1169 and LT1124 Total Output  
1kHz Voltage Noise vs Source Resistance  
2
RS . Solving for RS results in RB = RS = 2VT/IB. A parallel  
8
LT1169  
W
U
O U  
S
I FOR ATIO  
PPLICATI  
A
R
R2  
F
C
B
C
F
R
B
+
+
R
C
S
OUTPUT  
R1  
OUTPUT  
S
C
= C  
C
S
R
S
B
B
F
F
TRANSDUCER  
R
= R  
R
C
S
C
R
R
C
S
S
B
B
S
dQ  
dt  
dV  
dt  
= R  
S
Q = C  
V;  
= I = C  
R
B
C
B
> R1 OR R2  
TRANSDUCER  
LT1169 • F03  
Figure 3. Inverting and Noninverting Gain Configurations  
LT1169 Output  
Input: ±5.2 Sine Wave  
OPA2111 Output  
LT1169 • F04a  
LT1169 • F04b  
LT1169 • F04c  
Figure 4. Voltage Follower with Input Exceeding the Common Mode Range (VS = ±5V)  
capacitor CB, is used to cancel the phase shift caused by  
the op amp input capacitance and RB.  
amps. Two or three op amp instrumentation amplifiers,  
tracking voltage references and low drift active filters  
are some of the circuits requiring matching between two  
op amps.  
Reduced Power Supply Operation  
To take full advantage of a wide input common-mode  
range, the LT1169 was designed to eliminate phase rever-  
sal. Referring to the photographs in Figure 4, the LT1169  
is shown operating in the follower mode (AV = 1) at ±5V  
supplies with the input swinging ±5.2V. The output of the  
LT1169 clips cleanly and recovers with no phase reversal,  
unlike the competition as shown by the last photograph.  
This has the benefit of preventing lockup in servo systems  
and minimizing distortion components. The effect of input  
and output overdrive on one amplifier has no effect on the  
other, as each amplifier is biased independently.  
The well-known triple op amp configuration in Figure 5  
illustrates these concepts. Output offset is a function of the  
differencebetweenthetwohalvesoftheLT1169.Thiserror  
cancellation principle holds for a considerable  
number of input referred parameters in addition to  
offset voltage and bias current. Input bias current will  
+
be the average of the two noninverting input currents (IB +).  
The difference between these two currents (IB )  
is the offset current of the instrumentation amplifier. Com-  
mon-mode and power supply rejections will be  
dependent only on the match between the two amplifiers  
(assuming perfect resistor matching).  
Advantages of Matched Dual Op Amps  
The concepts of common mode and power supply  
rejection ratio match (CMRR and PSRR) are best dem-  
onstrated with a numerical example:  
In many applications the performance of a system  
depends on the matching between two operational ampli-  
fiersratherthantheindividualcharacteristicsofthetwoop  
9
LT1169  
W
U
O U  
S
I FOR ATIO  
PPLICATI  
A
15V  
Input offset current = 3pA  
Input resistance = 1013Ω  
Input noise = 3.4µVP-P  
3
8
R6  
R4  
1k  
IN–  
+
1/2  
10k  
1
LT1169  
IC1  
2
C1  
30pF  
R1  
1k  
4
High Speed Operation  
–15V  
R2  
The low noise performance of the LT1169 was achieved by  
enlarging the input JFET differential pair to maximize the  
firststagegain.EnlargingtheJFETgeometryalsoincreases  
the parasitic gate capacitance, which if left unchecked, can  
result in increased overshoot and ringing. When the feed-  
back around the op amp is resistive (RF), a pole will be  
created with RF, the source resistance and capacitance  
(RS,CS), and the amplifier input capacitance (CIN = 1.5pF).  
In closed-loop gain configurations with RS and RF in the  
Mrange(Figure6),thispolecancreateexcessphaseshift  
and even oscillation. A small capacitor (CF) in parallel with  
RF eliminates this problem. With RS(CS + CIN) = RFCF, the  
effect of the feedback pole is completely removed.  
2
200Ω  
1/2  
1
OUTPUT  
LT1169  
IC2  
R3  
1k  
6
3 +  
R5  
1k  
C
L
1/2  
LT1169  
7
5 + IC1  
R7  
+
IN  
10k  
GAIN = 100  
BANDWIDTH = 330kHz  
INPUT REFERRED NOISE = 8.7nV/Hz AT 1kHz  
WIDEBAND NOISE DC TO 330kHz = 5.3µV  
RMS  
C
L
0.01µF  
LT1169 • F05  
Figure 5. Three Op Amp Instrumentation Amplifier  
Assume CMRRA = 50µV/V or 86dB,  
and CMRRB = 39µV/V or 88dB,  
then CMRR = 11µV/V or 99dB;  
if CMRRB = 39µV/V which is still 88dB,  
then CMRR = 89µV/V or 81dB  
C
F
R
F
+
By specifying and guaranteeing all of these matching  
parameters, the LT1169 can significantly improve the  
performance of matching-dependent circuits.  
C
OUTPUT  
IN  
R
C
S
S
LT1169 • F06  
Typical performance of the instrumentation amplifier:  
Figure 6  
Input offset voltage = 0.8mV  
Input bias current = 4pA  
U
TYPICAL APPLICATIONS N  
Unity-Gain Buffer with Extended Load Capacitance  
Drive Capability  
Light Balance Detection Circuit  
R2  
1k  
R1  
1M  
C1  
I
I
1
2
C1  
3pF TO 5pF  
PD  
PD  
1
R1  
33Ω  
V
1/2 LT1169  
OUT  
+
V
OUT  
1/2 LT1169  
C
V
IN  
L
+
2
LT1169 • TA03  
C1 = C 0.1µF  
L
LT1169 • TA04  
OUTPUT SHORT CIRCUIT CURRENT ( 30mA) WILL LIMIT THE RATE  
V
= 1M × (I – I )  
1 2  
2
OUT  
1,  
AT WHICH THE VOLTAGE CAN CHANGE ACROSS LARGE CAPACITORS  
dV  
PD PD = HAMAMATSU S1336-5BK  
WHEN EQUAL LIGHT ENTERS PHOTODIODES, V  
< 3mV.  
OUT  
(I = C  
)
dt  
10  
LT1169  
U
TYPICAL APPLICATIONS N  
Low Noise Hydrophone Amplifier with DC Servo  
Accelerometer Amplifier with DC Servo  
C1  
1250pF  
5V TO 15V  
8
R3  
3.9k  
R1*  
R1  
100M  
R2  
18k  
100M  
2
3
1
C2  
2µF  
1/2  
R3  
2k  
OUTPUT  
LT1169  
+
C2  
0.47µF  
C1*  
R2  
4
R4  
200Ω  
20M  
–5V TO –15V  
6
5
R4  
7
1M  
R8  
+
6
5
R5  
20M  
C
T
1/2 LT1169  
R6  
100k  
100M  
+
HYDRO-  
PHONE  
7
1/2  
LT1169  
R5  
1M  
5V TO 15V  
8
ACCELEROMETER  
B & K MODEL 4381  
OR EQUIVALENT  
(800) 442-1030  
C3  
2µF  
R7  
1M  
2
3
1
1/2 LT1169  
OUTPUT  
R4C2 = R5C3 > R1 (1 + R2/R3) C1  
OUTPUT = 0.8mV/pC* = 8.0mV/g**  
DC OUTPUT 1.9mV  
+
DC OUTPUT 2.5mV FOR T < 70°C  
A
4
OUTPUT VOLTAGE NOISE = 128nV/Hz AT 1kHz (GAIN = 20)  
C1 C 100pF TO 5000pF; R4C2 > R8C ; *OPTIONAL  
LT1169 • TA05  
T
T
–5V TO –15V OUTPUT NOISE = 8nV/Hz AT 1kHz  
*PICOCOULOMBS  
**g = EARTH’S GRAVITATIONAL CONSTANT  
LT1169 • TA07  
U
PACKAGE DESCRIPTIO  
Dimensions in inches (millimeters) unless otherwise noted.  
N8 Package  
8-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
0.400*  
(10.160)  
MAX  
0.130 ± 0.005  
0.300 – 0.325  
0.045 – 0.065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
8
1
7
6
5
4
0.065  
(1.651)  
TYP  
0.255 ± 0.015*  
(6.477 ± 0.381)  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
0.020  
(0.508)  
MIN  
(3.175)  
MIN  
+0.035  
–0.015  
2
3
0.325  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
+0.889  
8.255  
(
)
(0.457 ± 0.076)  
N8 1197  
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
0.010 – 0.020  
(0.254 – 0.508)  
7
5
8
6
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
SO8 0996  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1
2
3
4
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However,noresponsibilityisassumedforitsuse.LinearTechnologyCorporationmakesnorepresenta-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
11  
LT1169  
TYPICAL APPLICATIONS N  
U
10Hz Fourth Order Chebyshev Lowpass Filter (0.01dB Ripple)  
R2  
237k  
R5  
15V  
8
C1  
R1  
R3  
249k  
154k  
33nF  
237k  
2
3
R4  
154k  
R6  
249k  
C3  
V
IN  
10nF  
1
6
5
1/2 LT1169  
C2  
100nF  
7
+
C4  
330nF  
V
1/2 LT1169  
OUT  
4
+
–15V  
LT1169 • TA08  
TYPICAL OFFSET 0.8mV  
1% TOLERANCES  
FOR V = 10V , V  
= –121dB AT f > 330Hz  
= – 6dB AT f = 16.3Hz  
IN  
P-P OUT  
LOWER RESISTOR VALUES WILL RESULT IN LOWER THERMAL NOISE AND LARGER CAPACITORS  
Paralleling Amplifiers to Reduce Voltage Noise  
3
+
1.6k  
1.6k  
1.6k  
A1  
1
1
7
1/2 LT1169  
2
91Ω  
91Ω  
3k  
10k  
3
2
15V  
8
+
A2  
6
5
1/2 LT1169  
7
OUTPUT  
1/2 LT1169  
+
3k  
4
15V  
8
–15V  
5
6
+
An  
1/2 LT1169  
4
1. ASSUME VOLTAGE NOISE OF LT1169 AND 51 SOURCE RESISTOR = 6.1nV/Hz  
2. GAIN WITH n LT1169s IN PARALLEL = n× 200  
3. OUTPUT NOISE =n × 200 × 6.1nV/Hz  
–15V  
91Ω  
3k  
OUTPUT NOISE 6.1  
4. INPUT REFERRED NOISE =  
=
nV/Hz  
× 2n00  
n
5. NOISE CURRENT AT INPUT INCREASES n TIMES  
6. IF n = 5, GAIN = 1000, BANDWIDTH = 110kHz, RMS NOISE, DC TO 1MHz =  
2.1µV  
5  
= 1.0µV  
LT1169 • TA06  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1113  
LT1462  
LT1464  
Lowest Noise Dual JFET Op Amp  
Micro Power Dual JFET Op Amp  
Low Power Dual JFET Op Amp  
4.5nV/Hz Voltage Noise  
3.0pA I , 45µA I  
B SUPPLY  
3.0pA (Max) Input Bias Current  
1169fa LT/TP 0198 REV A 4K • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1994  
Linear Technology Corporation  
1630McCarthyBlvd.,Milpitas, CA95035-7417 (408)432-1900  
12  
FAX: (408) 434-0507 TELEX: 499-3977 www.linear-tech.com  

相关型号:

LT1169ACN8

IC DUAL OP-AMP, 3500 uV OFFSET-MAX, 4 MHz BAND WIDTH, PDIP8, PLASTIC, DIP-8, Operational Amplifier
Linear

LT1169CJ8

IC DUAL OP-AMP, 1800 uV OFFSET-MAX, CDIP8, HERMETIC SEALED, CERDIP-8, Operational Amplifier
Linear

LT1169CN8

Dual Low Noise, Picoampere Bias Current, JFET Input Op Amp
Linear

LT1169CS8

Dual Low Noise, Picoampere Bias Current, JFET Input Op Amp
Linear

LT1169CS8#PBF

LT1169 - Dual Low Noise, Picoampere Bias Current, JFET Input Op Amp; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1169CS8#TR

LT1169 - Dual Low Noise, Picoampere Bias Current, JFET Input Op Amp; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1169CS8#TRPBF

LT1169 - Dual Low Noise, Picoampere Bias Current, JFET Input Op Amp; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT117

Positive Adjustable Regulator
Linear

LT1170

100kHz, 5A, 2.5A and 1.25A High Efficiency Switching Regulators
Linear

LT1170C

100kHz, 5A, 2.5A and 1.25A High Efficiency Switching Regulators
Linear

LT1170CK

100kHz, 5A, 2.5A and 1.25A High Efficiency Switching Regulators
Linear

LT1170CQ

100kHz, 5A, 2.5A and 1.25A High Efficiency Switching Regulators
Linear