LT1178SW#TRPBF [Linear]

暂无描述;
LT1178SW#TRPBF
型号: LT1178SW#TRPBF
厂家: Linear    Linear
描述:

暂无描述

比较器
文件: 总12页 (文件大小:147K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1540  
Nanopower Comparator  
with Reference  
U
FEATURES  
DESCRIPTIO  
The LTC®1540 is an ultralow power, single comparator  
with built-in reference. The comparator’s features  
include less than 0.6µA supply current over the commer-  
cial temperature range, a 1.182V ±2% reference, pro-  
grammable hysteresis and TTL/CMOS outputs that sink  
and source current. The reference output can drive a  
bypass capacitor of up to 0.01µF without oscillation.  
Ultralow Quiescent Current: 0.3  
Reference Output Drives 0.01  
Adjustable Hysteresis  
Available in 3mm x 3mm x 0.8mm DFN Package  
Wide Supply Range: 2V to 11V  
Input Voltage Range Includes the Negative Supply  
Reference Output Sources Up to 1mA  
TTL/CMOS Compatible Outputs  
60µs Propagation Delay with 10mV Overdrive  
No Crowbar Current  
40mA Continuous Source Current  
Pin Compatible with LTC1440, MAX921, MAX931  
µ
A Typ  
µF Capacitor  
The comparator operates from a single 2V to 11V supply  
or a dual ±1V to ±5.5V supply. Comparator hysteresis is  
easily programmed by using two resistors and the HYST  
pin. Each comparator’s input operates from the negative  
supply to within 1.3V of the positive supply. The compara-  
tor output stage can continuously source up to 40mA. By  
eliminating the cross-conducting current that normally  
occur when the comparator changes logic states, power  
supply glitches are eliminated.  
U
APPLICATIO S  
Battery-Powered System Monitoring  
Threshold Detectors  
Window Comparators  
Oscillator Circuits  
The LTC1540 is available in the 8-pin MSOP and SO  
packages. For space limited applications, the LTC1540 is  
available in a 3mm x 3mm low profile (0.8mm) dual fine-  
pitch leadless package (DFN).  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
Nanopower 2.9V VCC Threshold Detector  
LTC1540 Supply Current vs Temperature  
3.3V  
0.50  
+
7
R1  
4.32M  
1%  
V
V
= 5V  
+
= GND = 0V  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
V
LTC1540  
+
3
4
5
6
IN  
+
8
R2  
3M  
1%  
OUT  
IN  
HYST  
REF  
40  
0
TEMPERATURE (°C)  
80 100  
–40 –20  
20  
60  
GND  
V
2
1
1540 • TA02  
1540  
• TA01  
sn1540 1540fas  
1
LTC1540  
W W U W  
ABSOLUTE MAXIMUM RATINGS  
OUT Short-Circuit Duration (V+ 5.5V) ...... Continuous  
Power Dissipation............................................. 500mW  
Operating Temperature Range  
LTC1540C .............................................. 0°C to 70°C  
LTC1540I............................................ 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
(DD Package) ................................... 65°C to 125°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
Voltage  
V+ to V, V+ to GND, GND to V...........12V to 0.3V  
IN+, IN, HYST ................. (V+ + 0.3V) to (V– 0.3V)  
REF................................... (V+ + 0.3V) to (V– 0.3V)  
OUT ............................... (V+ + 0.3V) to (GND – 0.3V)  
Current  
IN+, IN, HYST ................................................. 20mA  
REF................................................................... 20mA  
OUT .................................................................. 50mA  
U
W U  
PACKAGE/ORDER INFORMATION  
TOP VIEW  
TOP VIEW  
TOP VIEW  
GND  
1
2
3
4
8
7
6
5
OUT  
GND  
1
2
3
4
8
7
6
5
OUT  
GND  
1
2
3
4
8 OUT  
7 V  
6 REF  
5 HYST  
+
+
+
V
IN  
V
V
V
V
+
+
+
IN  
REF  
IN  
REF  
IN  
IN  
HYST  
IN  
HYST  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
S8 PACKAGE  
8-LEAD PLASTIC SO  
DD PACKAGE  
TJMAX = 150°C, θJA = 250°C/ W  
8-LEAD (3mm × 3mm) PLASTIC DFN  
TJMAX = 150°C, θJA = 175°C/ W  
TJMAX = 125°C, θJA = 160°C/ W (NOTE 2) UNDERSIDE METAL  
CONNECTED TO V(PCB CONNECTION OPTIONAL)  
DD  
ORDER PART  
NUMBER  
S8  
ORDER PART  
NUMBER  
ORDER PART  
MS8  
PART MARKING  
PART MARKING*  
PART MARKING  
NUMBER  
LAAS  
1540  
1540I  
LTC1540CDD  
LTC1540IDD  
LTC1540CS8  
LTC1540IS8  
LTCE  
LTADV  
LTC1540CMS8  
LTC1540IMS8  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *Temperature grades are identified by a label on the shipping container.  
The denotes the specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 25°C. V+ = 5V, V= GND = 0V, TA = 25°C unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Power Supply  
+
V
Supply Voltage Range  
Supply Current  
2.0  
11.0  
V
+
I
IN = IN = 80mV, HYST = REF, C-Grade  
0.3  
0.68  
0.71  
µA  
µA  
CC  
+
IN = IN = 80mV, HYST = REF, I-Grade  
Comparator  
V
Comparator Input Offset Voltage  
V
= 2.5V  
CM  
±12  
±15  
±16  
mV  
mV  
mV  
OS  
LTC1540CMS8/IMS8  
+
+
I
Input Leakage Current (IN , IN )  
Input Leakage Current (HYST)  
V
= V = 2.5V  
±0.01  
±0.02  
±1.0  
±1.0  
nA  
nA  
IN  
IN  
IN  
+
V
Comparator Input Common Mode Range  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
V
V – 1.3V  
V
mV/V  
mV/V  
CM  
+
CMRR  
PSRR  
V to V – 1.3V  
0.1  
0.1  
1
1
+
V = 2V to 11V  
sn1540 1540fas  
2
LTC1540  
The denotes the specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 25°C. V+ = 5V, V= GND = 0V, TA = 25°C unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Hysteresis Input Voltage Range  
Propagation Delay  
REF – 50mV  
REF  
V
HYST  
t
C
= 100pF  
OUT  
Overdrive = 10mV  
Overdrive = 100mV  
60  
50  
µs  
µs  
PD  
+
V
V
Output High Voltage  
Output Low Voltage  
I = 13mA  
V – 0.4V  
V
V
OH  
OL  
O
I = 1.8mA  
O
GND + 0.4V  
Reference  
V
Reference Voltage  
Load Regulation  
No Load  
(SO-8)/(DFN) Commercial  
MS8 Commercial  
(SO-8)/(MS8)/(DFN) Industrial  
1.158  
1.156  
1.152  
1.182  
1.182  
1.182  
1.206  
1.208  
1.212  
V
V
V
REF  
V  
0 I 100µA  
SOURCE  
0.5  
0.5  
2.5  
mV  
REF  
0 I  
10µA  
1.5  
5
mV  
mV  
SINK  
+
V
= 3V, V = GND = 0V, T = 25°C unless otherwise noted.  
A
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Power Supply  
+
V
Supply Voltage Range  
Supply Current  
2
11  
V
+
I
IN = IN = 80mV, HYST = REF, C-Grade  
0.28  
0.61  
0.64  
µA  
µA  
CC  
+
IN = IN = 80mV, HYST = REF, I-Grade  
Comparator  
V
Comparator Input Offset Voltage  
V
= 2.5V  
CM  
±12  
±15  
±16  
mV  
mV  
mV  
OS  
LTC1540CMS8/IMS8  
+
+
I
Input Leakage Current (IN , IN )  
Input Leakage Current (HYST)  
V
= V = 1.5V  
±0.01  
±0.02  
±1  
±1  
nA  
nA  
IN  
IN  
IN  
+
V
Comparator Input Common Mode Range  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Hysteresis Input Voltage Range  
Propagation Delay  
V
V – 1.3V  
V
mV/V  
mV/V  
V
CM  
+
CMRR  
PSRR  
V to V – 1.3V  
0.1  
0.1  
1
1
+
V = 2V to 11V  
V
REF – 50mV  
REF  
HYST  
t
C
= 100pF  
OUT  
Overdrive = 10mV  
Overdrive = 100mV  
70  
60  
µs  
µs  
PD  
+
V
V
Output High Voltage  
Output Low Voltage  
I = 8mA  
V – 0.4V  
V
V
OH  
OL  
O
I = 0.8mA  
O
GND + 0.4V  
Reference  
V
Reference Voltage  
Load Regulation  
No Load  
(SO-8)/(DFN) Commercial  
MS8 Commercial  
(SO-8)/(MS8)/(DFN) Industrial  
1.158  
1.156  
1.152  
1.182  
1.182  
1.182  
1.206  
1.208  
1.212  
V
V
V
REF  
V  
0 I 100µA  
SOURCE  
0.75  
0.5  
3.5  
mV  
REF  
0 I  
10µA  
1.5  
5
mV  
mV  
SINK  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: The θ specified for the DD package is with minimal PCB heat  
spreading metal. Using expanded metal area on all layers of a board  
reduces this value.  
JA  
sn1540 1540fas  
3
LTC1540  
TYPICAL PERFORMANCE CHARACTERISTICS  
U W  
Reference Voltage  
Load Regulation (Sink)  
Supply Current vs Temperature  
Reference Voltage vs Temperature  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.190  
1.188  
1.186  
1.184  
1.182  
1.180  
1.178  
1.176  
1.174  
1.172  
10  
9
8
7
6
5
4
3
2
1
0
+
+
V
V
= 5V  
= GND = 0V  
= 25°C  
V
V
= 5V  
+
V
= 5V  
= GND = 0V  
V
= GND = 0V  
T
A
+
V
= 3V  
= GND = 0V  
V
+
V
V
= 2V  
= GND = 0V  
60  
20  
TEMPERATURE (°C)  
60 80  
60  
20  
0
20  
80 100  
0
20  
30 35  
40 –20  
0
40  
100  
40  
40 60  
5
10 15  
25  
40  
OUTPUT SINK CURRENT (µA)  
TEMPERATURE (°C)  
1540 G01  
1540 G02  
1540 G03  
Reference Voltage  
Load Regulation (Source)  
Comparator Output Voltage (High)  
vs Load Current  
Comparator Output Voltage (Low)  
vs Load Current  
5
4
3
2
1
0
5
4
3
2
1
0
2.5  
2.0  
1.5  
1.0  
0.5  
0
+
V
V
= 5V  
= GND = 0V  
= 25°C  
T
= 25°C  
T
= 25°C  
A
A
+
V
= 5V  
T
A
+
+
V
= 5V  
V
= 3V  
+
V
= 2V  
+
V
= 3V  
+
V
= 2V  
0
2
3
0
30 40 50 60  
LOAD CURRENT (mA)  
0
10 20 30 40 50 60 70 80  
LOAD CURRENT (mA)  
1
4
10 20  
70 80  
OUTPUT SOURCE CURRENT (mA)  
1540 G04  
1540 G05  
1540 G06  
Comparator Short-Circuit Current  
vs Supply Voltage  
Comparator Response Time  
vs Input Overdrive  
Hysteresis Control  
80  
60  
200  
180  
160  
140  
120  
100  
80  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
T
V
V
= 25°C  
T
= 25°C  
A
A
+
= 5V  
= GND = 0V  
OUTPUT  
CONNECTED TO  
40  
V
= GND = 0V;  
SOURCE  
CURRENT  
20  
0
t
PLH  
OUTPUT  
20  
40  
60  
80  
CONNECTED  
t
PHL  
+
TO V ; SINK  
60  
CURRENT  
40  
20  
0
10 20 30 40 50 60 70 80 90 100 110  
0
1
2
3
4
5
6
7
8
9
10  
0
10  
20  
– V  
30  
(mV)  
40  
50  
INPUT VOLTAGE (mV)  
SUPPLY VOLTAGE (V)  
V
REF  
HYST  
1540 G08  
1540 G07  
1540 G09  
sn1540 1540fas  
4
LTC1540  
U
U
U
PIN FUNCTIONS  
V+ (Pin 7): Positive Supply operating voltage is from 2V  
GND (Pin 1): Ground. Connect to Vfor single supply  
operation.  
to 11V.  
V(Pin 2): Negative Supply. Potential should be more  
negative than GND. Connect to ground for single supply  
operation.  
OUT (Pin 8): Comparator CMOS Output. Swings from  
GND to V+. Output can source up to 40mA and sink 5mA.  
IN+ (Pin 3): Noninverting Comparator Input. Input com-  
mon mode range from Vto V+ – 1.3V. Input current  
typically 10pA at 25°C.  
IN(Pin 4): Inverting Comparator Input. Input common  
mode range from Vto V+ – 1.3V. Input current typically  
10pA at 25°C.  
1
2
8
7
OUT  
LTC1540  
GND  
V
+
V
+
+
REF  
3
4
IN  
6
5
HYST (Pin 5): Hysteresis Input. Connect to REF if not  
used. Input voltage range is from VREF to VREF – 50mV.  
IN  
HYST  
1540  
• PD  
REF (Pin 6): Reference Output. 1.182V with respect  
to V. Can source up to 1mA and sink 10µA at 25°C. Drive  
0.01µF bypass capacitor without oscillation.  
U
W U U  
APPLICATIONS INFORMATION  
The LTC1540 is a nanopower comparator with a built-in  
1.182Vreference.Featuresincludeprogrammablehyster-  
esis, wide supply voltage range (2V to 11V) and the ability  
of the reference to drive up to a 0.01µF capacitor without  
oscillation. The comparator’s CMOS outputs can source  
up to 40mA while supply current glitches that normally  
occur when switching logic states, have been eliminated.  
Comparator Output  
The comparator output swings between GND and V+ to  
assure TTL compatibility with a split supply. The output is  
capable of sourcing up to 40mA and sinking up to 5mA  
while still maintaining nanoampere quiescent currents.  
The output stage does not generate crowbar switching  
currentsduringtransitionswhichhelpsminimizeparasitic  
feedback through the supply pins.  
Power Supplies  
The comparator operates from a single 2V to 11V supply.  
TheLTC1540includesaseparategroundforthecompara-  
tor output stage, allowing a split supply ranging from ±1V  
to ±5.5V. Connecting Vto GND will allow single supply  
operation. If the comparator output is required to source  
more than 1mA, or the supply source impedance is high,  
V+ should be bypassed with a 0.1µF capacitor.  
Voltage Reference  
The internal bandgap reference has a voltage of 1.182V  
referenced to V. The reference accuracy is ±2.0% from  
0°C to 70°C. It can source up to 1mA and sink up to 10µA  
with a 5V supply. The reference can drive a bypass  
capacitor of up to 0.01µF without oscillation and by  
inserting a series resistor, capacitance values up to 10µF  
can be used (Figure 1).  
Comparator Inputs  
Figure 2 shows the resistor value required for different  
capacitor values to achieve critical damping. Bypassing  
the reference can help prevent false tripping of the com-  
parators by preventing glitches on V+ or reference load  
Thecomparatorinputscanswingfromthenegativesupply,  
V, to within 1.3V (max) of the positive supply V+. The  
inputs can be forced 300mV below Vor above V+ without  
damage and the typical input leakage current is only ±10pA.  
transients from disturbing the reference output voltage.  
sn1540 1540fas  
5
LTC1540  
U
W U U  
APPLICATIONS INFORMATION  
REFERENCE  
OUTPUT  
7
+
REF  
V
LTC1540  
+
3
4
5
6
IN  
R1  
LTC1540  
+
8
OUT  
IN  
C1  
V
5V  
TO  
8V  
HYST  
REF  
1540 • F01  
R2  
10k  
Figure 1. Damping the Reference Output  
R3  
2.4M  
R1  
430  
GND  
1
V
2
1000  
100  
10  
C1  
1µF  
1540 • F03a  
Figure 3a. Power Supply Transient Test Circuit  
1
8V  
V+  
0.1  
0.001  
0.01  
0.1  
1
10  
5V  
CAPACITOR VALUE (µF)  
1540 • F02  
VREF  
Figure 2. Damping Resistance vs Bypass Capacitor Value  
OUT  
Figure 3 shows the bypassed reference output with a  
squarewaveappliedtotheV+ pin. ResistorsR2andR3set  
10mV of hysteresis voltage band while R1 damps the  
reference response. Note that the comparator output  
doesn’t trip.  
2ms/DIV  
1540 F03b  
Figure 3b. Power Supply Transient Rejection  
5
Low Voltage Operation: V+ = 1.6V  
V
= GND = 0V  
+
IN = 0V  
IN = REF = HYST  
The guaranteed minimum operating voltage is 2V (or  
±1V). As the total supply voltage is reduced below 2V, the  
performance degrades and the supply current falls. At low  
supply voltages, the comparator’s output drive is reduced  
andthepropagationdelayincreases. TheVREF andVOS are  
alsoslightlyworse.Theusefulinputvoltagerangeextends  
from the negative supply to 0.9V below the positive  
supply. Test your prototype over the full  
temperature and supply voltage range if operation below  
2V is anticipated. Because of the increase in supply  
current, operation below 1.5V is not recommended  
(Figure 4).  
4
3
2
1
0
T
= 25°C  
A
0
0.5  
1.0  
1.5  
2.0  
2.5  
SUPPLY VOLTAGE (V)  
1540 F04  
Figure 4. Supply Current vs Supply Voltage  
sn1540 1540fas  
6
LTC1540  
U
W U U  
APPLICATIONS INFORMATION  
Hysteresis  
up to 15%. If hysteresis is not wanted, the HYST pin  
shouldbeshortedtoREF. AcceptablevaluesforIREF range  
from0.1µAto5µA. If2.4MischosenforR2, thenthevalue  
of R1 (k) is equal to the value of VHB (mV).  
Hysteresis can be added to the LTC1540 by connecting a  
resistor (R1) between the REF and HYST pins and a  
second resistor (R2) from HYST to V(Figure 5).  
The difference between the upper and lower threshold  
voltages,orhysteresisvoltageband(VHB),isequaltotwice  
the voltage difference between the REF and HYST pins.  
V
(2)(I  
HB  
R1 =  
6
5
REF  
)
I
REF  
REF  
LTC1540  
R1  
R2  
V
2
HB  
1.182V –  
(
)
HYST  
R2 =  
I
When more hysteresis is added, the upper threshold  
increases the same amount as the low threshold de-  
creases. The maximum voltage allowed between REF and  
HYST pins is 50mV, producing a maximum hysteresis  
voltage band of 100mV. The hysteresis band may vary by  
REF  
V
2
1540 • F05  
Figure 5. Programmable Hysteresis  
U
TYPICAL APPLICATIONS  
Level Detector  
V
I
1.182V  
REF  
R1 =  
=
= 1.18M  
– 1  
1µA  
BIAS  
TheLTC1540isidealforuseasananopowerleveldetector  
as shown in Figure 6. R1 and R2 form a voltage divider  
from VIN to the noninverting comparator input. R3 and R4  
set the hysteresis voltage, and R5 and C1 bypass the  
reference output. The following design procedure can be  
used to select the component values:  
V
IN  
R2 = R1  
V
2
HB  
V
+
REF  
4.65V  
– 1  
R2 = 1.18M  
R2 = 3.40M  
1. Choose the VIN voltage trip level, in this example 4.65V.  
2. Calculate the required resistive divider ratio.  
Ratio = VREF/ VIN  
15mV  
2
1.182V +  
Ratio = 1.182V/4.65V = 0.254  
V
IN  
5V  
7
3. Choose the required hysteresis voltage band at the  
inputVHBIN,inthisexample60mV.Calculatethehyster-  
esis voltage band referred to the comparator input VHB.  
R2  
3.4M  
1%  
+
V
LTC1540  
+
3
4
5
6
IN  
+
8
R1  
1.18M  
1%  
OUT  
IN  
VHB = (VHBIN)(Ratio)  
VHB = (60mV)(0.254)  
HYST  
REF  
R3  
15k  
1%  
V
HB = 15.24mV  
4. Choose the values for R3 and R4 to set the hysteresis.  
R4 = 2.4M  
R4  
2.4M  
1%  
R5  
430  
5%  
C1  
1µF  
GND  
1
V
2
R3 (k) = 15k, VHB (mV) = 15mV  
1540 F06  
5. Choose the values for R1 and R2 to set the trip point.  
Figure 6. Glitch-Free Level Detector with Hysteresis  
sn1540 1540fas  
7
LTC1540  
U
TYPICAL APPLICATIONS  
3.3V Output Low Dropout Linear Regulator  
output is the switched power supply output. With a 10mA  
load, it typically provides a voltage of (VBAT – 0.17V). The  
wholecircuitdrawsamere0.8µAofquiescentcurrentwith  
VBAT = 5V. The three resistor voltage divider programs  
50mV of hysteresis for the comparator, and sets the IN–  
voltage at 200mV. This gives an IN+ trip threshold of  
approximately 150mV  
The LTC1540 can be connected as a micropower (IQ =  
5.5µA at VIN = 5V) low dropout linear regulator (Figure 7).  
When the output is low, Q1 turns on, allowing current to  
charge output capacitor C1. Local feedback formed by R4,  
Q1 and Q2 creates a constant-current source from the 5V  
input to C1. R4, R1 and Q2’s VBE also provide current  
limitinginthecaseofanoutputshort-circuittoground. C2  
reduces output ripple, while the R2-R3 feedback voltage  
divider establishes the output voltage.  
The RC time constant determines the maximum power-on  
timeoftheOUTpinbeforepowerdownoccurs.Thisperiod  
can be approximated by:  
t = 4.6RC (seconds)  
Auto Power-Off Source  
The actual time will vary with both the leakage current of  
the capacitor and the input current at the IN+ pin.  
Figure 8 shows the circuit for a 30mA power supply that  
has a timed auto power-off function. The comparator  
V
V
= 5V  
BAT  
IN  
R4  
10  
Q2  
7
7
MOMENTARY  
2N3906  
+
SWITCH  
V
+
LTC1540  
Q1  
TP0610L  
V
LTC1540  
OUT  
+
IN  
3
8
+
3
4
5
6
IN  
IN  
R1  
+
47k  
C
R
8
V
OUT  
3.3V  
C1  
+
10µF  
OUT  
(V  
– 0.17V)  
BAT  
432k  
2M  
10mA  
4
5
6
IN  
HYST  
REF  
R3  
C2  
2.2nF  
750k  
1%  
HYST  
REF  
R2  
430k  
1%  
121k  
C3  
GND  
1
V
2
GND  
1
V
2
1540 F07  
1540 F08  
Figure 7. 3.3V Output Low Dropout Linear Regulator  
Figure 8. Auto Power-Off Switch Operates  
on 0.8µA Quiescent Current  
sn1540 1540fas  
8
LTC1540  
U
TYPICAL APPLICATIONS  
Low-Battery Detect  
operation down to a supply voltage of 2V, but it is still  
functional with the supply as low as 1.6V. Some param-  
eters, such as VREF and VOS, will be degraded on lower  
supply voltages. The input voltage range extends from  
0.9V below the positive supply to the negative supply.  
Figure 9 shows how to use the LTC1540 for a low-battery  
detect, drawing only 1.4µA at VBAT = 2V. The circuit is  
powered by a 2-cell NiCd battery. The VBAT pin could be as  
low as 1.6V when the batteries are completely depleted.  
The electrical specifications of the LTC1540 guarantee  
V
= ~1.6V TO 2.5V  
BAT  
2-CELL  
NiCd  
7
R1  
+
V
LTC1540  
OUT  
3M  
+
3
4
6
5
IN  
IN  
+
8
R2  
1.1M  
LBO  
REF  
R3  
40k  
HYST  
R4  
1.2M  
GND  
1
V
2
R5  
1M  
1540 F09  
Figure 9. Low-Battery Detect Works Down to 1.6V  
sn1540 1540fas  
9
LTC1540  
PACKAGE DESCRIPTION  
U
DD Package  
8-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698)  
R = 0.115  
0.38 ± 0.10  
TYP  
5
8
0.675 ±0.05  
3.5 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
PACKAGE  
OUTLINE  
(DD8) DFN 0203  
4
1
0.28 ± 0.05  
0.75 ±0.05  
0.200 REF  
0.28 ± 0.05  
0.50 BSC  
0.50  
BSC  
2.38 ±0.05  
(2 SIDES)  
2.38 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)  
2. ALL DIMENSIONS ARE IN MILLIMETERS  
3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
4. EXPOSED PAD SHALL BE SOLDER PLATED  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1660)  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.889 ± 0.127  
(.035 ± .005)  
0.52  
(.206)  
REF  
8
7 6  
5
5.23  
(.206)  
MIN  
3.2 – 3.45  
(.126 – .136)  
3.00 ± 0.102  
(.118 ± .004)  
NOTE 4  
4.90 ± 0.15  
(1.93 ± .006)  
DETAIL “A”  
0° – 6° TYP  
0.254  
(.010)  
GAUGE PLANE  
0.65  
(.0256)  
BSC  
0.42 ± 0.04  
1
2
3
4
(.0165 ± .0015)  
TYP  
0.53 ± 0.015  
(.021 ± .006)  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
RECOMMENDED SOLDER PAD LAYOUT  
DETAIL “A”  
0.18  
(.077)  
SEATING  
PLANE  
NOTE:  
0.22 – 0.38  
(.009 – .015)  
TYP  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
0.13 ± 0.076  
(.005 ± .003)  
0.65  
(.0256)  
BSC  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
MSOP (MS8) 0802  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
sn1540 1540fas  
10  
LTC1540  
U
PACKAGE DESCRIPTION  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 ±.005  
.160 ±.005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 ±.005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
sn1540 1540fas  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LTC1540  
U
TYPICAL APPLICATION  
RF Field Detector  
Figure 10 shows the complete circuit for a field detector The rectified output is monitored by the LTC1540 com-  
which was tested at 445MHz. A transmission line is used parator. The internal reference is used to set up a threshold  
to match the detector diode (1N5712) to a quarter-wave of about 18mV at the inverting input. A rising edge at the  
whip antenna. The 0.23λ wavelength transmission line comparator output triggers a one shot that temporarily  
section transforms the 1pF (350) diode junction capaci- enables answer back and any other pulsed functions.  
tance to a virtual short at the base of the antenna. At the  
Thetotalsupplycurrentis400nA. Amongothermonolithic  
same time it converts the received antenna current to a  
one shots, the CD4047 draws the least amount of transient  
voltage loop at the diode, giving excellent sensitivity.  
current.  
2V TO 11V  
λ/4  
12M  
5
FB  
10k  
6
3
4
7
+
Q
Q
CMOS  
ONE SHOT  
(CD4047)  
8
10nF  
LTC1540  
0.23λ  
1
2
10nF  
180k  
1540 F10  
1N5712  
Figure 10. Nanopower Field Detector  
RELATED PARTS  
PART NUMBER  
LT®1178/LT1179  
LT1351  
DESCRIPTION  
COMMENTS  
70µV Max V , 5nA Max I  
C-LoadTM Op Amp Stable Driving Any Capacitive Load  
C-LoadOp Amps Stable Driving Any Capacitive Load  
1.182V ±1% Reference, ±10mV (Max) Input Offset  
Dual/Quad 17µA Precision Single Supply Op Amps  
Single 250µA, 3MHz, 200V/µs Op Amp with Shutdown  
Dual/Quad 250µA, 3MHz, 200V/µs Op Amps  
Micropower Comparator with 1% Reference  
OS  
BIAS  
LT1352/LT1353  
LTC1440  
LTC1443/LTC1444/LTC1445 Micropower Quad Comparators with 1% Reference  
LTC1443 Has 1.182V Reference, LTC1444/LTC1445 Have  
1.221V Reference and Adjustable Hysteresis  
LTC1474  
LT1495  
LT1521  
LT1634  
Low Quiescent Current High Efficiency  
Step-Down Converter  
10µA Standby Current, 92% Efficiency, Space Saving 8-Pin  
MSOP Package  
1.5µA Max, Dual Precision Rail-to-Rail  
Input and Output Op Amp  
375µV Max V , 250pA I  
, 25pA I  
BIAS OS  
OS  
300mA Low Dropout Regulator with Micropower  
Quiescent Current and Shutdown  
0.5V Dropout Voltage, 12µA Quiescent Current, Adjustable  
Output 3V, 3.3V and 5V Fixed  
Micropower Precision Shunt Voltage Reference  
1.25V, 2.5V, 4.096V, 5V Outputs, 10µA Operating Current,  
0.05% Initial Accuracy 25ppm/°C Max Drift, SO-8, MSOP and  
TO-92 Packages  
C-Load is a trademark of Linear Technology Corporation.  
sn1540 1540fas  
LT/TP 0403 1K REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
©LINEAR TECHNOLOGY CORPORATION 1997  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT1178_1

17uA Max, Dual and Quad, Single Supply, Precision Op Amps
Linear System

LT1178_15

17A Max, Dual and Quad, Single Supply, Precision Op Amps
Linear

LT1179

17uA Max, Dual and Quad, Single Supply, Precision Op Amps
Linear

LT1179

17uA Max, Dual and Quad, Single Supply, Precision Op Amps
Linear System

LT1179ACJ

17uA Max, Dual and Quad, Single Supply, Precision Op Amps
Linear

LT1179ACJ

17uA Max, Dual and Quad, Single Supply, Precision Op Amps
Linear System

LT1179ACN

17uA Max, Dual and Quad, Single Supply, Precision Op Amps
Linear

LT1179ACN

17uA Max, Dual and Quad, Single Supply, Precision Op Amps
Linear System

LT1179ACN#PBF

LT1179 - 17µA Max, Quad, Single Supply, Precision Op Amps; Package: PDIP; Pins: 14; Temperature Range: 0°C to 70°C
Linear

LT1179AMJ

Voltage-Feedback Operational Amplifier
ETC

LT1179C

17uA Max, Dual and Quad, Single Supply, Precision Op Amps
Linear

LT1179CJ

17uA Max, Dual and Quad, Single Supply, Precision Op Amps
Linear