LT1171_15 [Linear]

100kHz, 5A, 2.5A and 1.25A High Efficiency Switching Regulators;
LT1171_15
型号: LT1171_15
厂家: Linear    Linear
描述:

100kHz, 5A, 2.5A and 1.25A High Efficiency Switching Regulators

文件: 总24页 (文件大小:236K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1170/LT1171/LT1172  
100kHz, 5A, 2.5A and 1.25A  
High Efficiency Switching Regulators  
FEATURES  
DESCRIPTION  
The LT®1170/LT1171/LT1172 are monolithic high power-  
switching regulators. They can be operated in all standard  
switching configurations including buck, boost, flyback,  
forward,invertingandCuk.Ahighcurrent,highefficiency  
n
Wide Input Voltage Range: 3V to 60V  
n
Low Quiescent Current: 6mA  
Internal 5A Switch  
n
(2.5A for LT1171, 1.25A for LT1172)  
n
switch is included on the die along with all oscillator, con-  
trol and protection circuitry. Integration of all functions  
allowstheLT1170/LT1171/LT1172tobebuiltinastandard  
5-pin TO-3 or TO-220 power package as well as the 8-pin  
packages (LT1172). This makes them extremely easy to  
use and provides “bust proof” operation similar to that  
obtained with 3-pin linear regulators.  
Shutdown Mode Draws Only 50μA Supply Current  
n
Very Few External Parts Required  
Self-Protected Against Overloads  
n
n
Operates in Nearly All Switching Topologies  
n
Flyback-Regulated Mode Has Fully Floating Outputs  
n
Comes in Standard 5-Pin Packages  
n
n
LT1172 Available in 8-Pin MiniDIP and  
Surface Mount Packages  
The LT1170/LT1171/LT1172 operate with supply voltages  
from 3V to 60V, and draw only 6mA quiescent current.  
They can deliver load power up to 100W with no exter-  
nal power devices. By utilizing current-mode switching  
techniques, they provide excellent AC and DC load and  
line regulation.  
Can Be Externally Synchronized  
APPLICATIONS  
n
Logic Supply 5V at 10A  
n
5V Logic to 15V Op Amp Supply  
n
Battery Upconverter  
TheLT1170/LT1171/LT1172havemanyuniquefeaturesnot  
found even on the vastly more difficult to use low power  
controlchipspresentlyavailable.Theyuseadaptiveantisat  
switch drive to allow very wide ranging load currents with  
no loss in efficiency. An externally activated shutdown  
mode reduces total supply current to 50μA typically for  
standby operation.  
n
Power Inverter (+ to –) or (– to +)  
n
Fully Floating Multiple Outputs  
USER NOTE:  
This data sheet is only intended to provide specifications, graphs, and a general functional  
description of the LT1170/LT1171/LT1172. Application circuits are included to show the capability  
of the LT1170/LT1171/LT1172. A complete design manual (AN19) should be obtained to assist in  
developing new designs. This manual contains a comprehensive discussion of both the LT1070  
and the external components used with it, as well as complete formulas for calculating the values  
of these components. The manual can also be used for the LT1170/LT1171/LT1172 by factoring in  
the higher frequency. A CAD design program called SwitcherCAD® is also available.  
L, LT, LTC, LTM, Linear Technology, the Linear logo and SwitcherCAD are registered  
trademarks of Linear Technology Corporation. All other trademarks are the property of their  
respective owners.  
TYPICAL APPLICATION  
Boost Converter (5V to 12V)  
Maximum Output Power*  
100  
* ROUGH GUIDE ONLY. BUCK MODE  
L1**  
5V  
L2  
OUTPUT  
FILTER  
LT1170  
P
= (5A)(V  
)
50μH  
OUT  
OUT  
10μH  
SPECIAL TOPOLOGIES DELIVER  
MORE POWER.  
80  
60  
40  
20  
0
C3  
100μF  
** DIVIDE VERTICAL POWER SCALE  
BY TWO FOR LT1171, BY FOUR  
FOR LT1172.  
BUCK-BOOST  
= 30V  
D1  
V
O
V
IN  
MBR330  
12V  
1A  
BOOST  
V
SW  
LT1170/1/2 TA02  
FLYBACK  
+
R1  
C2  
1000μF  
10.7k  
LT1170  
+
1%  
C3*  
100μF  
FB  
V
C
GND  
BUCK-BOOST  
R2  
1.24k  
1%  
V
= 5V  
R3  
1k  
C1  
1μF  
O
0
10  
20  
30  
40  
50  
INPUT VOLTAGE (V)  
*REQUIRED IF INPUT LEADS r 2"  
** COILTRONICS 50-2-52  
PULSE ENGINEERING 92114  
1170/1/2 TA01  
117012fg  
1
LT1170/LT1171/LT1172  
(Note 1)  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage  
Operating Junction Temperature Range  
LT1170/LT1171/LT1172HV (Note 2).......................60V  
LT1170/LT1171/LT1172 (Note 2)............................40V  
Switch Output Voltage  
LT1170M/LT1171M (OBSOLETE) ....... –55°C to 150°C  
LT1172M............................................ –55°C to 125°C  
LT1170/LT1171/LT1172HVC,  
LT1170/LT1171/LT1172HV.....................................75V  
LT1170/LT1171/LT1172 .........................................65V  
LT1172S8..............................................................60V  
Feedback Pin Voltage (Transient, 1ms) ................... 15V  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec....................300°C  
LT1170/LT1171/LT1172C (Oper.)............. 0°C to 100°C  
LT1170/LT1171/LT1172HVC  
LT1170/LT1171/LT1172C (Sh. Ckt.) ........ 0°C to 125°C  
LT1170/LT1171/LT1172HVI,  
LT1170/LT1171/LT1172I (Oper.)..........–40°C to 100°C  
LT1170/LT1171/LT1172HVI,  
LT1170/LT1171/LT1172I (Sh. Ckt.)...... –40°C to 125°C  
PIN CONFIGURATION  
BOTTOM VIEW  
V
V
TOP VIEW  
SW  
C
TOP VIEW  
1
4
GND  
1
2
3
4
E2  
V
8
7
6
5
2
3
CASE  
IS GND  
GND  
1
2
3
4
E2  
V
8
7
6
5
V
C
SW  
V
C
SW  
FB  
E1  
V
V
FB  
IN  
FB  
E1  
V
K PACKAGE  
4-LEAD TO-3 METAL CAN  
NC*  
IN  
NC*  
IN  
N8 PACKAGE  
8-LEAD PDIP  
S8 PACKAGE  
8-LEAD PLASTIC SO  
LT1170MK: T  
= 150°C, θ = 2°C/W, θ = 35°C/W  
JC JA  
JMAX  
JMAX  
J8 PACKAGE  
LT1170CK: T  
= 100°C, θ = 2°C/W, θ = 35°C/W  
JC JA  
8-LEAD CERDIP  
LT1171MK: T  
= 150°C, θ = 4°C/W, θ = 35°C/W  
JC JA  
JMAX  
JMAX  
JMAX  
T
JMAX  
= 100°C, θ = 100°C/W (N)  
JA  
JMAX  
LT1171CK: T  
LT1172MK: T  
LT1172CK: T  
= 100°C, θ = 4°C/W, θ = 35°C/W  
JC JA  
T
= 125°C, θ = 100°C/W  
T
= 100°C, θ = 120°C/W to 150°C/W  
JMAX  
JA  
JA  
= 150°C, θ = 8°C/W, θ = 35°C/W  
JC  
JA  
depending on board layout (S)  
= 100°C, θ = 8°C/W, θ = 35°C/W  
JMAX  
JC JA  
* Do not connect Pin 4 of the LT1172 DIP or SO to external  
circuitry. This pin may be active in future revisions.  
Based on continuous operation.  
= 125°C for intermittent fault conditions.  
* Do not connect Pin 4 of the LT1172 DIP or SO to external  
circuitry. This pin may be active in future revisions.  
T
JMAX  
OBSOLETE  
TOP VIEW  
FRONT VIEW  
NC  
NC  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
NC  
NC  
E2  
V
FRONT VIEW  
5
4
3
2
1
V
V
5
4
3
2
1
V
V
GND  
FB  
IN  
IN  
SW  
GND  
SW  
GND  
FB  
V
C
SW  
V
FB  
NC  
NC  
NC  
E1  
V
C
V
C
Q PACKAGE  
5-LEAD DD  
IN  
T PACKAGE  
5-LEAD PLASTIC TO-220  
NC  
NC  
T
= 100°C, θ = *°C/W  
JA  
JMAX  
LT1170CT/LT1170HVCT: T  
LT1171CT/LT1171HVCT: T  
LT1172CT/LT1172HVCT: T  
=100°C, θ = 2°C/W, θ = 75°C/W  
JC JA  
JMAX  
JMAX  
JMAX  
* θ will vary from approximately 25°C/W with 2.8 sq.  
in. of 1oz. copper to 45°C/W with 0.20 sq. in. of 1oz.  
copper. Somewhat lower values can be obtained with  
additional copper layers in multilayer boards.  
=100°C, θ = 4°C/W, θ = 75°C/W  
JC  
JC  
JA  
JA  
SW PACKAGE  
16-LEAD PLASTIC SO WIDE  
=100°C, θ = 8°C/W, θ = 75°C/W  
Based on continuous operation.  
= 125°C for intermittent fault conditions.  
T
T
= 100°C, θ = 150°C/W  
JA  
JMAX  
JMAX  
Based on continuous operation.  
T
= 125°C for intermittent fault conditions.  
JMAX  
117012fg  
2
LT1170/LT1171/LT1172  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–55°C to 125°C  
0°C to 100°C  
LT1172MJ8#PBF  
LT1172MJ8#TRPBF  
LT1172CJ8#TRPBF  
LT1170MK#TRPBF  
LT1170CK#TRPBF  
LT1171MK#TRPBF  
LT1171CK#TRPBF  
LT1172MK#TRPBF  
LT1172CK#TRPBF  
LT1172CN8#TRPBF  
LT1172IN8#TRPBF  
LT1172CS8#TRPBF  
LT1172IS8#TRPBF  
LT1170CQ#TRPBF  
LT1170IQ#TRPBF  
LT1170HVCQ#TRPBF  
LT1171CQ#TRPBF  
LT1171IQ#TRPBF  
LT1171HVCQ#TRPBF  
LT1171HVIQ#TRPBF  
LT1172CQ#TRPBF  
LT1172HVCQ#TRPBF  
LT1172HVIQ#TRPBF  
LT1172CSW#TRPBF  
LT1170CQ#TRPBF  
LT1170IT#TRPBF  
8-Lead CERDIP  
LT1172CJ8#PBF (OBSOLETE)  
LT1170MK#PBF (OBSOLETE)  
LT1170CK#PBF (OBSOLETE)  
LT1171MK#PBF (OBSOLETE)  
LT1171CK#PBF (OBSOLETE)  
LT1172MK#PBF (OBSOLETE)  
LT1172CK#PBF (OBSOLETE)  
LT1172CN8#PBF  
8-Lead CERDIP  
4-Lead TO-3 Metal Can  
4-Lead TO-3 Metal Can  
4-Lead TO-3 Metal Can  
4-Lead TO-3 Metal Can  
4-Lead TO-3 Metal Can  
4-Lead TO-3 Metal Can  
8-Lead PDIP or 8-Lead Plastic SO  
8-Lead PDIP or 8-Lead Plastic SO  
8-Lead PDIP or 8-Lead Plastic SO  
8-Lead PDIP or 8-Lead Plastic SO  
5-Lead DD  
–55°C to 125°C  
0°C to 100°C  
–55°C to 125°C  
0°C to 100°C  
–55°C to 125°C  
0°C to 100°C  
0°C to 100°C  
LT1172IN8#PBF  
–40°C to 100°C  
0°C to 100°C  
LT1172CS8#PBF  
1172  
LT1172IS8#PBF  
1172I  
–40°C to 100°C  
0°C to 100°C  
LT1170CQ#PBF  
LT1170IQ#PBF  
5-Lead DD  
–40°C to 100°C  
0°C to 100°C  
LT1170HVCQ#PBF  
LT1171CQ#PBF  
5-Lead DD  
5-Lead DD  
0°C to 100°C  
LT1171IQ#PBF  
5-Lead DD  
–40°C to 100°C  
0°C to 100°C  
LT1171HVCQ#PBF  
LT1171HVIQ#PBF  
5-Lead DD  
5-Lead DD  
–40°C to 100°C  
0°C to 100°C  
LT1172CQ#PBF  
5-Lead DD  
LT1172HVCQ#PBF  
LT1172HVIQ#PBF  
5-Lead DD  
0°C to 100°C  
5-Lead DD  
–40°C to 100°C  
0°C to 100°C  
LT1172CSW#PBF  
16-Lead Plastic SO Wide  
5-Lead Plastic TO-220  
5-Lead Plastic TO-220  
5-Lead Plastic TO-220  
5-Lead Plastic TO-220  
5-Lead Plastic TO-220  
5-Lead Plastic TO-220  
5-Lead Plastic TO-220  
5-Lead Plastic TO-220  
5-Lead Plastic TO-220  
5-Lead Plastic TO-220  
LT1170CT#PBF  
0°C to 100°C  
LT1170IT#PBF  
–40°C to 100°C  
0°C to 100°C  
LT1170HVCT#PBF  
LT1170HVIT#PBF  
LT1170HVCT#TRPBF  
LT1170HVIT#TRPBF  
LT1171CT#TRPBF  
LT1171IT#TRPBF  
–40°C to 100°C  
0°C to 100°C  
LT1171CT#PBF  
LT1171IT#PBF  
–40°C to 100°C  
0°C to 100°C  
LT1171HVCT#PBF  
LT1171HVIT#PBF  
LT1171HVCT#TRPBF  
LT1171HVIT#TRPBF  
LT1172CT#TRPBF  
LT1172HVCT#TRPBF  
–40°C to 100°C  
0°C to 100°C  
LT1172CT#PBF  
LT1172HVCT#PBF  
0°C to 100°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
117012fg  
3
LT1170/LT1171/LT1172  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 15V, VC = 0.5V, VFB = VREF, output pin open, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Reference Voltage  
Measured at Feedback Pin  
C
1.224 1.244  
1.214 1.244  
1.264  
1.274  
V
V
REF  
V = 0.8V  
l
l
l
l
I
Feedback Input Current  
V
FB  
= V  
REF  
350  
750  
1100  
nA  
nA  
B
g
Error Amplifier Transconductance  
Error Amplifier Source or Sink Current  
Error Amplifier Clamp Voltage  
Reference Voltage Line Regulation  
ΔI = 25μA  
C
3000  
2400  
4400  
200  
6000  
7000  
μmho  
μmho  
m
V = 1.5V  
C
150  
120  
350  
400  
μA  
μA  
Hi Clamp, V = 1V  
1.80  
0.25  
2.30  
0.52  
V
V
FB  
Lo Clamp, V = 1.5V  
0.38  
FB  
3V ≤ V ≤ V  
C
l
l
l
l
0.03  
%/V  
IN  
MAX  
V = 0.8V  
A
V
Error Amplifier Voltage Gain  
Minimum Input Voltage (Note 5)  
Supply Current  
0.9V ≤ V ≤ 1.4V  
500  
800  
2.6  
6
V/V  
V
C
3.0  
9
I
Q
3V ≤ V ≤ V  
, V = 0.6V  
mA  
IN  
MAX  
C
Control Pin Threshold  
Duty Cycle = 0  
0.8  
0.6  
0.9  
1.08  
1.25  
V
V
Normal/Flyback Threshold on Feedback Pin  
Flyback Reference Voltage (Note 5)  
0.4  
0.45  
16.3  
0.54  
V
V
I
FB  
= 50μA  
15.0  
14.0  
17.6  
18.0  
V
V
FB  
Change in Flyback Reference Voltage  
0.05 ≤ I ≤ 1mA  
4.5  
6.8  
9
V
FB  
Flyback Reference Voltage Line Regulation  
(Note 5)  
I
= 50μA  
0.01  
0.03  
%/V  
FB  
7V ≤ V ≤ V  
IN  
MAX  
Flyback Amplifier Transconductance (g )  
ΔI = 10μA  
C
150  
300  
650  
μmho  
m
l
l
Flyback Amplifier Source and Sink Current V = 0.6V  
Source  
Sink  
15  
25  
32  
40  
70  
70  
mA  
mA  
C
I
= 50μA  
FB  
l
l
l
BV  
Output Switch Breakdown Voltage  
3V ≤ V ≤ V  
SW  
,
LT1170/LT1171/LT1172  
LT1170HV/LT1171HV/LT1172HV  
LT1172S8  
65  
75  
60  
90  
90  
80  
V
V
V
IN  
MAX  
I
= 1.5mA  
l
l
l
V
SAT  
Output Switch “On” Resistance (Note 3)  
LT1170  
LT1171  
LT1172  
0.15  
0.30  
0.60  
0.24  
0.50  
1.00  
Ω
Ω
Ω
Control Voltage to Switch Current  
Transconductance  
LT1170  
LT1171  
LT1172  
8
4
2
A/V  
A/V  
A/V  
l
l
l
I
Switch Current Limit (LT1170)  
(LT1171)  
Duty Cycle = 50%  
T ≥ 25°C  
5
5
4
10  
11  
10  
A
A
A
LIM  
J
Duty Cycle = 50%  
T < 25°C  
J
Duty Cycle = 80% (Note 4)  
l
l
l
Duty Cycle = 50%  
T ≥ 25°C  
2.5  
2.5  
2.0  
5.0  
5.5  
5.0  
A
A
A
J
Duty Cycle = 50%  
T < 25°C  
J
Duty Cycle = 80% (Note 4)  
l
l
l
(LT1172)  
Duty Cycle = 50%  
T ≥ 25°C  
1.25  
1.25  
1.00  
3.0  
3.5  
2.5  
A
A
A
J
Duty Cycle = 50%  
T < 25°C  
J
Duty Cycle = 80% (Note 4)  
ΔI  
Supply Current Increase During Switch  
On-Time  
25  
35  
mA/A  
IN  
ΔI  
f
SW  
Switching Frequency  
88  
85  
100  
112  
115  
kHz  
kHz  
l
117012fg  
4
LT1170/LT1171/LT1172  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 15V, VC = 0.5V, VFB = VREF, output pin open, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
92  
MAX  
97  
UNITS  
%
l
DC  
Maximum Switch Duty Cycle  
85  
MAX  
Shutdown Mode  
Supply Current  
3V ≤ V ≤ V  
C
100  
250  
μA  
IN  
MAX  
V = 0.05V  
Shutdown Mode  
Threshold Voltage  
3V ≤ V ≤ V  
100  
50  
150  
1.5  
250  
300  
mV  
mV  
IN  
MAX  
l
Flyback Sense Delay Time (Note 5)  
μs  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Transformer designs will tolerate much higher input voltages because  
leakage inductance limits rate of rise of current in the switch. These  
designs must be evaluated individually to assure that current limit is well  
controlled up to maximum input voltage.  
Note 2: Minimum effective switch “on” time for the LT1170/LT1171/  
LT1172 (in current limit only) is ≈ 0.6μs. This limits the maximum safe  
input voltage during an output shorted condition. Buck mode and inverting  
mode input voltage during an output shorted condition is limited to:  
Boost mode designs are never protected against output shorts because  
the external catch diode and inductor connect input to output.  
Note 3: Measured with V in hi clamp, V = 0.8V. I = 4A for LT1170,  
C
FB  
SW  
2A for LT1171, and 1A for LT1172.  
Note 4: For duty cycles (DC) between 50% and 80%, minimum guaranteed  
R I + Vf  
(
)
(
)
L
V
(max, output shorted) =  
switch current is given by I = 3.33 (2 – DC) for the LT1170, I = 1.67  
15V +  
IN  
LIM  
LIM  
t f  
( (  
) )  
buck and inverting mode  
(2 – DC) for the LT1171, and I = 0.833 (2 – DC) for the LT1172.  
LIM  
R = Inductor DC resistance  
I = 10A for LT1170, 5A for LT1171, and 2.5A for LT1172  
L
Note 5: Minimum input voltage for isolated flyback mode is 7V. V  
for HV grade in fully isolated mode to avoid switch breakdown.  
= 55V  
MAX  
Vf = Output catch diode forward voltage at I  
t = 0.6μs, f = 100kHz switching frequency  
L
Maximum input voltage can be increased by increasing R or Vf.  
External current limiting such as that shown in AN19, Figure 39, will  
provide protection up to the full supply voltage rating. C1 in Figure 39  
should be reduced to 200pF.  
117012fg  
5
LT1170/LT1171/LT1172  
TYPICAL PERFORMANCE CHARACTERISTICS  
Switch Current Limit vs Duty Cycle*  
Minimum Input Voltage  
Switch Saturation Voltage  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
16  
12  
8
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
SWITCH CURRENT = I  
MAX  
150°C  
100°C  
25°C  
–55°C  
25°C  
–55°C  
125°C  
SWITCH CURRENT = 0A  
4
* DIVIDE VERTICAL SCALE BY TWO FOR  
LT1171, BY FOUR FOR LT1172.  
* DIVIDE CURRENT BY TWO FOR  
LT1171, BY FOUR FOR LT1172.  
0
70  
0
10 20 30 40 50 60  
80 90 100  
100  
125 150  
–75 –50 –25  
0
25 50 75  
2
4
5
6
7
0
1
3
8
TEMPERATURE (°C)  
DUTY CYCLE (%)  
SWITCH CURRENT (A)*  
1170/1/2 G01  
1170/1/2 G02  
1170/1/2 G03  
Feedback Bias Current  
vs Temperature  
Reference Voltage vs Temperature  
Line Regulation  
5
4
1.250  
1.248  
1.246  
1.244  
1.242  
1.240  
1.238  
1.236  
1.234  
800  
700  
600  
500  
400  
300  
200  
100  
0
3
T
= 150°C  
J
2
1
0
T
= –55°C  
J
T
= 25°C  
J
–1  
–2  
–3  
–4  
–5  
–75 –50 –25  
0
25 50 75 100 125 150  
0
10  
30  
40  
50  
60  
–50  
0
100  
125 150  
20  
–75  
–25  
25 50 75  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1170/1/2 G04  
1170/1/2 G05  
1170/1/2 G06  
Supply Current vs Supply Voltage  
(Shutdown Mode)  
Driver Current* vs Switch Current  
Supply Current vs Input Voltage*  
15  
14  
13  
160  
140  
120  
100  
80  
160  
140  
120  
100  
80  
T
= 25°C  
T
= 25°C  
J
J
NOTE THAT THIS CURRENT DOES NOT  
INCLUDE DRIVER CURRENT, WHICH IS  
12 A FUNCTION OF LOAD CURRENT AND  
DUTY CYCLE.  
11  
T = –55°C  
J
V
C
= 50mV  
90% DUTY CYCLE  
10  
9
50% DUTY CYCLE  
60  
60  
T
= ≥ 25°C  
J
8
40  
40  
10% DUTY CYCLE  
0% DUTY CYCLE  
7
20  
20  
V
= 0V  
C
6
0
0
5
0
1
2
3
4
0
10  
30  
40  
50  
1170/1/2 G09  
60  
30  
SUPPLY VOLTAGE (V)  
5
20  
0
10  
20  
40  
50  
60  
SWITCH CURRENT (A)  
INPUT VOLTAGE (V)  
1170/1/2 G08  
1170/1/2 G07  
* UNDER VERY LOW OUTPUT CURRENT CONDITIONS,  
DUTY CYCLE FOR MOST CIRCUITS WILL APPROACH  
10% OR LESS.  
* AVERAGE LT1170 POWER SUPPLY CURRENT IS  
FOUND BY MULTIPLYING DRIVER CURRENT BY  
DUTY CYCLE, THEN ADDING QUIESCENT CURRENT.  
117012fg  
6
LT1170/LT1171/LT1172  
TYPICAL PERFORMANCE CHARACTERISTICS  
Shutdown Mode Supply Current  
Error Amplifier Transconductance  
VC Pin Characteristics  
300  
200  
200  
180  
160  
140  
120  
100  
80  
5000  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
$I (V PIN)  
$V (FB PIN)  
C
V
FB  
= 1.5V (CURRENT INTO V PIN)  
C
g
=
m
100  
T
= 150°C  
J
0
T
= 25°C  
J
–100  
–200  
–300  
–400  
60  
–55°C ≤ T ≤ 125°C  
J
V
= 0.8V (CURRENT OUT OF V PIN)  
C
FB  
40  
20  
0
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
0
10 20 30 40 50 60  
80  
90 100  
70  
–75 –50 –25  
0
25 50 75 100 125 150  
V
PIN VOLTAGE (V)  
V
PIN VOLTAGE (mV)  
TEMPERATURE (°C)  
C
C
1170/1/2 G10  
1170/1/2 G12  
1170/1/2 G11  
Idle Supply Current vs Temperature  
Feedback Pin Clamp Voltage  
Switch “Off” Characteristics  
11  
10  
9
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
V
= 0.6V  
C
–55°C  
V
8
SUPPLY  
= 40V  
V
7
V
= 60V  
= 3V  
SUPPLY  
= 15V  
25°C  
SUPPLY  
V
6
SUPPLY  
= 3V  
V
SUPPLY  
150°C  
V
SUPPLY  
5
= 55V  
4
3
2
1
0
–75 –50 –25  
0
25 50 75 100 125 150  
0
0.1 0.2 0.3 0.4 0.5 0.6  
0.8  
0
10 20 30 40 50 60  
80  
90 100  
0.7  
0.9 1.0  
70  
TEMPERATURE (°C)  
FEEDBACK CURRENT (mA)  
SWITCH VOLTAGE (V)  
1170/1/2 G13  
1170/1/2 G14  
1170/1/2 G15  
Isolated Mode Flyback  
Reference Voltage  
Shutdown Thresholds  
Flyback Blanking Time  
2.2  
23  
22  
21  
20  
19  
18  
17  
16  
15  
400  
350  
300  
250  
200  
150  
100  
50  
–400  
–350  
–300  
–250  
–200  
–150  
–100  
–50  
CURRENT (OUT OF V PIN)  
C
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
R
= 500ꢀ  
FB  
R
= 1k  
FB  
VOLTAGE  
R
= 10k  
FB  
V
VOLTAGE IS REDUCED UNTIL  
C
REGULATOR CURRENT DROPS  
BELOW 300μA  
0
0
–75 –50 –25  
0
25 50 75 100 125 150  
–75 –50 –25  
0
25 50 75 100 125 150  
–75 –50 –25  
0
25 50 75 100 125 150  
JUNCTION TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1170/1/2 G18  
1170/1/2 G16  
1170/1/2 G17  
117012fg  
7
LT1170/LT1171/LT1172  
TYPICAL PERFORMANCE CHARACTERISTICS  
Transconductance of Error  
Amplifier  
Normal/Flyback Mode Threshold on  
Feedback Pin  
–24  
500  
490  
480  
470  
460  
450  
440  
430  
420  
410  
400  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
–30  
0
–22  
–20  
–18  
–16  
–14  
–12  
–10  
–8  
Q
30  
FEEDBACK PIN VOLTAGE  
(AT THRESHOLD)  
60  
g
m
90  
120  
150  
180  
210  
FEEDBACK PIN CURRENT  
(AT THRESHOLD)  
–6  
–1000  
–4  
150  
1k  
10k  
100k  
1M  
10M  
–50  
50  
100 125  
–25  
0
25  
75  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
1170/1/2 G19  
1170/1/2 G20  
BLOCK DIAGRAM  
SWITCH  
OUT  
V
IN  
16V  
2.3V  
REG  
FLYBACK  
ERROR  
AMP  
LT1172  
5A, 75V  
SWITCH  
100kHz  
OSC  
LOGIC  
COMP  
DRIVER  
ANTI-  
SAT  
MODE  
SELECT  
FB  
ERROR  
AMP  
V
C
+
+
0.02ꢀ  
(0.04ꢀ LT1171)  
(0.16ꢀ LT1172)  
SHUTDOWN  
CIRCUIT  
CURRENT  
0.16ꢀ  
AMP  
GAIN  
6
1.24V  
REF  
0.15V  
(LT1170 AND LT1171 ONLY)  
E1  
E2  
ALWAYS CONNECT E1 TO THE GROUND PIN ON MINIDIP, 8- AND 16-PIN SURFACE MOUNT PACKAGES.  
E1 AND E2 INTERNALLY TIED TO GROUND ON TO-3 AND TO-220 PACKAGES.  
1170/1/2 BD  
117012fg  
8
LT1170/LT1171/LT1172  
OPERATION  
The LT1170/LT1171/LT1172 are current mode switchers.  
This means that switch duty cycle is directly controlled by  
switch current rather than by output voltage. Referring to  
the block diagram, the switch is turned “on” at the start of  
eachoscillatorcycle. Itisturnedoffwhenswitchcurrent  
reaches a predetermined level. Control of output voltage  
is obtained by using the output of a voltage sensing er-  
ror amplifier to set current trip level. This technique has  
several advantages. First, it has immediate response to  
input voltage variations, unlike ordinary switchers which  
have notoriously poor line transient response. Second,  
it reduces the 90° phase shift at midfrequencies in the  
energy storage inductor. This greatly simplifies closed  
loop frequency compensation under widely varying input  
voltage or output load conditions. Finally, it allows simple  
pulse-by-pulsecurrentlimitingtoprovidemaximumswitch  
protection under output overload or short conditions. A  
low dropout internal regulator provides a 2.3V supply for  
all internal circuitry on the LT1170/LT1171/LT1172. This  
low dropout design allows input voltage to vary from 3V  
to 60V with virtually no change in device performance. A  
100kHz oscillator is the basic clock for all internal timing.  
It turns “on” the output switch via the logic and driver  
circuitry. Special adaptive anti-sat circuitry detects onset  
ofsaturationinthepowerswitchandadjustsdrivercurrent  
instantaneously to limit switch saturation. This minimizes  
driver dissipation and provides very rapid turnoff of the  
switch.  
AspecialdelaynetworkinsidetheLT1170/LT1171/LT1172  
ignores the leakage inductance spike at the leading edge  
of the flyback pulse to improve output regulation.  
The error signal developed at the comparator input is  
broughtoutexternally.Thispin(V )hasfourdifferentfunc-  
C
tions. It is used for frequency compensation, current limit  
adjustment, soft-starting, and total regulator shutdown.  
During normal regulator operation this pin sits at a voltage  
between 0.9V (low output current) and 2.0V (high output  
current).Theerroramplifiersarecurrentoutput(g )types,  
m
so this voltage can be externally clamped for adjusting  
current limit. Likewise, a capacitor coupled external clamp  
will provide soft-start. Switch duty cycle goes to zero if  
the V pin is pulled to ground through a diode, placing the  
C
LT1170/LT1171/LT1172 in an idle mode. Pulling the V pin  
C
below 0.15V causes total regulator shutdown, with only  
50μA supply current for shutdown circuitry biasing. See  
Application Note 19 for full application details.  
Extra Pins on the MiniDIP and Surface Mount  
Packages  
The8-and16-pinversionsoftheLT1172havetheemitters  
of the power transistor brought out separately from the  
groundpin.Thiseliminateserrorsduetogroundpinvoltage  
drops and allows the user to reduce switch current limit  
2:1 by leaving the second emitter (E2) disconnected. The  
firstemitter(E1)shouldalwaysbeconnectedtotheground  
pin. Note that switch “on” resistance doubles when E2 is  
left open, so efficiency will suffer somewhat when switch  
currents exceed 300mA. Also, note that chip dissipation  
will actually increase with E2 open during normal load  
operation, even though dissipation in current limit mode  
will decrease. See “Thermal Considerations” next.  
A 1.2V bandgap reference biases the positive input of the  
erroramplifier.Thenegativeinputisbroughtoutforoutput  
voltage sensing. This feedback pin has a second function;  
when pulled low with an external resistor, it programs the  
LT1170/LT1171/LT1172todisconnectthemainerrorampli-  
fieroutputandconnectstheoutputoftheflybackamplifier  
to the comparator input. The LT1170/LT1171/LT1172 will  
then regulate the value of the flyback pulse with respect  
to the supply voltage.* This flyback pulse is directly pro-  
portional to output voltage in the traditional transformer  
coupled flyback topology regulator. By regulating the  
amplitude of the flyback pulse, the output voltage can be  
regulated with no direct connection between input and  
output. The output is fully floating up to the breakdown  
voltage of the transformer windings. Multiple floating  
outputs are easily obtained with additional windings.  
Thermal Considerations When Using the MiniDIP and  
SW Packages  
The low supply current and high switch efficiency of the  
LT1172 allow it to be used without a heat sink in most  
applications when the TO-220 or TO-3 package is se-  
lected. These packages are rated at 50°C/W and 35°C/W  
respectively. TheminiDIPs, however, areratedat100°C/W  
in ceramic (J) and 130°C/W in plastic (N).  
*See note under Block Diagram.  
117012fg  
9
LT1170/LT1171/LT1172  
OPERATION  
largerTO-220(T)orTO-3(K)packagewhich,evenwithout  
aheatsink, maylimitdietemperaturestosafelevelsunder  
overload conditions. In critical situations, heat sinking of  
thesepackagesisrequired;especiallyifoverloadconditions  
must be tolerated for extended periods of time.  
CareshouldbetakenforminiDIPapplicationstoensurethat  
the worst case input voltage and load current conditions  
do not cause excessive die temperatures. The following  
formulascanbeusedasaroughguidetocalculateLT1172  
power dissipation. For more details, the reader is referred  
to Application Note 19 (AN19), “Efficiency Calculations”  
section.  
The third approach for lower current applications is to  
leave the second switch emitter (miniDIP only) open. This  
increasesswitchonresistanceby2:1,butreducesswitch  
current limit by 2:1 also, resulting in a net 2:1 reduction in  
Average supply current (including driver current) is:  
I ≈ 6mA + I (0.004 + DC/40)  
IN  
SW  
2
I R switch dissipation under current limit conditions.  
I
SW  
= switch current  
The fourth approach is to clamp the V pin to a voltage  
C
DC = switch duty cycle  
less than its internal clamp level of 2V. The LT1172 switch  
current limit is zero at approximately 1V on the V pin  
C
Switch power dissipation is given by:  
and 2A at 2V on the V pin. Peak switch current can be  
C
2
P
= (I ) • (R )(DC)  
SW  
SW  
SW  
externally clamped between these two levels with a diode.  
See AN19 for details.  
R
= LT1172 switch “on” resistance (1Ω maximum)  
SW  
Total power dissipation is the sum of supply current times  
input voltage plus switch power:  
LT1170/LT1171/LT1172 Synchronizing  
The LT1170/LT1171/LT1172 can be externally synchro-  
nized in the frequency range of 120kHz to 160kHz. This  
is accomplished as shown in the accompanying figures.  
P
= (I )(V ) + P  
IN IN SW  
D(TOT)  
In a typical example, using a boost converter to generate  
12V at 0.12A from a 5V input, duty cycle is approximately  
60%, and switch current is about 0.65A, yielding:  
Synchronizing occurs when the V pin is pulled to ground  
C
with an external transistor. To avoid disturbing the DC  
characteristics of the internal error amplifier, the width of  
the synchronizing pulse should be under 0.3μs. C2 sets  
the pulse width at 0.2μs. The effect of a synchronizing  
pulse on the LT1170/LT1171/LT1172 amplifier offset can  
be calculated from:  
I = 6mA + 0.65(0.004 + DC/40) = 18mA  
IN  
2
P
P
= (0.65) • (1Ω)(0.6) = 0.25W  
SW  
= (5V)(0.018A) + 0.25 = 0.34W  
D(TOT)  
Temperature rise in a plastic miniDIP would be 130°C/W  
times0.34W, orapproximately44°C. Themaximumambi-  
ent temperature would be limited to 100°C (commercial  
temperature limit) minus 44°C, or 56°C.  
VC  
R3  
KT  
q
t
f
I +  
C
(
(
)
)
S
S
ΔVOS =  
IC  
KT  
In most applications, full load current is used to calculate  
die temperature. However, if overload conditions must  
also be accounted for, four approaches are possible. First,  
if loss of regulated output is acceptable under overload  
conditions, the internal thermal limit of the LT1172 will  
protect the die in most applications by shutting off switch  
current. Thermal limit is not a tested parameter, however,  
and should be considered only for noncritical applications  
withtemporaryoverloads.Asecondapproachistousethe  
= 26mV at 25°C  
= pulse width  
q
t
f
I
C
= pulse frequency  
S
C
= V source current (≈200μA)  
C
V = operating V voltage (1V to 2V)  
C
C
R3 = resistor used to set mid-frequency “zero” in  
frequency compensation network.  
117012fg  
10  
LT1170/LT1171/LT1172  
OPERATION  
With t = 0.2μs, f = 150kHz, V = 1.5V, and R3 = 2k, offset  
transistor must sink higher currents with low values of  
R3, so larger drives may have to be used. The transistor  
S
S
C
voltage shift is ≈ 3.8mV. This is not particularly bother-  
some, but note that high offsets could result if R3 were  
reduced to a much lower value. Also, the synchronizing  
must be capable of pulling the V pin to within 200mV of  
C
ground to ensure synchronizing.  
Synchronizing with Bipolar Transistor  
Synchronizing with MOS Transistor  
V
IN  
V
IN  
LT1170  
LT1170  
V
GND  
V
GND  
C
C
C2  
C2  
D1  
R1  
3k  
100pF  
39pF  
1N4158  
R3  
C1  
R3  
C1  
VN2222*  
2N2369  
D2  
1N4158  
R2  
2.2k  
R2  
2.2k  
FROM 5V  
LOGIC  
FROM 5V  
LOGIC  
* SILICONIX OR EQUIVALENT  
1170/1/2 OP02  
1170/1/2 OP01  
TYPICAL APPLICATIONS  
Flyback Converter  
CLAMP TURN-ON  
SPIKE  
OPTIONAL  
FILTER  
L2  
5μH  
V
SNUB  
C4  
100μF  
V
+ Vf  
OUT  
N
a
PRIMARY FLYBACK VOLTAGE =  
LT1170 SWITCH VOLTAGE  
V
IN  
N* = 1/3  
D1  
b
d
V
5V  
6A  
OUT  
AREA “a” = AREA “b” TO MAINTAIN  
ZERO DC VOLTS ACROSS PRIMARY  
V
IN  
0V  
V
OUT  
+ V  
f
20V TO 30V  
D3  
25V  
1W  
N*  
1
c
SECONDARY VOLTAGE  
N • V  
+
IN  
C1  
2000μF  
AREA “c” = AREA “d” TO MAINTAIN  
ZERO DC VOLTS ACROSS SECONDARY  
0V  
D2  
MUR110  
R1  
3.74k  
$I  
V
I
IN  
PRI  
V
SW  
FB  
PRIMARY CURRENT  
+
C4*  
100μF  
0
0
LT1170  
I
/N  
PRI  
SECONDARY CURRENT  
V
C
GND  
I
PRI  
R3  
1.5k  
R2  
1.24k  
LT1170 SWITCH CURRENT  
0
0
C2  
I
PRI  
0.15μF  
SNUBBER DIODE CURRENT  
*REQUIRED IF INPUT LEADS ≥ 2"  
(I )(L )  
PRI  
L
t =  
V
SNUB  
1170/1/2 TA03  
117012fg  
11  
LT1170/LT1171/LT1172  
TYPICAL APPLICATIONS  
(Note that maximum output currents are divided by 2 for LT1171, by 4 for LT1172.)  
LCD Contrast Supply  
5V*  
L1**  
50μH  
V
*
BAT  
3V TO 20V  
V
IN  
V
E2  
E1  
SW  
+
C1  
D1  
1N914  
1μF  
LT1172  
TANTALUM  
R1  
200k  
R2  
100k  
V
OUT  
FB  
–10V TO –26V  
V
GND  
C
D2  
C2***  
2μF  
R3  
15k  
C3  
0.0047μF  
D3  
+
TANTALUM  
OPTIONAL  
SHUTDOWN  
C4  
0.047μF  
VN2222  
D2, D3 = ER82.004 600mA SCHOTTKY. OTHER FAST SWITCHING TYPES MAY BE USED.  
*
V
AND BATTERY MAY BE TIED TOGETHER. MAXIMUM VALUE FOR V IS EQUAL TO THE |NEGATIVE OUTPUT| + 1V. WITH HIGHER  
BAT  
IN  
BATTERY VOLTAGES, HIGHEST EFFICIENCY IS OBTAINED BY RUNNING THE LT1172 V PIN FROM 5V. SHUTTING OFF THE 5V SUPPLY  
IN  
WILL AUTOMATICALLY TURN OFF THE LT1172. EFFICIENCY IS ABOUT 80% AT I  
= 25mA.  
OUT  
R1, R2, R3 ARE MADE LARGE TO MINIMIZE BATTERY DRAIN IN SHUTDOWN, WHICH IS APPROXIMATELY V  
/(R1 + R2 + R3).  
BAT  
FOR HIGH EFFICIENCY, L1 SHOULD BE MADE ON A FERRITE OR MOLYPERMALLOY CORE. PEAK INDUCTOR CURRENTS ARE ABOUT  
600mA AT P = 0.7ꢀ. INDUCTOR SERIES RESISTANCE SHOULD BE LESS THAN 0.4ꢀ FOR HIGH EFFICIENCY.  
**  
OUT  
***  
OUTPUT RIPPLE IS ABOUT 200mV TO 400mV WITH C2 = 2μF TANTALUM. IF LOWER RIPPLE IS DESIRED, INCREASE C2, OR ADD  
P-P  
P-P  
A 10ꢀ, 1μF TANTALUM OUTPUT FILTER.  
1170/1/2 TA04  
Driving High Voltage FET  
(for Off-Line Applications, See AN25)  
External Current Limit  
V
X
D
Q1  
G
LT1170  
D1  
R2  
V
IN  
V
SW  
2V  
D1  
V
GND  
C
+
R1  
500ꢀ  
10V TO  
20V  
LT1170  
GND  
1170/1/2 TA06  
1170/1/2 TA05  
117012fg  
12  
LT1170/LT1171/LT1172  
TYPICAL APPLICATIONS  
(Note that maximum output currents are divided by 2 for LT1171, by 4 for LT1172.)  
Negative-to-Positive Buck-Boost Converter†  
External Current Limit  
L1**  
50μH  
L2  
V
IN  
OPTIONAL  
OUTPUT  
FILTER  
V
C3  
SW  
FB  
LT1170  
+
D1  
V
12V  
2A  
OUT  
V
IN  
V
V
SW  
FB  
IN  
+
R1  
V
C
GND  
C2  
1000μF  
+
11.3k  
C4*  
LT1170  
100μF  
R1  
1k  
Q1  
R2  
C2  
OPTIONAL  
Q1  
INPUT FILTER  
V
C
GND  
C1  
1000pF  
L3  
R2  
1.24k  
R3  
2.2k  
C1  
0.22μF  
R
S
NOTE THAT THE LT1170  
1170/1/2 TA08  
V
IN  
–20V  
GND PIN IS NO LONGER  
COMMON TO V  
.
IN  
* REQUIRED IF INPUT LEADS ≥ 2"  
** PULSE ENGINEERING 92114, COILTRONICS 50-2-52  
THIS CIRCUIT IS OFTEN USED TO CONVERT –48V TO 5V. TO GUARANTEE  
FULL SHORT-CIRCUIT PROTECTION, THE CURRENT LIMIT CIRCUIT SHOWN  
IN AN19, FIGURE 39, SHOULD BE ADDED WITH C1 REDUCED TO 200pF.  
1170/1/2 TA07  
Negative Buck Converter  
+
C2  
1000μF  
D1  
LOAD  
R1  
4.64k  
L1**  
50μH  
* REQUIRED IF INPUT LEADS ≥ 2"  
** PULSE ENGINEERING 92114  
COILTRONICS 50-2-52  
V
IN  
–5.2V  
4.5A  
V
SW  
R4  
12k  
+
C3*  
100μF  
Q1  
2N3906  
LT1170  
OPTIONAL  
INPUT FILTER  
FB  
V
OPTIONAL  
OUTPUT  
FILTER  
GND  
C
+
C4  
200μF  
L3  
C1  
R3  
R2  
1.24k  
V
IN  
–20V  
1170/1/2 TA09  
117012fg  
13  
LT1170/LT1171/LT1172  
TYPICAL APPLICATIONS  
Positive-to-Negative Buck-Boost Converter  
D3  
R5  
1N4001  
V
470ꢀ, 1W  
IN  
10V TO  
30V  
* REQUIRED IF INPUT LEADS ≥ 2"  
+
** PULSE ENGINEERING 92114, COILTRONICS 50-2-52  
C5  
TO AVOID STARTUP PROBLEMS FOR INPUT VOLTAGES  
V
IN  
100μF*  
V
SW  
BELOW 10V, CONNECT ANODE OF D3 TO V , AND  
IN  
REMOVE R5. C1 MAY BE REDUCED FOR LOWER OUTPUT  
+
CURRENTS. C1 ≈ (500μF)(I ).  
OUT  
C4  
1μF  
LT1170  
FOR 5V OUTPUTS, REDUCE R3 TO 1.5k, INCREASE C2 TO  
0.3μF, AND REDUCE R6 TO 100ꢀ.  
D2  
R1  
R4  
47ꢀ  
1N914  
10.7k  
FB  
V
C
GND  
+
+
R3  
5k  
C2  
R2  
1.24k  
C3  
2μF  
C1  
1000μF  
R6  
470ꢀ  
D1  
V
–12V  
2A  
0.1μF  
OUT  
L1**  
50μH  
1170/1/2 TA10  
High Efficiency Constant Current Charger  
1.244V • R4  
R3 • R5  
R3  
25k  
I
=
= 1A AS SHOWN  
CHRG  
INPUT VOLTAGE  
> V + 2V < 35V  
V
SW  
BAT  
* L2 REDUCES RIPPLE CURRENT INTO  
THE BATTERY BY ABOUT 20:1.  
D1  
+
LT1171  
V
IT MAY BE OMITTED IF DESIRED.  
1N5819  
R2  
1k  
+
V
LT1006  
FB  
IN  
V
R4  
1k  
GND  
C
C2  
2.2μF  
35V  
+
+
C1  
200μF  
35V  
C4  
0.01μF  
V
+
L1  
L2*  
C3  
0.47μF  
TANTALUM  
100μH, 1A  
10μH, 1A  
R5  
0.05ꢀ  
1A  
RUN = 0V  
SHUTDOWN = 5V  
2N3904  
+
C4  
200μF  
25V  
+
R6  
78k  
BATTERY  
2V TO 25V  
D2  
MBR340  
R8  
1k  
R7  
22k  
1170/1/2 TA11  
Backlight CCFL Supply (see AN45 for details)  
INPUT VOLTAGE  
4.5V TO 20V  
L2***  
1k  
33pF  
3kV  
L1**  
300μH  
LAMP  
1N5818  
A
Q1*  
V
IN  
V
SW  
E2  
D1  
1N914  
D2  
1N914  
0.02μF  
+
50k  
INTENSITY  
ADJUST  
10μF  
TANT  
LT1172  
Q2*  
R1  
560ꢀ  
R3  
10k  
B
E1  
FB  
GND  
V
C
Q1,Q2 = BCP56 OR MPS650/561  
COILTRONICS CTX300-4  
SUMIDA 6345-020 OR COILTRONICS 110092-1  
*
C6  
1μF  
1170/1/2 TA12  
**  
***  
A MODIFICATION WILL ALLOW OPERATION DOWN TO 4.5V. CONSULT FACTORY.  
2μF  
117012fg  
14  
LT1170/LT1171/LT1172  
TYPICAL APPLICATIONS  
Positive Buck Converter  
V
IN  
* REQUIRED IF INPUT LEADS ≥ 2"  
** PULSE ENGINEERING 92114  
COILTRONICS 50-2-52  
D3  
L2  
4μH  
V
IN  
V
SW  
+
C3  
OPTIONAL  
OUTPUT  
FILTER  
C5  
200μF  
2.2μF  
LT1170  
D2  
R1  
+
1N914  
3.74k  
C5*  
100μF  
FB  
V
GND  
C
+
C2  
1μF  
R2  
1.24k  
R3  
R4  
10ꢀ  
470ꢀ  
L1**  
50μH  
C1  
1μF  
r
5V, 4.5A  
+
C4  
1000μF  
100mA  
MINIMUM  
D1  
1170/1/2 TA13  
Negative Boost Regulator  
D2  
V
IN  
V
SW  
R1  
27k  
R
+
+
O
C1  
1000μF  
C3  
10μF  
LT1170  
(MINIMUM  
LOAD)  
+
C4*  
470μF  
FB  
V
GND  
C
R2  
1.24k  
R3  
3.3k  
C2  
0.22μF  
L1  
50μH  
D1  
V
V
IN  
OUT  
–28V, 1A  
–15V  
1170/1/2 TA14  
* REQUIRED IF INPUT LEADS ≥ 2"  
Driving High Voltage NPN  
C1  
D2  
R2**  
R1*  
Q1  
D1  
V
IN  
V
SW  
LT1170  
GND  
* SETS I (ON)  
B
** SETS I (OFF)  
B
1170/1/2 TA15  
117012fg  
15  
LT1170/LT1171/LT1172  
TYPICAL APPLICATIONS  
Forward Converter  
L1  
25μH  
D1  
V
OUT  
T1  
5V, 6A  
1
M
N
C2  
R4  
+
C1  
2000μF  
D2  
R1  
3.74k  
D3  
V
IN  
V
SW  
FB  
V
IN  
D4  
LT1170  
20V TO 30V  
R6  
330ꢀ  
V
GND  
C
Q1  
R2  
1.24k  
R3  
C3  
R5  
1ꢀ  
C4  
1170/1/2 TA16  
High Efficiency 5V Buck Converter  
V
IN  
10μH  
3A  
V
V
SW  
IN  
+
C1  
330μF  
35V  
LT1170  
+
OPTIONAL  
OUTPUT  
FILTER  
FB  
100μF  
16V  
V
GND  
D2  
1N4148  
C
C6  
0.02μF  
C3  
4.7μF  
TANT  
+
R1  
680ꢀ  
C5  
0.03μF  
L1  
50μH  
R2*  
0.013ꢀ  
C4  
0.1μF  
V
OUT  
5V  
s
390μF  
16V  
3A**  
+
D1  
MBR330p  
C2  
+
V
V
DIODE  
C
V
V
V
IN  
LIM  
LT1432  
GND  
MODE  
OUT  
MODE LOGIC  
220pF  
* R2 IS MADE FROM PC BOARD  
COPPER TRACES.  
<0.3V = NORMAL MODE  
>2.5V = SHUTDOWN  
OPEN = BURST MODE  
** MAXIMUM CURRENT IS DETERMINED  
BY THE CHOICE OF LT1070 FAMILY.  
SEE APPLICATION SECTION.  
1170/1/2 TA17  
117012fg  
16  
LT1170/LT1171/LT1172  
PACKAGE DESCRIPTION  
J8 Package  
8-Lead CERDIP (Narrow .300 Inch, Hermetic)  
(Reference LTC DWG # 05-08-1110)  
.405  
(10.287)  
MAX  
CORNER LEADS OPTION  
(4 PLCS)  
.005  
(0.127)  
MIN  
6
5
4
8
7
2
.023 – .045  
(0.584 – 1.143)  
HALF LEAD  
OPTION  
.025  
(0.635)  
RAD TYP  
.220 – .310  
(5.588 – 7.874)  
.045 – .068  
(1.143 – 1.650)  
FULL LEAD  
OPTION  
1
3
.200  
.300 BSC  
(5.080)  
MAX  
(7.62 BSC)  
.015 – .060  
(0.381 – 1.524)  
.008 – .018  
(0.203 – 0.457)  
0° – 15°  
.045 – .065  
(1.143 – 1.651)  
.125  
3.175  
MIN  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE  
OR TIN PLATE LEADS  
.014 – .026  
(0.360 – 0.660)  
.100  
(2.54)  
BSC  
J8 0801  
K Package  
4-Lead TO-3 Metal Can  
(Reference LTC DWG # 05-08-1311)  
1.177 – 1.197  
(29.90 – 30.40)  
.655 – .675  
(16.64 – 19.05)  
.760 – .775  
(19.30 – 19.69)  
.320 – .350  
(8.13 – 8.89)  
.470 TP  
P.C.D.  
.060 – .135  
(1.524 – 3.429)  
.151 – .161  
(3.84 – 4.09)  
DIA 2 PLC  
.167 – .177  
(4.24 – 4.49)  
R
.420 – .480  
(10.67 – 12.19)  
.490 – .510  
(12.45 – 12.95)  
R
.038 – .043  
(0.965 – 1.09)  
72o  
18o  
K4(TO-3) 0801  
(OBSOLETE PACKAGE)  
117012fg  
17  
LT1170/LT1171/LT1172  
PACKAGE DESCRIPTION  
N8 Package  
8-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510)  
.400*  
(10.160)  
MAX  
8
7
6
5
4
.255 .015*  
(6.477 0.381)  
1
2
3
.130 .005  
.300 – .325  
.045 – .065  
(3.302 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
.065  
(1.651)  
TYP  
.008 – .015  
(0.203 – 0.381)  
.120  
.020  
(0.508)  
MIN  
(3.048)  
MIN  
+.035  
.325  
–.015  
.018 .003  
(0.457 0.076)  
.100  
(2.54)  
BSC  
+0.889  
8.255  
(
)
N8 1002  
–0.381  
NOTE:  
INCHES  
1. DIMENSIONS ARE  
MILLIMETERS  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
117012fg  
18  
LT1170/LT1171/LT1172  
PACKAGE DESCRIPTION  
Q Package  
5-Lead Plastic DD Pak  
(Reference LTC DWG # 05-08-1461)  
.060  
(1.524)  
TYP  
.390 – .415  
(9.906 – 10.541)  
.060  
(1.524)  
.165 – .180  
(4.191 – 4.572)  
.256  
(6.502)  
.045 – .055  
(1.143 – 1.397)  
15° TYP  
+.008  
.004  
–.004  
.060  
(1.524)  
.059  
(1.499)  
TYP  
.183  
(4.648)  
.330 – .370  
(8.382 – 9.398)  
+0.203  
–0.102  
0.102  
(
)
.095 – .115  
(2.413 – 2.921)  
.075  
(1.905)  
.067  
(1.702)  
BSC  
.050 .012  
(1.270 0.305)  
.300  
(7.620)  
.013 – .023  
(0.330 – 0.584)  
+.012  
.143  
–.020  
.028 – .038  
+0.305  
BOTTOM VIEW OF DD PAK  
HATCHED AREA IS SOLDER PLATED  
COPPER HEAT SINK  
3.632  
Q(DD5) 0502  
(0.711 – 0.965)  
(
)
–0.508  
TYP  
.420  
.276  
.080  
.420  
.350  
.325  
.205  
.565  
.565  
.320  
.090  
.042  
.090  
.042  
.067  
.067  
RECOMMENDED SOLDER PAD LAYOUT  
NOTE:  
RECOMMENDED SOLDER PAD LAYOUT  
FOR THICKER SOLDER PASTE APPLICATIONS  
1. DIMENSIONS IN INCH/(MILLIMETER)  
2. DRAWING NOT TO SCALE  
117012fg  
19  
LT1170/LT1171/LT1172  
PACKAGE DESCRIPTION  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 .005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 .005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 .005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
117012fg  
20  
LT1170/LT1171/LT1172  
PACKAGE DESCRIPTION  
SW Package  
16-Lead Plastic Small Outline (Wide .300 Inch)  
(Reference LTC DWG # 05-08-1620)  
.050 BSC .045 .005  
.030 .005  
TYP  
.398 – .413  
(10.109 – 10.490)  
NOTE 4  
15 14  
12  
10  
9
N
16  
N
13  
11  
.325 .005  
.420  
MIN  
.394 – .419  
(10.007 – 10.643)  
NOTE 3  
N/2  
8
1
2
3
N/2  
RECOMMENDED SOLDER PAD LAYOUT  
2
3
5
7
1
4
6
.291 – .299  
(7.391 – 7.595)  
NOTE 4  
.037 – .045  
(0.940 – 1.143)  
.093 – .104  
(2.362 – 2.642)  
.010 – .029  
× 45°  
(0.254 – 0.737)  
.005  
(0.127)  
RAD MIN  
0° – 8° TYP  
.050  
(1.270)  
BSC  
.004 – .012  
.009 – .013  
(0.102 – 0.305)  
NOTE 3  
(0.229 – 0.330)  
.014 – .019  
.016 – .050  
(0.356 – 0.482)  
TYP  
(0.406 – 1.270)  
NOTE:  
1. DIMENSIONS IN  
INCHES  
(MILLIMETERS)  
S16 (WIDE) 0502  
2. DRAWING NOT TO SCALE  
3. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.  
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS  
4. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
117012fg  
21  
LT1170/LT1171/LT1172  
PACKAGE DESCRIPTION  
T Package  
5-Lead Plastic TO-220 (Standard)  
(Reference LTC DWG # 05-08-1421)  
.165 – .180  
(4.191 – 4.572)  
.147 – .155  
(3.734 – 3.937)  
DIA  
.390 – .415  
(9.906 – 10.541)  
.045 – .055  
(1.143 – 1.397)  
.230 – .270  
(5.842 – 6.858)  
.570 – .620  
(14.478 – 15.748)  
.620  
(15.75)  
TYP  
.460 – .500  
(11.684 – 12.700)  
.330 – .370  
(8.382 – 9.398)  
.700 – .728  
(17.78 – 18.491)  
.095 – .115  
(2.413 – 2.921)  
SEATING PLANE  
.152 – .202  
(3.861 – 5.131)  
.155 – .195*  
(3.937 – 4.953)  
.260 – .320  
(6.60 – 8.13)  
.013 – .023  
(0.330 – 0.584)  
.067  
BSC  
.135 – .165  
(3.429 – 4.191)  
.028 – .038  
(0.711 – 0.965)  
(1.70)  
* MEASURED AT THE SEATING PLANE  
T5 (TO-220) 0801  
117012fg  
22  
LT1170/LT1171/LT1172  
REVISION HISTORY (Revision history begins at Rev G)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
G
3/10  
Updated to Reactivate LT1172M from Obsoleted Parts List  
2
117012fg  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LT1170/LT1171/LT1172  
TYPICAL APPLICATION  
Positive Current Boosted Buck Converter  
V
IN  
28V  
470ꢀ  
2W  
C3  
0.47μF  
R6  
470ꢀ  
C6  
0.002μF  
D2  
V
IN  
1: N  
V
SW  
FB  
N ≈ 0.25  
LT1170  
R2  
R7  
1k  
1.24k  
D1  
V
IN  
V
GND  
C
7
2
C4  
0.01μF  
R3  
+
6
C5*  
100μF  
R5  
5k  
680ꢀ  
LM308  
3
+
C1  
0.33μF  
4
8
R4  
1.24k  
200pF  
V
OUT  
5V, 10A  
R1  
5k  
+
C2  
5000μF  
* REQUIRED IF INPUT LEADS ≥ 2"  
1170/1/2 TA18  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
40kHz, V to 60V, V to 75V  
LT1070/LT1071/LT1072 5A/2.5A/1.25A High Efficiency Switching Regulators  
IN  
SW  
LT1074/LT1076  
LT1082  
5.5A/2A Step-Down Switching Regulators  
100kHz, Also for Positive-to-Negative Conversion  
1A, High Voltage, High Efficiency Switching Regulator  
7.5A, 150kHz Switching Regulators  
V
IN  
V
IN  
to 75V, V to 100V, Telecom  
SW  
LT1268/LT1268B  
LT1269/LT1271  
LT1270/LT1270A  
LT1370  
to 30V, V to 60V  
SW  
4A High Efficiency Switching Regulators  
100kHz/60kHz, V to 30V, V to 60V  
IN SW  
8A and 10A High Efficiency Switching Regulators  
500kHz High Efficiency 6A Switching Regulator  
500kHz High Efficiency 3A Switching Regulator  
500kHz and 1MHz High Efficiency 1.5A Switching Regulators  
60kHz, V to 30V, V to 60V  
IN SW  
High Power Boost, Flyback, SEPIC  
LT1371  
Good for Boost, Flyback, Inverting, SEPIC  
LT1372/LT1377  
LT1373  
Directly Regulates  
V
OUT  
250kHz Low Supply Current High Efficiency 1.5A Switching Regulator  
4A, 500kHz Step-Down Switching Regulator  
1.5A, 500kHz Step-Down Switching Regulators  
Isolated Flyback Switching Regulator  
Low 1mA Quiescent Current  
LT1374  
Synchronizable, V to 25V  
IN  
LT1375/LT1376  
LT1425  
Up to 1.25A Out from an SO-8  
6W Output, 5% Regulation, No Optocoupler Needed  
1.5A Switch, Good for 5V to 3.3V  
LT1507  
500kHz Monolithic Buck Mode Switching Regulator  
Ultralow Noise 1A Switching Regulator  
LT1533  
Push-Pull, <100μV Output Noise  
P-P  
117012fg  
LT 0410 REV G • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
© LINEAR TECHNOLOGY CORPORATION 1991  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT1172

100kHz, 5A, 2.5A and 1.25A High Efficiency Switching Regulators
Linear

LT1172C

100kHz, 5A, 2.5A and 1.25A High Efficiency Switching Regulators
Linear

LT1172CJ8

100kHz, 5A, 2.5A and 1.25A High Efficiency Switching Regulators
Linear

LT1172CJ8#PBF

IC IC,SMPS CONTROLLER,CURRENT-MODE,BIPOLAR,DIP,8PIN,CERAMIC, Switching Regulator or Controller
Linear

LT1172CJ8#TRPBF

IC IC,SMPS CONTROLLER,CURRENT-MODE,BIPOLAR,DIP,8PIN,CERAMIC, Switching Regulator or Controller
Linear

LT1172CK

100kHz, 5A, 2.5A and 1.25A High Efficiency Switching Regulators
Linear

LT1172CK#TRPBF

IC IC,SMPS CONTROLLER,CURRENT-MODE,BIPOLAR,CANF,4PIN,METAL, Switching Regulator or Controller
Linear

LT1172CN8

100kHz, 5A, 2.5A and 1.25A High Efficiency Switching Regulators
Linear

LT1172CN8#PBF

暂无描述
Linear

LT1172CN8#TRPBF

IC IC,SMPS CONTROLLER,CURRENT-MODE,BIPOLAR,DIP,8PIN,PLASTIC, Switching Regulator or Controller
Linear

LT1172CQ

100kHz, 5A, 2.5A and 1.25A High Efficiency Switching Regulators
Linear

LT1172CQ#PBF

LT1172 - 100kHz, 5A, 2.5A and 1.25A High Efficiency Switching Regulators; Package: DD PAK; Pins: 5; Temperature Range: 0&deg;C to 70&deg;C
Linear