LT1190_01 [Linear]

Ultrahigh Speed Operational Amplifier; 超高速运算放大器
LT1190_01
型号: LT1190_01
厂家: Linear    Linear
描述:

Ultrahigh Speed Operational Amplifier
超高速运算放大器

运算放大器
文件: 总12页 (文件大小:257K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1190  
Ultrahigh Speed  
Operational Amplifier  
U
FEATURES  
DESCRIPTIO  
The LT®1190 is a video operational amplifier optimized for  
operation on ±5V, and a single 5V supply. Unlike many  
high speed amplifiers, this amplifier features high open-  
loop gain, over 85dB, and the ability to drive heavy loads  
to a full-power bandwidth of 20MHz at 7VP-P. In addition  
to its very fast slew rate, the LT1190 features a unity-  
gain-stable bandwidth of 50MHz and a 75° phase margin,  
making it extremely easy to use.  
Gain Bandwidth Product, AV = 1: 50MHz  
Slew Rate: 450V/µs  
Low Cost  
Output Current: ±50mA  
Settling Time: 140ns to 0.1%  
Differential Gain Error: 0.1%, (RL = 1k)  
Differential Phase Error: 0.06°, (RL = 1k)  
High Open-Loop Gain: 10V/mV Min  
Single Supply 5V Operation  
Output Shutdown  
Because the LT1190 is a true operational amplifier, it is an  
ideal choice for wideband signal conditioning, fast inte-  
grators, active filters, and applications requiring speed,  
accuracy and low cost.  
U
APPLICATIO S  
The LT1190 is available in 8-pin PDIP and SO packages  
with standard pinouts. The normally unused Pin 5 is used  
for a shutdown feature that shuts off the output and  
reduces power dissipation to a mere 15mW.  
Video Cable Drivers  
Video Signal Processing  
Fast Integrators  
Pulse Amplifiers  
D/A Current to Voltage Conversion  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
Video MUX Cable Driver  
5V  
7
3
V
+
IN1  
Inverter Pulse Response  
6
LT1190  
SHDN  
2
CMOS IN  
CH. SELECT  
5
4
1k  
–5V  
1k  
1k  
CABLE  
75Ω  
74HC04  
74HC04  
75Ω  
1k  
V
–5V  
5V  
5
3
+
IN2  
7
SHDN  
LT1190  
6
2
1190 TA02  
4
AV = 1, CL = 10pF SCOPE PROBE  
–5V  
1k  
1k  
LT1190 • TA01  
1
LT1190  
W W  
U W  
U W  
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
Total Supply Voltage (V + to V ) ............................. 18V  
Differential Input Voltage ....................................... ± 6V  
Input Voltage .......................................................... ±VS  
Output Short-Circuit Duration (Note 2)........ Continuous  
Maximum Junction Temperature ......................... 150°C  
Operating Temperature Range  
LT1190M (OBSOLETE) ............. –55°C to 125°C  
LT1190C............................................... 0°C to 70°C  
Storage Temperature Range ................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
ORDER PART  
TOP VIEW  
NUMBER  
BAL  
–IN  
+IN  
1
2
3
4
8
7
6
5
BAL  
+
V
LT1190CN8  
LT1190CS8  
OUT  
V
SHDN  
S8 PART MARKING  
1190  
N8 PACKAGE  
8-LEAD PDIP  
S8 PACKAGE  
8-LEAD PLASTIC SO  
TJMAX = 150°C, θJA = 100°C/W (N8)  
TJMAX = 150°C, θJA = 150°C/W (S8)  
LT1190MJ8  
LT1190CJ8  
J8 PACKAGE 8-LEAD CERDIP  
TJMAX = 150°C, θJA = 100°C/W  
OBSOLETE PACKAGE  
Consider the N8 or S8 Packages for Alternate Source  
Consult LTC Marketing for parts specified with wider operating temperature  
ranges.  
ELECTRICAL CHARACTERISTICS VS = ±5V, TA = 25°C, CL 10pF, Pin 5 open circuit unless otherwise noted.  
LT1190M/C  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
N8 Package  
SO-8 Package  
3
10  
15  
mV  
mV  
OS  
I
I
Input Offset Current  
Input Bias Current  
Input Noise Voltage  
Input Noise Current  
Input Resistance  
0.2  
±0.5  
50  
1.7  
µA  
µA  
OS  
±2.5  
B
e
f = 10kHz  
nV/Hz  
pA/Hz  
kΩ  
n
O
i
f = 10kHz  
O
4
n
R
Differential Mode  
Common Mode  
130  
5
IN  
MΩ  
pF  
C
Input Capacitance  
A = 1  
V
2.2  
IN  
Input Voltage Range  
(Note 3)  
2.5  
60  
3.5  
V
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
= – 2.5V to 3.5V  
70  
70  
dB  
CM  
V = ± 2.375V to ± 8V  
S
60  
dB  
A
R = 1k, V = ± 3V  
10  
2.5  
3.5  
22  
6
12  
V/mV  
V/mV  
V/mV  
VOL  
L
O
R = 100, V = ±3V  
L
O
V = ±8V, R = 100, V = ± 5V  
S
L
O
V
Output Voltage Swing  
V = ±5V, R = 1k  
±3.7  
±6.7  
±4  
±7  
V
V
OUT  
S
L
V = ±8V, R = 1k  
S
L
SR  
Slew Rate  
A = –1, R = 1k (Notes 4, 9)  
325  
450  
23.9  
50  
V/µs  
MHz  
MHz  
ns  
V
O
L
FPBW  
GBW  
Full-Power Bandwidth  
Gain Bandwidth Product  
Rise Time, Fall Time  
Rise Time, Fall Time  
Propagation Delay  
Overshoot  
V
= 6V (Note 5)  
17.2  
P-P  
t , t  
r1 f1  
A = 50, V = ± 1.5V, 20% to 80%, (Note 9)  
175  
250  
1.9  
2.4  
5
325  
V
O
t , t  
r2 f2  
A = 1, V = ± 125mV, 10% to 90%  
ns  
V
O
t
A = 1, V = ± 125mV, 50% to 50%  
ns  
PD  
s
V
O
A = 1, V = ± 125mV  
%
V
O
t
Settling Time  
3V Step, 0.1% (Note 6)  
140  
ns  
2
LT1190  
ELECTRICAL CHARACTERISTICS  
VS = ±5V, TA = 25°C, CL 10pF, Pin 5 open circuit unless otherwise noted.  
LT1190M/C  
SYMBOL PARAMETER  
CONDITIONS  
R = 150Ω, A = 2 (Note 7)  
MIN  
TYP  
0.35  
0.16  
32  
MAX  
UNITS  
Diff A  
Differential Gain  
%
V
L
V
Diff Ph  
Differential Phase  
Supply Current  
R = 150, A = 2 (Note 7)  
Deg  
P-P  
L
V
I
38  
2
mA  
mA  
µA  
ns  
S
Shutdown Supply Current  
Shutdown Pin Current  
Turn On Time  
Pin 5 at V  
Pin 5 at V  
1.3  
I
t
t
20  
50  
SHDN  
ON  
Pin 5 from V to Ground, R = 1k  
100  
400  
L
Turn Off Time  
Pin 5 from Ground to V , R = 1k  
ns  
OFF  
L
VS+ = 5V, VS= 0V, VCM = 2.5V, TA = 25°C, CL 10pF, Pin 5 open circuit unless otherwise noted.  
LT1190M/C  
TYP  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX  
UNITS  
V
OS  
Input Offset Voltage  
N8 Package  
SO-8 Package  
3
11  
15  
mV  
mV  
I
I
Input Offset Current  
0.2  
1.2  
±1.5  
3.5  
µA  
µA  
OS  
Input Bias Current  
±0.5  
B
Input Voltage Range  
(Note 3)  
2
V
CMRR  
Common Mode Rejection Ratio  
Large-Signal Voltage Gain  
Output Voltage Swing  
V
= 2V to 3.5V  
55  
2.5  
3.6  
70  
7
dB  
CM  
A
VOL  
V
OUT  
R = 100to Ground, V = 1V to 3V  
V/mV  
V
L
O
R = 100to Ground  
V
High  
Low  
3.8  
0.25  
250  
47  
L
OUT  
V
0.4  
V
OUT  
SR  
Slew Rate  
A = –1, V = 1V to 3V  
V
V/µs  
MHz  
mA  
mA  
µA  
O
GBW  
Gain Bandwidth Product  
Supply Current  
I
I
24.5  
29  
36  
2
S
Shutdown Supply Current  
Shutdown Pin Current  
Pin 5 at V  
Pin 5 at V  
1.2  
20  
50  
SHDN  
The denotes the specifications which apply over the full operating temperature range of 55°C TA 125°C.  
VS = ±5V, Pin 5 open circuit unless otherwise noted.  
LT1190M  
TYP  
SYMBOL PARAMETER  
Input Offset Voltage  
CONDITIONS  
MIN  
MAX  
UNITS  
mV  
V
OS  
N8 Package  
5
14  
V /T Input V Drift  
16  
µV/°C  
µA  
OS  
OS  
I
I
Input Offset Current  
0.2  
±0.5  
70  
2
OS  
Input Bias Current  
±2.5  
µA  
B
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
CM  
= –2.5V to 3.5V  
55  
55  
dB  
V = ±2.375V to ±5V  
S
70  
dB  
A
VOL  
R = 1k, V = ±3V  
8
1
16  
2.5  
V/mV  
V/mV  
L
O
R = 100, V = ±3V  
L
O
V
Output Voltage Swing  
Supply Current  
R = 1k  
±3.7  
±3.9  
32  
V
mA  
mA  
µA  
OUT  
L
I
I
38  
S
Shutdown Supply Current  
Shutdown Pin Current  
Pin 5 at V (Note 8)  
1.5  
20  
2.5  
Pin 5 at V  
SHDN  
3
LT1190  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range of 0°C TA 70°C. VS = ±5V, Pin 5 open circuit unless otherwise noted.  
LT1190C  
TYP  
SYMBOL PARAMETER  
Input Offset Voltage  
CONDITIONS  
MIN  
MAX  
UNITS  
V
N8 Package  
SO-8 Package  
3
11  
18  
mV  
mV  
OS  
V /T Input V Drift  
16  
0.2  
±0.5  
70  
µV/°C  
µA  
OS  
OS  
I
I
Input Offset Current  
1.7  
OS  
Input Bias Current  
±2.5  
µA  
B
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
= – 2.5V to 3.5V  
58  
58  
dB  
CM  
V = ±2.375V to ±5V  
S
70  
dB  
A
VOL  
R = 1k, V = ±3V  
R = 100, V = ±3V  
9
2
20  
6
V/mV  
V/mV  
L
O
L
O
V
Output Voltage Swing  
Supply Current  
R = 1k  
±3.7  
±3.9  
32  
V
mA  
mA  
µA  
OUT  
L
I
I
38  
S
Shutdown Supply Current  
Shutdown Pin Current  
Pin 5 at V (Note 8)  
1.4  
20  
2.1  
Pin 5 at V  
SHDN  
Note 6: Settling time measurement techniques are shown in “Take the  
Guesswork Out of Settling Time Measurements,” EDN, September 19,  
Note 1: Absolute maximum ratings are those values beyond which the life  
of the device may be impaired.  
Note 2: A heat sink is required to keep the junction temperature below  
absolute maximum when the output is shorted.  
1985. A = –1, R = 1k.  
V
L
Note 7: NTSC (3.58MHz). For R = 1k, Diff A = 0.1%, Diff Ph = 0.06°.  
L
V
Note 8: See Applications section for shutdown at elevated temperatures.  
Note 3: Exceeding the input common mode range may cause the output  
to invert.  
Do not operate the shutdown above T > 125°C.  
J
Note 9: AC parameters are 100% tested on the ceramic and plastic DIP  
packaged parts (J and N suffix) and are sample tested on every lot of the  
SO packaged parts (S suffix).  
Note 4: Slew rate is measured between ±1V on the output, with a ±3V  
input step.  
Note 5: Full-power bandwidth is calculated from the slew rate  
measurement:  
FPBW = SR/2πV .  
P
Optional Offset Nulling Circuit  
5V  
3
2
7
+
6
LT1190  
4
8
–5V  
1
INPUT OFFSET VOLTAGE CAN BE ADJUSTED OVER A ±150mV  
RANGE WITH A 1kTO 10kPOTENTIOMETER  
LT1190 • TA03  
4
LT1190  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Input Bias Current  
vs Common Mode Voltage  
Input Bias Current  
vs Temperature  
Common Mode Voltage  
vs Supply Voltage  
4
3
–0.3  
–0.4  
10  
8
V
S
= ±5V  
–55°C  
25°C  
V = ±5V  
S
6
+V COMMON MODE  
°
125 C  
4
+I  
–I  
2
1
B
–0.5  
–0.6  
–0.7  
–0.8  
2
I
OS  
0
25°C  
–2  
–4  
–6  
–8  
–10  
–55°C  
0
–1  
–2  
–55°C  
25°C  
125°C  
–V COMMON MODE  
B
125°C  
–4 –3 –2 –1  
0
1
2
3
4
–50 –25  
0
25  
50  
75 100 125  
0
2
4
6
8
10  
COMMON MODE VOLTAGE (V)  
TEMPERATURE (°C)  
±V SUPPLY VOLTAGE (V)  
LT1190 • TPC01  
LT1190 • TPC02  
LT1190 • TPC03  
Equivalent Input Noise Voltage  
vs Frequency  
Equivalent Input Noise Current  
vs Frequency  
Supply Current vs Supply Voltage  
80  
60  
40  
2000  
1800  
1600  
1400  
1200  
1000  
800  
40  
30  
20  
10  
0
V
T
= ±5V  
V
T
= ±5V  
= 25°C  
= 0Ω  
S
S
= 25°C  
A
A
R
= 100k  
R
S
S
–55°C  
125°C  
25°C  
600  
20  
0
400  
200  
0
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
0
2
4
6
8
10  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
±SUPPLY VOLTAGE (V)  
LT1190 • TPC05  
LT1190 • TPC04  
LT1190 • TPC06  
Shutdown Supply Current  
vs Temperature  
Open-Loop Voltage Gain  
vs Temperature  
Open-Loop Voltage Gain  
vs Load Resistance  
5.0  
4.5  
30k  
30k  
20k  
10k  
0
V
= ±5V  
V
V
= ±5V  
= ±3V  
V
V
= ±5V  
= ±3V  
S
S
O
S
O
R = 1k  
L
V
= –V + 0.4V  
EE  
SHDN  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
20k  
10k  
V
= –V + 0.2V  
EE  
SHDN  
R = 100Ω  
L
V
= –V  
50  
SHDN  
25  
EE  
0
–50 –25  
0
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
10  
100  
1000  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
LOAD RESISTANCE ()  
LT1190 • TPC07  
LT1190 • TPC08  
LT1190 • TPC09  
5
LT1190  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Gain Bandwidth Product  
vs Supply Voltage  
Gain, Phase vs Frequency  
Output Impedance vs Frequency  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
100  
10  
55  
50  
V
T
= ±5V  
= 25°C  
= 1k  
V
T
= ±5V  
S
S
A
= 25°C  
A
PHASE  
R
L
T
A
= –55°C, 25°C, 125°C  
45  
40  
A
V
= –100  
1
A
V
= –1  
V
35  
30  
25  
A
= –10  
GAIN  
0.1  
0.01  
–20  
–20  
100k  
1M  
10M  
100M  
1G  
1k  
10k  
100k  
1M  
10M  
100M  
0
2
4
6
8
10  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
±V SUPPLY VOLTAGE (V)  
LT1190 • TPC10  
LT1190 • TPC12  
LT1190 • TPC11  
Power Supply Rejection Ratio  
vs Frequency  
Unity Gain Frequency and  
Common Mode Rejection Ratio  
vs Frequency  
Phase Margin vs Temperature  
80  
75  
70  
65  
60  
80  
75  
70  
65  
60  
60  
50  
40  
30  
20  
10  
0
80  
60  
V
= ±5V  
= 25°C  
= 1k  
S
A
L
V
V
A
= ±5V  
RIPPLE  
= 25°C  
S
T
= ±300mV  
PHASE MARGIN  
R
T
40  
–PSRR  
20  
+PSRR  
UNITY GAIN FREQUENCY  
55  
50  
45  
40  
55  
50  
45  
40  
0
V
= ±5V  
= 1k  
S
L
R
–20  
–50 –25  
0
25  
50  
75 100 125  
100k  
1M  
10M  
100M  
1G  
1k  
10k  
100k  
1M  
10M  
100M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
LT1190 • TPC14  
LT1190 • TPC13  
LT1190 • TPC15  
Output Short-Circut Current  
vs Temperature  
Output Voltage Swing  
vs Load Resistance  
Output Swing vs Supply Voltage  
100  
90  
10  
8
5
3
V
S
= ±5V  
R
L
= 1k  
V
= ±5V  
S
+V , 25°C,  
T = –55°C  
A
OUT  
125°C, –55°C  
6
T
A
= 25°C  
4
1
2
T
A
= 125°C  
0
–1  
–3  
–5  
–2  
–4  
80  
–V , –55°C,  
OUT  
25°C, 125°C  
T
= 125°C  
A
–6  
–8  
T
A
= –55°C, 25°C  
70  
–10  
–50 –25  
0
25  
50  
75 100 125  
0
2
4
6
8
10  
10  
100  
LOAD RESISTANCE ()  
1000  
TEMPERATURE (°C)  
±V SUPPLY VOLTAGE (V)  
LT1190 • TPC16  
LT1190 • TPC17  
LT1190 • TPC18  
6
LT1190  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Output Voltage Step  
vs Settling Time, AV = 1  
Output Voltage Step  
vs Settling Time, AV = +1  
Slew Rate vs Temperature  
600  
500  
400  
300  
4
2
4
2
V
T
= ±5V  
= 25°C  
= 1k  
V
T
= ±5V  
= 25°C  
= 1k  
V
T
= ±5V  
= 25°C  
= 1k  
S
S
S
A
A
A
R
L
R
L
R
L
–SLEW RATE  
+SLEW RATE  
1mV  
1mV  
V
= ±2V  
O
10mV  
10mV  
0
0
–2  
–4  
–2  
–4  
10mV  
1mV  
1mV  
10mV  
–50 –25  
0
25  
50  
75 100 125  
50 70  
90 110 130 150 170 190  
SETTLING TIME (ns)  
0
50 100 150 200 250 300 350  
SETTLING TIME (ns)  
TEMPERATURE (°C)  
LT1190 • TPC19  
LT1190 • TPC20  
LT1190 • TPC21  
Large-Signal Transient Response  
Small-Signal Transient Response  
Output Overload  
1190 G22  
1190 G24  
AV = +1, CL = 10pF SCOPE PROBE  
AV = +1, SMALL-SIGNAL RISE TIME, 1190 G23  
WITH FET PROBES  
AV = –1, VIN = 12VP-P  
7
LT1190  
W U U  
U
APPLICATIO S I FOR ATIO  
Power Supply Bypassing  
In most applications, and those requiring good settling  
time, it is important to use multiple bypass capacitors. A  
0.1µF ceramic disc in parallel with a 4.7µF tantalum is  
recommended. Two oscilloscope photos with different  
bypass conditions are used to illustrate the settling time  
characteristics of the amplifier. Note that although the  
outputwaveformlooksacceptableat1V/DIV, whenampli-  
fied to 1mV/DIV the settling time to 2mV is 4.244µs for the  
0.1µF bypass; the time drops to 163ns with multiple  
bypass capacitors.  
The LT1190 is quite tolerant of power supply bypassing.  
In some applications a 0.1µF ceramic disc capacitor  
placed 1/2 inch from the amplifier is all that is required. A  
scope photo of the amplifier output with no supply  
bypassing is used to demonstrate this bypassing toler-  
ance, RL = 1k.  
No Supply Bypass Capacitors  
Settling Time Poor Bypass  
VOUT  
1mV/DIV  
VOUT  
1V/DIV  
0V  
LT1190 • TA04  
AV = –1, IN DEMO BOARD, RL = 1kΩ  
LT1190 • TA06  
Supply bypassing can also affect the response in the  
frequency domain. It is possible to see a slight 1dB rise in  
the frequency response at 130MHz depending on the gain  
configuration, supply bypass, inductance in the supply  
leads and printed circuit board layout. This can be further  
minimized by not using a socket.  
SETTLING TIME TO 2mV, AV = –1  
SUPPLY BYPASS CAPACITORS = 0.1µF  
Settling Time Good Bypass  
Closed-Loop Voltage Gain vs Frequency  
20  
V
T
= ±5V  
= 25°C  
= 1k  
VOUT  
1mV/DIV  
S
VOUT  
1V/DIV  
0V  
A
R
L
10  
0
A
= 2  
= 1  
V
A
V
LT1190 • TA07  
SETTLING TIME TO 2mV, AV = –1  
SUPPLY BYPASS CAPACITORS = 0.1µF + 4.7µF TANTALUM  
–10  
–20  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
LT1190 • TA05  
8
LT1190  
W U U  
APPLICATIO S I FOR ATIO  
U
Cable Terminations  
Using the Shutdown Feature  
The LT1190 operational amplifier has been optimized as a  
lowcostvideocabledriver.The±50mAguaranteedoutput  
current enables the LT1190 to easily deliver 7.5VP-P into  
100, while operating on ±5V supplies or 2.6VP-P on a  
single 5V supply.  
The LT1190 has a unique feature that allows the amplifier  
to be shut down for conserving power or for multiplexing  
several amplifiers onto a common cable. The amplifier will  
shut down by taking Pin 5 to V. In shutdown, the  
amplifier dissipates 15mW while maintaining a true high  
impedance output state of 15kin parallel with the  
feedback resistors. The amplifiers must be used in a  
noninverting configuration for MUX applications. In in-  
verting configurations the input signal is fed to the output  
through the feedback components. The following scope  
photosshowthatwithveryhighRL, theoutputistrulyhigh  
impedance; the output slowly decays toward ground.  
Additionally,whentheoutputisloadedwithaslittleas1kΩ  
the amplifier shuts off in 400ns. This shutoff can be under  
the control of HC CMOS operating between 0V and – 5V.  
Double Terminated Cable Driver  
5V  
3
2
7
+
CABLE  
75Ω  
6
LT1190  
4
–5V  
75Ω  
R
FB  
R
G
Cable Driver Voltage Gain vs Frequency  
10  
A
FB  
= 2  
V
T
= ±5V  
= 25°C  
V
S
A
R
= 1k  
8
6
R
= 330Ω  
G
4
Output Shutdown  
A
= 1  
= 1k  
= 1k  
V
R
2
FB  
R
G
0
0V  
VSHDN  
–2  
–4  
–6  
5V  
–8  
VOUT  
–10  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
LT1190 • TA08  
When driving a cable it is important to terminate the cable  
to avoid unwanted reflections. This can be done in one of  
two ways: single termination or double termination. With  
single termination, the cable must be terminated at the  
receiving end (75to ground) to absorb unwanted en-  
ergy. The best performance can be obtained by double  
termination(75inserieswiththeoutputoftheamplifier,  
and 75to ground at the other end of the cable). This  
termination is preferred because reflected energy is ab-  
sorbed at each end of the cable. When using the double  
terminationtechniqueitisimportanttonotethatthesignal  
is attenuated by a factor of 2, or 6dB. This can be compen-  
sated for by taking a gain of 2, or 6dB in the amplifier. The  
cable driver has a – 3dB bandwidth in excess of 30MHz  
while driving the 150load.  
LT1190 • TA09  
1MHz SINE WAVE GATED OFF WITH  
SHUTDOWN PIN, AV = 1, RL = SCOPE PROBE  
Output Shutdown  
0V  
VSHDN  
5V  
VOUT  
LT1190 • TA10  
1MHz SINE WAVE GATED OFF WITH  
SHUTDOWN PIN, AV = 1, RL = 1kΩ  
9
LT1190  
W U U  
U
APPLICATIO S I FOR ATIO  
The ability to maintain shutoff is shown on the curve  
Shutdown Supply Current vs Temperature in the Typical  
Performance Characteristics section. At very high  
elevated temperatures it is important to hold the shut-  
down pin close to the negative supply to keep the supply  
current from increasing.  
Other precautions include:  
1. Use a ground plane (see Design Note 50, High Fre-  
quency Amplifier Evaluation Board).  
2. Do not use high source impedances. The input  
capacitance of 2pF and RS = 10k for instance, will give  
an 8MHz – 3dB bandwidth.  
Murphy Circuits  
3. PC board socket may reduce stability.  
There are several precautions the user should take when  
using the LT1190 in order to realize its full capability.  
Although the LT1190 can drive a 50pF load, isolating the  
capacitance with 10can be helpful. Precautions prima-  
rily have to do with driving large capacitive loads.  
4. Afeedbackresistorof1korlowerreducestheeffectsof  
stray capacitance at the inverting input. (For instance,  
closed-loop gain of 2 can use RFB = 300and RG =  
300.)  
Driving Capacitive Load  
Driving Capacitive Load  
LT1190 • TA11  
LT1190 • TA12  
AV = –1, IN DEMO BOARD, CL = 50pF  
AV = –1, IN DEMO BOARD, CL = 50pF  
WITH 10ISOLATING RESISTOR  
Murphy Circuits  
5V  
5V  
5V  
3
2
3
2
3
2
7
7
7
+
+
+
COAX  
6
6
6
LT1190  
LT1190  
LT1190  
4
4
4
1X SCOPE  
PROBE  
–5V  
–5V  
–5V  
SCOPE  
PROBE  
LT1190 • TA13  
An Unterminated Cable Is  
a Large Capacitive Load  
A 1X Scope Probe Is a  
Large Capacitive Load  
A Scope Probe on the Inverting  
Input Reduces Phase Margin  
10  
LT1190  
W
W
SI PLIFIED SCHE ATIC  
+
7
V
V
V
BIAS  
BIAS  
C
M
+
3
C
FF  
2
V
6
+V  
+V  
OUT  
*
4
V
LT1190 • TA14  
5
1
8
SHDN  
BAL  
BAL  
*SUBSTRATE DIODE, DO NOT FORWARD BIAS  
U
PACKAGE DESCRIPTIO  
Dimensions in inches (millimeters) unless otherwise noted.  
J8 Package  
8-Lead CERDIP (Narrow 0.300, Hermetic)  
(LTC DWG # 05-08-1110)  
CORNER LEADS OPTION  
(4 PLCS)  
0.023 – 0.045  
(0.584 – 1.143)  
HALF LEAD  
OPTION  
0.405  
(10.287)  
MAX  
0.005  
(0.127)  
MIN  
0.200  
(5.080)  
MAX  
0.045 – 0.068  
0.300 BSC  
(0.762 BSC)  
(1.143 – 1.727)  
FULL LEAD  
OPTION  
6
5
4
8
7
0.015 – 0.060  
(0.381 – 1.524)  
0.025  
(0.635)  
RAD TYP  
0.220 – 0.310  
(5.588 – 7.874)  
0.008 – 0.018  
(0.203 – 0.457)  
0° – 15°  
J8 1298  
1
2
3
0.045 – 0.065  
(1.143 – 1.651)  
0.125  
3.175  
MIN  
0.014 – 0.026  
(0.360 – 0.660)  
0.100  
(2.54)  
BSC  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE  
OR TIN PLATE LEADS  
OBSOLETE PACKAGE  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LT1190  
U
PACKAGE DESCRIPTIO  
N8 Package  
8-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510)  
0.400*  
(10.160)  
MAX  
0.130 ± 0.005  
(3.302 ± 0.127)  
0.300 – 0.325  
(7.620 – 8.255)  
0.045 – 0.065  
(1.143 – 1.651)  
8
1
7
6
5
4
0.065  
(1.651)  
TYP  
0.255 ± 0.015*  
(6.477 ± 0.381)  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
0.020  
(0.508)  
MIN  
(3.175)  
MIN  
+0.035  
–0.015  
2
3
0.325  
0.018 ± 0.003  
0.100  
(2.54)  
BSC  
N8 1098  
+0.889  
8.255  
(0.457 ± 0.076)  
(
)
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
0.010 – 0.020  
(0.254 – 0.508)  
7
5
8
6
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
0.016 – 0.050  
(0.406 – 1.270)  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
TYP  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
SO8 1298  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1
3
4
2
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1357  
High Speed Operational Amplifier  
High Speed Operational Amplifier  
50MHz Gain Bandwidth, 800V/µs Slew Rate, I = 5mA Max  
S
LT1360  
25MHz Gain Bandwidth, 600V/µs Slew Rate, I = 2.5mA Max  
S
1190fa LT/CP 0801 1.5K REV A • PRINTED IN THE USA  
LINEAR TECHNOLOGY CORPORATION 1991  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT1191

Ultra High Speed Operational Amplifier
Linear

LT1191C

Ultra High Speed Operational Amplifier
Linear

LT1191CJ8

Ultra High Speed Operational Amplifier
Linear

LT1191CN8

Ultra High Speed Operational Amplifier
Linear

LT1191CS8

Ultra High Speed Operational Amplifier
Linear

LT1191CS8#PBF

LT1191 - Ultra High Speed Operational Amplifier; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LT1191CS8#TRPBF

LT1191 - Ultra High Speed Operational Amplifier; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LT1191M

Ultra High Speed Operational Amplifier
Linear

LT1191MJ8

Ultra High Speed Operational Amplifier
Linear

LT1191MJ8/883B

IC OP-AMP, 8000 uV OFFSET-MAX, 90 MHz BAND WIDTH, CDIP8, HERMETIC SEALED, CERDIP-8, Operational Amplifier
Linear

LT1191MN8

IC OP-AMP, PDIP8, PLASTIC, DIP-8, Operational Amplifier
Linear

LT1191_01

Ultrahigh Speed Operational Amplifier
Linear