LT1204CN#PBF [Linear]

LT1204 - 4-Input Video Multiplexer with 75MHz Current Feedback Amplifier; Package: PDIP; Pins: 16; Temperature Range: 0°C to 70°C;
LT1204CN#PBF
型号: LT1204CN#PBF
厂家: Linear    Linear
描述:

LT1204 - 4-Input Video Multiplexer with 75MHz Current Feedback Amplifier; Package: PDIP; Pins: 16; Temperature Range: 0°C to 70°C

复用器 放大器
文件: 总20页 (文件大小:333K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1204  
4-Inp ut Vid e o Multip le xe r  
with 75MHz Curre nt  
Fe e d b a c k Am p lifie r  
U
DESCRIPTIO  
EATURE  
S
F
The LT®1204 is a 4-input video multiplexer designed to  
drive 75cables and easily expand into larger routing  
systems. Wide bandwidth, high slew rate, and low differ-  
ential gain and phase make the LT1204 ideal for broadcast  
quality signal routing. Channel separation and disable  
isolation are greater than 90dB up to 10MHz. The channel-  
0.1dB Gain Flatness > 30MHz  
Channel Separation at 10MHz: 90dB  
40mV Switching Transient, Input Referred  
3dB Bandwidth, AV = 2, RL = 150: 75MHz  
Channel-to-Channel Switching Time: 120ns  
Easy to Expand for More Inputs  
Large Input Range: ± 6V  
to-channel output switching transient is only 40mV ,  
P-P  
0.04% Differential Gain, RL = 150Ω  
0.06° Differential Phase, RL = 150Ω  
High Slew Rate: 1000V/µs  
Output Swing, RL = 400: ±13V  
Wide Supply Range: ±5V to ±15V  
with a 50ns duration, making the transition imperceptible  
on high quality monitors.  
A unique feature of the LT1204 is its ability to expand into  
larger routing matrices. This is accomplished by a patent  
pending circuit that bootstraps the feedback resistors in  
thedisablecondition, raisingthetrueoutputimpedanceof  
the circuit. The effect of this feature is to eliminate cable  
misterminations in large systems.  
O U  
PPLICATI  
S
A
Broadcast Quality Video Multiplexing  
Large Matrix Routing  
Medical Imaging  
Large Amplitude Signal Multiplexing  
Programmable Gain Amplifiers  
The large input and output signal levels supported by the  
LT1204 when operated on ±15V supplies make it ideal for  
general purpose analog signal selection and multiplexing.  
A shutdown feature reduces the supply current to 1.5mA.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
O
TYPICAL APPLICATI  
All Hostile Crosstalk  
Surface Mount PCB Measurements  
V
IN0  
1
16  
+
V
IN0  
+1  
15V  
V
+
75Ω  
75Ω  
75Ω  
75Ω  
75Ω  
V
2
3
15  
14  
O
–20  
–40  
V
OUT  
CFA  
GND  
V = ±15V  
S
V
IN 0  
= GND  
V
IN1  
V
R
F
1k  
IN1  
+1  
V
–15V  
V
R
= 0dBm  
= 100Ω  
IN 1,2,3  
L
R
G
1k  
4
5
FB 13  
GND  
–60  
V
IN2  
S/D 12  
ENABLE 11  
A1 10  
V
IN2  
+1  
–80  
6
7
GND  
LOGIC  
–100  
–120  
V
IN3  
V
IN3  
A0  
9
+1  
1
10  
100  
8
REF  
LT1204  
FREQUENCY (MHz)  
1204 TA01  
1204 TA02  
–15V  
6.8k  
8.2k  
1
LT1204  
W W W  
U
ABSOLUTE AXI U RATI GS  
Operating Temperature Range ............... 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
Junction Temperature (Note 4)............................ 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
Supply Voltage ..................................................... ±18V  
– Input Current (Pin 13) .................................... ±15mA  
+Input and Control/Logic Current (Note 1) ........ ±50mA  
Output Short-Circuit Duration (Note 2).........Continuous  
Specified Temperature Range (Note 3)....... 0°C to 70°C  
W
U
/O  
PACKAGE RDER I FOR ATIO  
TOP VIEW  
TOP VIEW  
ORDER PART  
ORDER PART  
+
NUMBER  
+
V
1
2
3
4
5
6
7
8
16  
15  
14  
V
NUMBER  
IN0  
1
2
3
4
5
6
7
8
V
16  
15  
14  
13  
12  
11  
10  
9
V
IN0  
GND  
V
O
V
O
GND  
V
IN1  
V
LT1204CN*  
V
LT1204CSW*  
V
IN1  
GND  
13 FB  
FB  
GND  
V
IN2  
12 SHDN  
11 ENABLE  
10 A1  
SHDN  
ENABLE  
A1  
V
IN2  
GND  
GND  
V
IN3  
V
IN3  
REF  
9
A0  
A0  
REF  
SW PACKAGE  
16-LEAD PLASTIC SO  
N PACKAGE  
16-LEAD PDIP  
*See Note 3  
*See Note 3  
TJMAX = 150°C, θJA = 70°C/W  
TJMAX = 150°C, θJA = 90°C/W  
Consult factory for Industrial and Military grade parts.  
ELECTRICAL CHARACTERISTICS  
0°C TA 70°C, ±5V V ≤ ±15V, VCM = 0V, Pin 8 grounded and pulse tested unless otherwise noted.  
S
SYMBOL  
PARAMETER  
CONDITIONS  
Any Positive Input, T = 25°C  
MIN  
TYP  
MAX  
UNITS  
V
OS  
Input Offset Voltage  
5
14  
16  
mV  
mV  
A
Offset Matching  
Between Any Positive Input, V = ±15V  
0.5  
40  
3
5
mV  
S
Input Offset Voltage Drift  
Positive Input Bias Current  
Any Positive Input  
µV/°C  
+
I
Any Positive Input, T = 25°C  
8
10  
µA  
µA  
IN  
A
I
Negative Input Bias Current  
T = 25°C  
A
±20  
±100  
±150  
µA  
µA  
IN  
e
Input Noise Voltage  
f = 1kHz, R = 1k, R = 10, R = 0Ω  
7
nV/Hz  
pA/Hz  
pA/Hz  
n
F
G
S
+i  
Noninverting Input Noise Current Density  
Inverting Input Noise Current Density  
Input Capacitance  
f = 1kHz  
f = 1kHz  
1.5  
40  
n
–i  
n
C
Input Selected  
Input Deselected  
3.0  
3.5  
pF  
pF  
IN  
C
Output Capacitance  
Disabled, Pin 11 Voltage = 0V  
V = ±5V, V = 1.5V, 2V, T = 25°C  
8
pF  
OUT  
R
IN  
Positive Input Resistance, Any Positive Input  
5
4
20  
20  
MΩ  
MΩ  
S
IN  
A
V = ±15V, V = ±5V  
S
IN  
2
LT1204  
ELECTRICAL CHARACTERISTICS  
0°C TA 70°C, ±5V V ≤ ±15V, VCM = 0V, Pin 8 grounded and pulse tested unless otherwise noted.  
S
SYMBOL  
PARAMETER  
CONDITIONS  
V = ±5V, T = 25°C  
MIN  
TYP  
MAX  
UNITS  
Input Voltage Range, Any Positive Input  
2.0  
1.5  
±5.0  
3.75  
2.5  
2.0  
±6.0  
4.0  
V
V
V
V
S
A
V = ±15V  
S
V = ±15V, Pin 8 Voltage = 5V  
S
CMRR  
PSRR  
Common Mode Rejection Ratio  
V = ±5V, V = 1.5V, 2V, T = 25°C  
48  
48  
55  
58  
dB  
dB  
S
CM  
A
V = ±15V, V = ±5V  
S
CM  
Negative Input Current  
Common Mode Rejection  
V = ±5V, V = 1.5V, 2V, T = 25°C  
0.05  
0.05  
1
1
µA/V  
µA/V  
S
CM  
A
V = ±15V, V = ±5V  
S
CM  
Power Supply Rejection Ratio  
V = ±4.5V to ±15V  
S
60  
76  
dB  
Negative Input Current Power Supply Rejection V = ±4.5V to ±15V  
0.5  
5
µA/V  
S
A
VOL  
Large-Signal Voltage Gain  
V = ±15V, V = ±10V, R = 1k  
57  
57  
73  
66  
dB  
dB  
S
OUT  
L
V = ±5V, V = ±2V, R = 150Ω  
S
OUT  
L
R
OL  
Transresistance  
V = ±15V, V = ±10V, R = 1k  
V = ±5V, V = ±2V, R = 150Ω  
S OUT L  
115  
115  
310  
210  
kΩ  
kΩ  
S
OUT  
L
V /I  
O
IN  
V
Output Voltage Swing  
V = ±15V, R = 400, T = 25°C  
±12  
±10  
±13.5  
±3.7  
55  
V
V
OUT  
S
L
A
V = ±5V, R = 150, T = 25°C  
±3.0  
±2.5  
V
V
S
L
A
I
Output Current  
R = 0, T = 25°C  
35  
125  
mA  
OUT  
L
A
I
S
Supply Current (Note 5)  
Pin 11 = 5V  
Pin 11 = 0V  
Pin 12 = 0V  
19  
19  
1.5  
24  
24  
3.5  
mA  
mA  
mA  
Disabled Output Resistance  
V = ±15V, Pin 11 = 0V, V = ±5V,  
S O  
R = R = 1k  
14  
8
25  
20  
kΩ  
kΩ  
F
G
V = ±15V, Pin 11 = 0V, V = ±5V,  
S
O
R = 2k, R = 222Ω  
F
G
U
DIGITAL I PUT CHARACTERISTICS  
0°C TA 70°C, V = ±15V, RF = 2k, RG = 220, RL = 400unless otherwise noted.  
S
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
IL  
Input Low Voltage  
Pins 9, 10, 11, 12  
0.8  
V
IH  
Input High Voltage  
Pins 9, 10, 11, 12  
2
V
I
IL  
Input Low Current  
Pins 9, 10 Voltage = 0V  
Pins 9, 10 Voltage = 5V  
Pin 11 Voltage = 0V  
Pin 11 Voltage = 5V  
1.5  
10  
6
µA  
nA  
µA  
µA  
µA  
ns  
I
IH  
Input High Current  
150  
15  
Enable Low Input Current  
Enable High Input Current  
Shutdown Input Current  
Channel-to-Channel Select Time (Note 6)  
Disable Time (Note 7)  
4.5  
200  
20  
300  
80  
I
Pin 12 Voltage 0V V  
5V  
SHDN  
SHDN  
t
t
t
t
Pin 8 Voltage = 5V, T = 25°C  
120  
40  
240  
100  
200  
10  
sel  
A
Pin 8 Voltage = 5V, T = 25°C  
ns  
dis  
A
Enable Time (Note 8)  
Pin 8 Voltage = 5V, T = 25°C  
110  
1.4  
ns  
en  
A
Shutdown Assert or Release Time (Note 9)  
Pin 8 Voltage = 5V, T = 25°C  
µs  
SHDN  
A
3
LT1204  
AC CHARACTERISTICS TA = 25°C, V = ±15V, RF = RG = 1k, unless otherwise noted.  
S
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
5.6  
1000  
40  
MAX  
UNITS  
ns  
t , t  
Small-Signal Rise and Fall Time  
Slew Rate (Note 10)  
R = 150, V = ±125mV  
L
r
f
OUT  
SR  
R = 400Ω  
L
400  
V/µs  
mV  
ns  
Channel Select Output Transient  
Settling Time  
All V = 0V, R = 400, Input Referred  
IN L  
t
0.1%, V = 10V, R = 1k  
70  
S
OUT  
L
All Hostile Crosstalk (Note 11)  
Disable Crosstalk (Note 11)  
Shutdown Crosstalk (Note 11)  
All Hostile Crosstalk (Note 11)  
Disable Crosstalk (Note 11)  
Shutdown Crosstalk (Note 11)  
Differential Gain (Note 12)  
SO PCB #028, R = 100, R = 10Ω  
92  
dB  
L
S
SO PCB #028, Pin 11 Voltage = 0V, R = 100, R = 50Ω  
95  
dB  
L
S
SO PCB #028, Pin 12 Voltage = 0V, R = 100, R = 50Ω  
92  
dB  
L
S
PDIP PCB #029, R = 100, R = 10Ω  
76  
dB  
L
S
PDIP PCB #029, Pin 11 Voltage = 0V, R = 100, R = 50Ω  
81  
dB  
L
S
PDIP PCB #029, Pin 12 Voltage = 0V, R = 100, R = 50Ω  
76  
dB  
L
S
V = ±15V, R = 150Ω  
0.04  
0.04  
%
%
S
L
V = ±5V, R = 150Ω  
S
L
Differential Phase (Note 12)  
V = ±15V, R = 150Ω  
0.06  
0.12  
DEG  
DEG  
S
L
V = ±5V, R = 150Ω  
S
L
The denotes specifications which apply over the specified operating  
temperature range.  
appearance of 5V at Pin 15 when Pin 9 goes from 5V to 0V. Pin 10  
Voltage = 5V. Apply 0.5V DC to Pin 7 and measure the time for the  
appearance of 5V at Pin 15 when Pin 9 goes from 0V to 5V. Pin 10  
Voltage = 5V.  
Note 1: Analog and digital inputs (Pins 1, 3, 5, 7, 9, 10, 11 and 12) are  
protected against ESD and overvoltage with internal SCRs. For inputs  
< ±6V the SCR will not fire, voltages above 6V will fire the SCRs and  
the DC current should be limited to 50mA. To turn off the SCR the pin  
voltage must be reduced to less than 2V or the current reduced to less  
than 10mA.  
Note 7: Apply 0.5V DC to Pin 1 and measure the time for the  
disappearance of 5V at Pin 15 when Pin 11 goes from 5V to 0V.  
Pins 9 and 10 are at 0V.  
Note 8: Apply 0.5V DC to Pin 1 and measure the time for the  
appearance of 5V at Pin 15 when Pin 11 goes from 0V to 5V.  
Pins 9 and 10 are at 0V. Above a 1MHz toggle rate, ten reduces.  
Note 2: A heat sink may be required depending on the power supply  
voltage.  
Note 3: Commercial grade parts are designed to operate over the  
temperature range of 40°C to 85°C but are neither tested nor  
guaranteed beyond 0°C to 70°C. Industrial grade parts specified and  
tested over 40°C to 85°C are available on special request. Consult  
factory.  
Note 9: Apply 0.5V DC at Pin 1 and measure the time for the  
appearance of 5V at Pin 15 when Pin 12 goes from 0V to 5V.  
Pins 9 and 10 are at 0V. Then measure the time for the disappearance  
of 5V DC to 500mV at Pin 15 when Pin 12 goes from 5V to 0V.  
Note 10: Slew rate is measured at ±5V on a ±10V output signal while  
operating on ±15V supplies with RF = 2k, RG = 220and RL = 400.  
Note 4: T is calculated from the ambient temperature TA and power  
J
dissipation PD according to the following formulas:  
Note 11: V = 0dBm (0.223VRMS) at 10MHz on any 3 inputs with the  
IN  
LT1204CN: T = TA + (PD)(70°C/W)  
4th input selected. For Disable crosstalk and Shutdown crosstalk all 4  
inputs are driven simultaneously. A 6dB output attenuator is formed by  
a 50series output resistor and the 50input impedance of the  
HP4195A Network Analyzer. RF = RG = 1k.  
J
LT1204CS: T = TA + (PD)(90°C/W)  
J
Note 5: The supply current of the LT1204 has a negative temperature  
coefficient. For more information see Typical Performance  
Characteristics.  
Note 12: Differential Gain and Phase are measured using a Tektronix  
TSG120 YC/NTSC signal generator and a Tektronix 1780R Video  
Measurement Set. The resolution of this equipment is 0.1% and 0.1°.  
Five identical MUXs were cascaded giving an effective resolution of  
0.02% and 0.02°.  
Note 6: Apply 0.5V DC to Pin 1 and measure the time for the  
appearance of 5V at Pin 15 when Pin 9 goes from 5V to 0V. Pin 10  
Voltage = 0V. Apply 0.5V DC to Pin 3 and measure the time for the  
appearance of 5V at Pin 15 when Pin 9 goes from 0V to 5V. Pin 10  
Voltage = 0V. Apply 0.5V DC to Pin 5 and measure the time for the  
4
LT1204  
W U  
TYPICAL AC PERFOR A CE  
Measurements taken from SO Demonstration Board #028.  
SMALL SIGNAL  
3dB BW (MHz)  
SMALL SIGNAL  
0.1dB BW (MHz)  
SMALL SIGNAL  
PEAKING (dB)  
V (V)  
S
A
V
R ()  
L
R ()  
F
R ()  
G
±15  
±12  
±5  
1
150  
1k  
1.1k  
1.6k  
None  
None  
88.5  
95.6  
48.3  
65.8  
0.1  
0
1
150  
1k  
976  
1.3k  
None  
None  
82.6  
90.2  
49.1  
63.6  
0.1  
0.1  
1
150  
1k  
665  
866  
None  
None  
65.5  
68.2  
43.6  
42.1  
0.1  
0.1  
±15  
±12  
±5V  
±15  
±12  
±5  
2
150  
1k  
787  
887  
787  
887  
75.7  
82.2  
45.8  
61.3  
0
0.1  
2
150  
1k  
750  
845  
750  
845  
71.9  
77.5  
45.0  
52.1  
0
0
2
150  
1k  
590  
649  
590  
649  
58.0  
62.1  
32.4  
42.7  
0
0.1  
10  
10  
10  
150  
1k  
866  
1k  
95.3  
110  
44.3  
47.4  
28.7  
30.9  
0.1  
0.1  
150  
1k  
825  
931  
90.9  
100  
43.5  
46.3  
27.2  
32.1  
0
0.1  
150  
1k  
665  
750  
73.2  
82.5  
37.2  
39.3  
22.1  
27.8  
0
0.1  
TRUTH TABLE  
CHANNEL  
SELECTED  
A1  
A0  
ENABLE  
SHUTDOWN  
0
0
1
1
0
1
0
1
1
1
1
1
1
1
1
1
V
IN0  
V
IN1  
V
IN2  
V
IN3  
X
X
X
X
0
1
0
High Z Output  
Off  
X
5
LT1204  
U W  
TYPICALPERFOR A CE CHARACTERISTICS  
±12V Frequency Response, AV = 1  
±5V Frequency Response, AV = 1  
4
3
2
1
0
4
3
2
1
0
V = ±12V  
V = ±5V  
S
S
–20  
–40  
–60  
–20  
–40  
–60  
R = 150Ω  
R = 976Ω  
F
R = 150Ω  
R = 655Ω  
F
L
L
PHASE  
PHASE  
0
–80  
0
–80  
GAIN  
GAIN  
–1  
–100  
–1  
–100  
–2  
–3  
–4  
–5  
– 6  
–120  
–140  
–160  
–180  
–200  
–2  
–3  
–4  
–5  
–6  
–120  
–140  
–160  
–180  
–200  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1204 G01  
1204 G04  
±12V Frequency Response, AV = 2  
±5V Frequency Response, A = 2  
V
10  
9
0
10  
9
0
V = ±5V  
V = ±12V  
S
R
L
S
–20  
–40  
–60  
–20  
–40  
–60  
= 150Ω  
R = 150Ω  
R = 750Ω  
F
L
PHASE  
R = 590Ω  
8
F
R
G
8
= 590Ω  
R
G
= 750Ω  
PHASE  
7
7
6
5
–80  
6
5
–80  
GAIN  
GAIN  
–100  
–100  
4
3
2
1
0
–120  
–140  
–160  
–180  
–200  
4
3
2
1
0
–120  
–140  
–160  
–180  
–200  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1204 G05  
1204 G02  
±12V Frequency Response, AV = 10  
±5V Frequency Response, A = 10  
V
24  
23  
22  
21  
0
24  
23  
22  
21  
0
V = ±12V  
V = ±5V  
S
S
–20  
–40  
–60  
–20  
–40  
–60  
R
L
= 150Ω  
R = 150Ω  
L
R = 825Ω  
R = 665Ω  
F
R = 73.2Ω  
G
F
R
G
= 90.9Ω  
PHASE  
PHASE  
20  
19  
–80  
20  
19  
–80  
GAIN  
GAIN  
–100  
–100  
18  
17  
16  
15  
14  
–120  
–140  
–160  
–180  
–200  
18  
17  
16  
15  
14  
–120  
–140  
–160  
–180  
–200  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1204 G03  
1204 G06  
6
LT1204  
U W  
TYPICALPERFOR A CE CHARACTERISTICS  
Maximum Undistorted Output  
vs Frequency  
Maximum Capacitive Load  
vs Feedback Resistor  
Total Harmonic Distortion  
vs Frequency  
0.1  
10000  
1000  
100  
25  
20  
R
L
= 1k  
V = ±15V  
V = ±15V  
S
S
A = 2  
R = 400Ω  
R
= 1k  
= 1k  
V
T
A
L
L
= 25°C  
R = R = 1k  
R
FB  
F
G
5dB PEAKING  
15  
10  
5
V = 6V  
O RMS  
0.01  
A = 10  
V
V = ±5V  
S
V = ±15V  
S
V = 1V  
O RMS  
A = 1  
V
A = 2  
V
0.001  
10  
0
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
0
1
2
3
1
10  
FREQUENCY (MHz)  
100  
FEEDBACK RESISTOR (k)  
1204 G08  
1204 G07  
1204 G09  
±5V All Hostile Crosstalk  
vs Frequency  
All Hostile Crosstalk vs Frequency,  
Various Source Resistance  
±15V All Hostile Crosstalk  
vs Frequency  
–30  
–40  
–20  
–30  
–20  
–30  
V = ±15V  
R = 100Ω  
L
V = ±5V  
R = 100Ω  
L
V = ±15V  
S
R = 100Ω  
L
S
S
R = R = 1k  
R = R = 1k  
R = R = 1k  
F G  
DEMO PCB #028  
F
G
F
G
–40  
–40  
–50  
R
S
= 0Ω  
R
S
= 0Ω  
–50  
–50  
–60  
DEMO PCB #028  
DEMO PCB #028  
–70  
–60  
–60  
–70  
–70  
–80  
R
= 75Ω  
S
–90  
–80  
–80  
R
= 37.5Ω  
= 10Ω  
S
CH1  
ANY CHANNEL  
R
S
–90  
–90  
–100  
–110  
–120  
–130  
R
S
= 0Ω  
CH4  
CH3  
–100  
–110  
–120  
–100  
–110  
–120  
CH2  
1
10  
FREQUENCY (MHz)  
100  
1
10  
FREQUENCY (MHz)  
100  
1
10  
FREQUENCY (MHz)  
100  
1204 G10  
1204 G11  
1204 G12  
Amplifier Output Impedance  
vs Frequency  
Disable and Shutdown Crosstalk  
vs Frequency  
Spot Noise Voltage and Current  
vs Frequency  
1000  
100  
10  
–20  
–30  
100  
10  
1
V = ±15V  
S
V = ±15V  
S
R = 100Ω  
L
–i  
n
R = R = 1k  
F
R
S
G
–40  
= 50Ω  
–50  
DEMO PCB #028  
ALL CHANNELS DRIVEN  
–60  
–70  
e
n
–80  
SHUTDOWN CROSSTALK  
R
FB  
= R = 2k  
G
–90  
1
–100  
–110  
–120  
DISABLE CROSSTALK  
R
FB  
= R = 750Ω  
G
+i  
n
0.1  
1
10  
100  
1M  
FREQUENCY (Hz)  
10M  
100M  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10k  
100k  
FREQUENCY (MHz)  
1204 G13  
1204 G15  
1204 G14  
7
LT1204  
U W  
TYPICAL PERFORMANCE CHARACTERISTICS  
Disabled Output Impedance  
vs Frequency  
Maximum Channel Switching  
Rate vs Pin 8 Voltage  
Output Disable V-I Characteristic  
100  
10  
1
0
–1  
–2  
–3  
V = ±15V  
V
= 1V  
DC  
V = ±15V  
S
IN  
= 100Ω  
S
200  
150  
100  
50  
R = R = 1k  
R
R = R = 1k  
F
G
L
F
G
R
FB  
= R = 1k  
G
–4  
–5  
0
–50  
–100  
–150  
–200  
SLOPE = 1/18k  
–6  
–7  
–8  
0
1.5  
2.0  
3.0  
–5 –4 –3 –2 –1  
0
1
2
3
4
5
1.0  
2.5  
3.5  
4.0  
1k  
10k  
100k  
1M  
10M  
100M  
OUTPUT VOLTAGE (V)  
CHANNEL SWITCHING RATE (MHz)  
FREQUENCY (Hz)  
1204 G17  
1204 G16  
1204 G18  
Input Voltage Range  
vs Supply Voltage  
Input Voltage Range  
vs Pin 8 Voltage  
Power Supply Rejection  
vs Frequency  
70  
60  
50  
40  
30  
20  
10  
0
V = ±15V  
V = ±15V  
A = 1  
V
PIN 8 = 0V  
6
4
6
4
S
S
R
FB  
= R = 1k  
G
25°C  
POSITIVE  
–55°C  
125°C  
2
2
NEGATIVE  
0
0
–55°C, 25°C, 125°C  
125°C  
–2  
–4  
–6  
–2  
–4  
–6  
25°C  
–55°C  
–10  
12  
14  
16  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
0
–1 –2 –3 –4 –5 –6 –7 –8 –9  
2
4
6
8
10  
VOLTAGE ON PIN 8 (V)  
SUPPLY VOLTAGE (±V)  
1204 G19  
1204 G20  
1204 G21  
Output Saturation Voltage  
vs Temperature  
Output Short-Circuit Current  
vs Temperature  
Settling Time to 10mV  
vs Output Step  
+
V
80  
70  
60  
50  
40  
30  
10  
8
V = ±15V  
R
L
= ∞  
S
R = R = 1k  
F
G
–0.5  
–1.0  
6
4
2
0
–2  
–4  
–6  
–8  
–10  
1.0  
0.5  
V
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
40  
60  
SETTLING TIME (ns)  
30  
50  
70  
80  
–50  
0
25  
50  
75 100 125  
–25  
TEMPERATURE (°C)  
1204 G22  
1204 G24  
1204 G23  
8
LT1204  
U W  
TYPICALPERFOR A CE CHARACTERISTICS  
Settling Time to 1mV  
vs Output Step  
Enabled Supply Current  
vs Supply Voltage  
Disabled and Shutdown Supply  
Current vs Supply Voltage  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
22  
21  
20  
19  
18  
17  
16  
15  
2
10  
8
V = ±15V  
S
R = R = 1k  
F
G
6
–55°C  
25°C  
125°C  
4
2
25°C  
0
–55°C  
–2  
–4  
–6  
–8  
–10  
125°C  
I
–55°C, 25°C, 125°C  
SHDN  
1
0
0
2
4
6
8
10 12 14 16 18  
0
2
4
6
8
10 12 14 16 18 20  
14  
SUPPLY VOLTAGE (±V)  
0
2
4
6
8
10 12  
16 18  
SUPPLY VOLTAGE (±V)  
SETTLING TIME (µs)  
1204 G26  
1205 G25  
1204 G27  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
Logic Inputs  
specified over a very wide range of conditions. An advan-  
tage of the current feedback topology used in the LT1204  
is well-controlled frequency response. In all cases of the  
performance table, the peaking is 0.1dB or less. If more  
peaking can be tolerated, larger bandwidths can be  
obtained by lowering the feedback resistor. For gains of  
2 or less, the 0.1dB bandwidth is greater than 30MHz for  
all loads and supply voltages.  
The logic inputs of the LT1204 are compatible with all 5V  
logic. All pins have ESD protection (>2kV), and shorting  
them to 12V or 15V will cause excessive currents to flow.  
Limit the current to less than 50mA when driving the logic  
above 6V.  
Power Supplies  
At high gains (low values of RG) the disabled output  
resistance drops slightly due to loading of the internal  
buffer amplifier as discussed in Multiplexer Expansion.  
The LT1204 will operate from ±5V (10V total) to ±15V  
(30V total) and is specified over this range. It is not  
necessary to use equal value supplies, however, the offset  
voltage and inverting input bias current will change. The  
offset voltage changes about 600µV per volt of supply  
mismatch.Theinvertingbias currentchanges about2.5µA  
per volt of supply mismatch. The power supplies should  
be bypassed with quality tantalum capacitors.  
Small-Signal Rise Time, AV = 2  
Feedback Resistor Selection  
The small-signal bandwidth of the LT1204 is set by the  
external feedback resistors and internal junction capaci-  
tors. As a result the bandwidth is a function of the supply  
voltage, the value of the feedback resistor, the closed-  
loop gain and the load resistor. These effects are outlined  
in the resistor selection guide of the Typical AC Perfor-  
mancetable.Bandwidths rangeas highas 95MHzandare  
1204 AI01  
V = ±15V RF = 1k  
S
RL = 150Ω  
RG = 1k  
9
LT1204  
PPLICATI  
O U  
W
U
A
S I FOR ATIO  
Large-Signal Transient Response  
Capacitance on the Inverting Input  
Current feedback amplifiers require resistive feedback  
from the output to the inverting input for stable operation.  
Take care to minimize the stray capacitance between the  
output and the inverting input. Capacitance on the invert-  
ing input to ground will cause peaking in the frequency  
response and overshoot in the transient response.  
Capacitive Loads  
The LT1204 can drive capacitive loads directly when the  
proper value of feedback resistor is used. The graph of  
Maximum Capacitive Load vs Feedback Resistor should  
be used to select the appropriate value. The value shown  
is for 5dB peaking when driving a 1k load at a gain of 2.  
This is a worst-case condition. The amplifier is more  
stable at higher gains and driving heavier loads. Alterna-  
tively, a small resistor (10to 20) can be put in series  
with the output to isolate the capacitive load from the  
amplifier output. This has the advantage that the ampli-  
fier bandwidth is only reduced when the capacitive load  
is present. The disadvantage is that the gain is a function  
of load resistance.  
1204 AI02  
V = ±15V  
AV = 2  
RF = 1k  
RG = 1k  
RL = 400Ω  
S
Large-Signal Transient Response  
Slew Rate  
The slew rate of the current feedback amplifier on the  
LT1204 is not independent of the amplifier gain the way  
slewrateis inatraditionalopamp.This is becauseboththe  
input and the output stage have slew rate limitations. In  
high gain settings the signal amplitude between the nega-  
tive input and any driven positive input is small and the  
overall slew rate is that of the output stage. For gains less  
than 10, the overall slew rate is limited by the input stage.  
1204 AI03  
V = ±15V  
A = 10  
V
RF = 910Ω  
RG = 100Ω  
RL = 400Ω  
S
Switching Characteristics and Pin 8  
Switching between channels is a “make-before-break”  
condition where both inputs are on momentarily. The  
buffers isolate the inputs when the “make-before-break”  
switching occurs. The input with the largest positive  
voltage determines the output level. If both inputs are  
equal, there is only a 40mV error at the input of the CFA  
during the transition. The reference adjust (Pin 8) allows  
the user to trade off positive input voltage range for  
switching time. For example, on ±15V supplies, setting  
the voltage on Pin 8 to 6.8V reduces the switching  
transienttoa50ns duration,andreduces thepositiveinput  
range from 6V to 2.35V. The negative input range remains  
unchangedat6V.Whenswitchingvideoinpicture,”this  
short transient is imperceptible even on high quality  
The input slew rate of the LT1204 is approximately 135V/µs  
and is set by internal currents and capacitances. The  
output slew rate is set by the value of the feedback  
resistors andtheinternalcapacitances.Atagainof10with  
a 1k feedback resistor and ±15 supplies, the output slew  
rate is typically 1000V/µs. Larger feedback resistors will  
reduce the slew rate as will lower supply voltages, similar  
to the way the bandwidth is reduced.  
The graph, Maximum Undistorted Output vs Frequency,  
relates the slew rate limitations to sinusoidal inputs for  
various gain configurations.  
10  
LT1204  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
Competitive MUXs  
monitors.Thereferencepinhas noeffectwhentheLT1204  
is operating on ±5V, and should be grounded. On supply  
voltages above ±8V, the range of voltages for Pin 8 should  
be between 6.5V and 7.5V. Reducing Pin 8 voltage  
below 7.5V turns “on” the “off” tee switch, and the  
isolation between channels is lost.  
CMOS MUX  
Channel-to-Channel Switching  
BIPOLAR  
MUX  
A0 PIN 9  
1204 AI06  
VIN0 AND VIN1 CONNECTED TO 2MHz SINEWAVE  
Crosstalk  
VOUT PIN 15  
The crosstalk, or more accurately all hostile crosstalk, is  
measured by driving a signal into any three of the four  
inputs and selecting the 4th input with the logic control.  
This 4th input is either shorted to ground or terminated in  
an impedance. All hostile crosstalk is defined as the ratio  
indecibelofthesignalattheoutputoftheCFAtothesignal  
on the three driven inputs, and is input-referred. Disable  
crosstalk is measured with all four inputs driven and the  
part disabled. Crosstalk is critical in many applications  
where video multiplexers are used. In professional video  
systems, a crosstalk figure of 72dB is a desirable  
specification.  
1204 AI04  
V
IN0 AND VIN1 CONNECTED TO 2MHz SINEWAVE  
PIN 8 VOLTAGE = 6.8V, V = ±15V  
S
Transient at Input Buffer  
A0 PIN 9  
The key to the outstanding crosstalk performance of the  
LT1204 is the use of tee switches (see Figure 1). When the  
tee switch is on (Q2 off) Q1 and Q3 are a pair of emitter  
followers with excellent AC response for driving the CFA.  
VIN0 PIN 1  
+
1204AI05  
V
SWITCHING BETWEEN VIN0 AND V  
IN1  
RS = 50, VREF = 6.8V, V ±15V  
S
I
1
Q3  
Competitive video multiplexers built in CMOS are bidirec-  
tional and suffer from poor output-to-input isolation and  
cause transients to feed to the inputs. CMOS MUXs have  
beenbuiltwithbreak-before-makeswitches toeliminate  
thetalkingbetweenchannels, butthesesufferfromoutput  
glitches large enough to interfere with sync circuitry.  
Multiplexers built on older bipolar processes that switch  
lateralPNPtransistors takeseveralmicroseconds tosettle  
and blur the transition between pictures.  
V
IN0  
Q1  
+
V
OUT  
TO LOGIC  
Q2  
CFA  
V
R
F
FB  
I
2
R
G
–V  
1204 F01  
Figure 1. Tee Switch  
11  
LT1204  
PPLICATI  
O U  
W
U
A
S I FOR ATIO  
When the decoder turns off the tee switch (Q2 on) the  
emitter base junctions of Q1 and Q3 become reverse-  
biased while Q2 emitter absorbs current from I1. Not only  
dothereverse-biasedemitterbasejunctions providegood  
isolation, but any signal at VIN0 coupling to Q1 emitter is  
further attenuated by the shunt impedance of Q2 emitter.  
Current from I2 is routed to any on switch.  
bers. A graph of all hostile crosstalk for both the PDIP and  
SO packages is shown. It has been found empirically from  
these PC boards that capacitive coupling across the pack-  
age of greater than 3fF (0.003pF) will diminish the rejec-  
tion, and it is recommended that this proven layout be  
copied into designs. The key to the success of the SO PC  
board #028 is the use of a ground plane guard around Pin  
13, the feedback pin.  
Crosstalk performance is a strong function of the IC  
package, the PC board layout as well as the IC design. The  
die layout utilizes grounds between each input to isolate  
adjacent channels, while the output and feedback pins are  
on opposite sides of the die from the input. The layout of  
a PC board that is capable of providing 90dB all hostile  
crosstalk at 10MHz is not trivial. That level corresponds to  
a 30µV output below a 1V input at 10MHz. A demonstra-  
tionboardhas beenfabricatedtoshowthecomponentand  
ground placement required to attain these crosstalk num-  
PDIP PC Board #029, Component Side  
GND  
V–  
V+  
VOUT  
VIN0  
C1  
+
ENABLE  
R1  
RO  
C2  
C3  
+
All Hostile Crosstalk  
U1  
VIN1  
–20  
RF  
V = ±15V  
S
V
IN0  
= GND  
V
R
= 0dBm  
IN1,2,3  
= 100Ω  
–40  
–60  
C4  
R3  
R0  
S/D  
REF  
R6  
PDIP  
DEMO PCB #029  
VIN2  
VIN3  
R2  
–80  
SO  
DEMO PCB #028  
R1  
–100  
–120  
(408) 432-1900  
LT1204 VIDEO MUX  
DEMONSTRATION BOARD  
1
10  
FREQUENCY (MHz)  
100  
1204 AI09  
1204 AI07  
12  
LT1204  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
SOL PC Board #028, Component Side  
GND  
V–  
V+  
VOUT  
VIN0  
VIN1  
ENABLE  
A1  
C2  
C4  
C1  
RO  
U1  
RF  
R3  
C3  
RG  
R2  
A0  
R1  
VIN2  
VIN3  
S/ D  
(408) 432-1900  
LT1204 VIDEO MUX  
DEMONSTRATION BOARD  
REF  
1204 AI08  
13  
LT1204  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
Demonstration PC Board Schematic  
+
GND  
V
V
+
+
C1  
4.7µF  
C2  
0.1µF  
1
2
3
4
5
6
7
8
16  
+
V
V
V
IN0  
IN0  
R
O
75Ω  
15  
GND  
V
O
C3  
4.7µF  
14  
13  
12  
11  
10  
9
C4  
0.1µF  
R
750Ω  
F
V
IN1  
V
IN1  
V
R
G
750Ω  
GND  
FB  
LT1204  
SHUTDOWN  
ENABLE  
A1  
V
IN2  
SHDN  
ENABLE  
A1  
V
IN2  
R3  
10k  
GND  
RESISTORS R1, R2 AND R3 ARE PULL-DOWN  
AND PULL-UP RESISTORS FOR THE LOGIC  
AND ENABLE PINS. THEY MAY BE OMITTED  
IF THE LT1204 IS DRIVEN FROM TTL LEVELS  
OR FROM 5V CMOS.  
V
IN3  
V
IN3  
REF  
A0  
A0  
R1  
R2  
10k  
10k  
REF  
L1204 AI10  
All Hostile Crosstalk Test Setup*  
Alternate All Hostile Crosstalk Setup*  
HP4195A  
HP4195A  
NETWORK ANALYZER  
NETWORK ANALYZER  
OSC  
50Ω  
REF  
50Ω  
V
50Ω  
OSC  
50Ω  
REF  
50Ω  
V
IN  
50Ω  
IN  
50Ω  
50Ω  
SPLITTER  
SPLITTER  
10Ω  
1
16  
+
15V  
V
IN0  
V
10Ω  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
+
50Ω  
15V  
V
V
2
3
4
5
6
7
8
15  
14  
13  
12  
11  
10  
9
IN0  
GND  
V
O
50Ω  
GND  
V
O
1k  
V
IN1  
V
–15V  
1k  
1k  
V
IN1  
V
–15V  
GND  
FB  
1k  
50Ω  
LT1204  
GND  
FB  
V
IN2  
SHDN  
ENABLE  
A1  
10k  
LT1204  
V
IN2  
SHDN  
ENABLE  
A1  
10k  
GND  
50Ω  
GND  
V
IN3  
*SEE PC BOARD LAYOUT  
V
IN3  
REF  
A0  
*SEE PC BOARD LAYOUT  
50Ω  
50Ω  
REF  
A0  
1204 AI11  
1204 AI12  
14  
LT1204  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
Multiplexer Expansion Pin 11 and Pin 12  
The multiplexer uses a circuit to ensure the disabled  
amplifiers do not load or alter the cable termination. When  
the LT1204 is disabled (Pin 11 low) the output stage is  
turned off and an active buffer senses the output and  
drives the feedback pin to the CFA (Figure 2). This boot-  
straps the feedback resistors and raises the true output  
impedance of the circuit. For the condition where RF = RG  
= 1k, the Disable Output Resistance is typically raised to  
25k and drops to 20k for AV = 10, RF = 2k and RG = 222Ω  
due to loading of the feedback buffer. Operating the  
Disable feature with RG < 100is not recommended.  
To expand the number of MUX inputs, LT1204s can be  
paralleled by shorting their outputs together. The multi-  
plexer disable logic has been designed to prevent shoot-  
through current when two or more amplifiers have their  
outputs shorted together. (Shoot-through current is a  
spike of power supply current caused by both amplifiers  
being on at once.)  
Monitoring Supply Current Spikes  
+
V
TEK  
TO SCOPE  
CT-1  
V
TEE SWITCH  
TEE SWITCH  
IN0  
A = +1  
1
3
5
7
13  
V
+
+
+
+
16  
75Ω  
15  
LT1204  
EN  
V
IN1  
+
11  
V
OUT  
14  
CFA  
“OFF”  
V
IN2  
TEE SWITCH  
TEE SWITCH  
V
1k  
75Ω  
V
IN3  
R
F
1k  
FB  
74HC04  
5V  
O
75Ω  
R
G
CABLE  
75Ω  
V
+
OSCILLATOR  
V
16  
75Ω  
1
3
5
7
13  
+
+
+
+
11  
EN  
LT1204  
“ON”  
75Ω  
15  
LT1204  
1204 F02  
14  
V
Figure 2. Active Buffer Drives FB Pin 13  
1k  
1204 AI13  
1k  
A shutdown feature (Pin 12 low) reduces the supply  
current to 1.5mA and lowers the power dissipation  
when the LT1204 is not in use. If the part is shut down,  
thebootstrappingis inoperativeandthefeedbackresis-  
tors will load the output. If the CFA is operated at a gain  
of +1, however, the feedback resistor will not load the  
output even in shutdown because there is no resistive  
path to ground, but there will be a 6dB loss through  
the cable system.  
Timing and Supply Current Waveforms  
74HC04  
OUTPUT  
5V/DIV  
OSCILLATOR  
5V/DIV  
VOUT  
1V/DIV  
A frequency response plot shows the effect of using the  
disable feature versus using the shutdown feature. In  
this example four LT1204s were connected together at  
theiroutputs forminga16-to-1MUX. Theplotshows the  
effect of the bootstrapping circuit that eliminates the  
IS  
10mA/DIV  
1204 AI14  
15  
LT1204  
PPLICATI  
O U  
W
U
A
S I FOR ATIO  
improper cable termination due to feedback resistors  
loading the cable.  
For a 64-to-1 MUX we need sixteen LT1204s. The  
equivalent load resistance due to the feedback resistor  
R
EQ in Disable is 25k/15 = 1.67k. See Figure 3.  
The limit to the number of expanded inputs is set by the  
acceptable error budget of the system.  
75R  
EQ  
V =  
, V = 0.489V  
O
O
75(75) + 150R  
EQ  
16-to-1 MUX Response Using Disable vs Shutdown  
4
V = ±15V  
This voltage represents a 2.1% loading error. If the  
shutdown feature is used instead of the disable feature,  
then the LT1204 could expand to only an 8-to-1 MUX for  
the same error.  
S
R
L
= 100Ω  
R = R = 1k  
F
G
2
0
DISABLE  
SHUTDOWN  
As a practical matter the gain error at frequency is also  
set by capacitive loading. The disabled output capaci-  
tance of the LT1204 is about 8pF, and in the case of  
sixteen LT1204s, it would represent a 128pF load. The  
combination of 1.67k and 128pF correspond to about a  
0.3dB roll-off at 5MHz.  
–2  
–4  
–6  
1
10  
100  
FREQUENCY (MHz)  
1204 AI15  
OFF  
75Ω  
LT1204  
16-to-1 Multiplexer All Hostile Crosstalk  
CABLE  
–20  
V
OUT  
V = ±15V  
S
R
= 100Ω  
L
ON  
R = R = 1k  
F
G
75Ω  
–40  
–60  
R
S
= 0  
75Ω  
1V  
LT1204  
SHUTDOWN  
CROSSTALK  
–80  
V
75Ω  
DISABLE  
CROSSTALK  
OUT  
–100  
–120  
1V  
R
EQ  
75Ω  
1
10  
FREQUENCY (MHz)  
100  
1204 F03  
1204 AI16  
Figure 3. Equivalent Loading Schematic  
16  
LT1204  
U
O
TYPICAL APPLICATI S  
Programable Gain Amplifier (PGA)  
by 1, 0.5, 0.25 and 0.125 to form an amplifier with a gain  
of 16, 8, 4, 2, when LT1204 #1 is selected. LT1204 #2  
is connected to the same attenuator. When enabled  
(LT1204#1disabled),itresults ingainof1,0.5,0.25and  
0.125. The wide input common mode range of the  
Two LT1204s and seven resistors make a Programable  
Gain Amplifier with a 128-to-1 gain range. The gain is  
proportional to 2N where N is the 3-bit binary value of the  
select logic. An input attenuator alters the input signal  
LT1204 is needed to accept inputs of 8V .  
P-P  
Programable Gain Amplifier Accepts Inputs  
4-Input Differential Receiver  
from 62.5mVP-P to 8V  
P-P  
V
IN  
= 62.5mV TO 8V  
P-P P-P  
LT1204s can be connected inverting and noninverting as  
shown to make a 4-input differential receiver. The receiver  
can be used to convert differential signals sent over a low  
cost twisted pair to a single-ended output or used in video  
loop-thruconnections. Thelogicinputs A0andA1are tied  
together because the same channels are selected on each  
LT1204. By using the Disable feature, the number of  
differential inputs can be increased by adding pairs of  
LT1204s andtyingtheoutputs ofthenoninvertingLT1204s  
(#1) together. Switching transients are reduced in this  
receiver because the transient from LT1204 #2 subtracted  
from the transient of LT1204 #1.  
1
3
5
7
13  
+
+
+
+
LT1204  
#1  
499Ω  
249Ω  
124Ω  
1.5k  
124Ω  
100Ω  
V
= 1V  
P-P  
OUT  
1
+
3
+
5
LT1204  
#2  
+
7
13  
+
1.5k  
1204 TA03  
4-Input Differential Receiver  
A0 A1 SHDN EN  
TWISTED PAIR  
+
+
+
+
IN 1  
IN 2  
IN 3  
IN 4  
A0  
A1  
SHDN  
68Ω  
68Ω  
75Ω  
EN  
1k  
V
OUT  
LT1204  
#1  
75Ω  
CABLE  
1k*  
1k  
1k*  
1k*  
+
+
+
+
IN 1  
IN 2  
IN 3  
IN 4  
A0  
A1  
SHDN  
1k*  
*OPTIONAL  
EN  
1k  
LT1204  
#2  
1204 TA04  
1k  
17  
LT1204  
U
O
TYPICAL APPLICATI S  
Differential Receiver Switching Waveforms  
Differential Receiver Response  
V = ±15V  
S
20  
0
R
L
= 100Ω  
CABLE  
OUTPUT  
DIFFERENTIAL MODE RESPONSE  
–20  
–40  
–60  
LT1204  
#2 OUTPUT  
COMMON MODE RESPONSE  
A0 PIN 9  
10k  
100k  
1M  
10M  
100M  
1204 TA05  
FREQUENCY (Hz)  
1204 TA06  
4-Input Twisted-Pair Driver  
and drive the video signal on to the twisted pair. The circuit  
uses anLT1227currentfeedbackamplifierconnectedwith  
a gain of 2, and an LT1204 with a gain of 2. The 47Ω  
resistors back-terminate the low cost cable in its charac-  
teristic impedance to prevent reflections. The receiver for  
the differential signal is an LT1193 connected for a gain of  
2. Resistors R1, R2 and capacitors C1, C2 are used for  
cable compensation for loss through the twisted pair.  
Alternately, a pair of LT1204s can be used to perform the  
differential to single-ended conversion.  
It is possible to send and receive color composite video  
signals appreciable distances on a low cost twisted pair.  
The cost advantage of this technique is significant. Stan-  
dard 75RG-59/U coaxial cable cost between 25¢ and  
50¢ per foot. PVC twisted pair is only pennies per foot.  
Differential signal transmission resists noise because the  
interference is present as a common mode signal. The  
LT1204 can select one of four video cameras for instance,  
Multiburst Pattern Passed Through 1000 Feet of Twisted Pair,  
No Cable Compensation  
Multiburst Pattern Passed Through 1000 Feet of Twisted Pair,  
with Cable Compensation  
OUTPUT  
INPUT  
INPUT  
OUTPUT  
1204 TA08  
1204 TA09  
18  
LT1204  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTIO  
N Package  
16-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
0.770*  
(19.558)  
MAX  
14  
12  
10  
9
15  
13  
11  
16  
0.255 ± 0.015*  
(6.477 ± 0.381)  
2
1
3
4
6
8
5
7
0.300 – 0.325  
0.130 ± 0.005  
0.045 – 0.065  
(7.620 – 8.255)  
(3.302 ± 0.127)  
(1.143 – 1.651)  
0.020  
(0.508)  
MIN  
0.065  
0.009 – 0.015  
(1.651)  
TYP  
(0.229 – 0.381)  
+0.035  
–0.015  
0.325  
0.125  
0.018 ± 0.003  
0.100 ± 0.010  
(2.540 ± 0.254)  
+0.889  
–0.381  
(3.175)  
MIN  
(0.457 ± 0.076)  
8.255  
(
)
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
N16 1197  
SW Package  
16-Lead Plastic Small Outline (Wide 0.300)  
(LTC DWG # 05-08-1620)  
0.398 – 0.413*  
(10.109 – 10.490)  
15 14  
12  
10  
11  
9
16  
13  
0.394 – 0.419  
(10.007 – 10.643)  
NOTE 1  
2
3
5
7
8
1
4
6
0.291 – 0.299**  
(7.391 – 7.595)  
0.037 – 0.045  
(0.940 – 1.143)  
0.093 – 0.104  
(2.362 – 2.642)  
0.010 – 0.029  
(0.254 – 0.737)  
× 45°  
0° – 8° TYP  
0.050  
(1.270)  
TYP  
0.004 – 0.012  
(0.102 – 0.305)  
0.009 – 0.013  
(0.229 – 0.330)  
NOTE 1  
0.014 – 0.019  
0.016 – 0.050  
(0.356 – 0.482)  
TYP  
(0.406 – 1.270)  
NOTE:  
1. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.  
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS  
S16 (WIDE) 0396  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofits circuits as describedhereinwillnotinfringeonexistingpatentrights.  
19  
LT1204  
TYPICAL APPLICATION  
U
4-Input Twisted-Pair Driver/Receiver  
V
IN0  
+
+
+
+
V
IN1  
75Ω  
V
IN2  
LT1204  
V
IN3  
1000 FT OF  
TWISTED PAIR  
1k  
47Ω  
47Ω  
+
1k  
91Ω  
75Ω  
2k  
LT1193  
+
300Ω  
1204 TA07  
LT1227  
+
18Ω  
390Ω  
300pF  
300Ω  
200Ω  
680pF  
RELATED PARTS  
PART NUMBER  
LT1203/LT1205  
LT1259/LT1260  
LT1675  
DESCRIPTION  
COMMENTS  
150MHz Video Multiplexer  
High Speed, but No Cable Driving  
Low Cost, with Shutdown  
Dual and Triple Current Feedback Amplifiers  
RGB Multiplexer with Current Feedback Amplifiers  
Very High Speed, Pixel Switching  
1204fas, sn1204 LT/TP 0898 2K REV A • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1993  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

LT1204CN16

IC OP-AMP, 14000 uV OFFSET-MAX, 75 MHz BAND WIDTH, PDIP16, Operational Amplifier
Linear

LT1204CS

4-Channel Analog Multiplexer
ETC

LT1204CS16

IC OP-AMP, 14000 uV OFFSET-MAX, 75 MHz BAND WIDTH, PDSO16, Operational Amplifier
Linear

LT1204CSW

4-Input Video Multiplexer with 75MHz Current Feedback Amplifier
Linear

LT1204CSW#PBF

LT1204 - 4-Input Video Multiplexer with 75MHz Current Feedback Amplifier; Package: SO; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1204CSW#TR

LT1204 - 4-Input Video Multiplexer with 75MHz Current Feedback Amplifier; Package: SO; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1204CSW#TRPBF

LT1204 - 4-Input Video Multiplexer with 75MHz Current Feedback Amplifier; Package: SO; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1205

150MHz Video Multiplexers
Linear

LT1205CS

150MHz Video Multiplexers
Linear

LT1205CS#PBF

LT1205 - 150MHz Video Multiplexers; Package: SO; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1205CS#TR

LT1205 - 150MHz Video Multiplexers; Package: SO; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1205CS#TRPBF

LT1205 - 150MHz Video Multiplexers; Package: SO; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear