LT1208CS8 [Linear]

Dual and Quad 45MHz, 400V/us Op Amps; 双路和四路为45MHz , 400V / us的运算放大器
LT1208CS8
型号: LT1208CS8
厂家: Linear    Linear
描述:

Dual and Quad 45MHz, 400V/us Op Amps
双路和四路为45MHz , 400V / us的运算放大器

运算放大器 放大器电路 光电二极管
文件: 总12页 (文件大小:302K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1208/LT1209  
Dual and Quad  
45MHz, 400V/µs Op Amps  
U
DESCRIPTIO  
EATURE  
S
F
45MHz Gain-Bandwidth  
The LT1208/LT1209 are dual and quad very high speed  
operationalamplifierswithexcellentDCperformance. The  
LT1208/LT1209 feature reduced input offset voltage and  
higher DC gain than devices with comparable bandwidth  
and slew rate. Each amplifier is a single gain stage with  
outstanding settling characteristics. The fast settling time  
makes the circuit an ideal choice for data acquisition  
systems. Each output is capable of driving a 500load to  
±12V with ±15V supplies and a 150load to ±3V on ±5V  
supplies. The amplifiers are also capable of driving large  
capacitiveloadswhichmakethemusefulinbufferorcable  
driver applications.  
400V/µs Slew Rate  
Unity-Gain Stable  
7V/mV DC Gain, RL = 500Ω  
3mV Maximum Input Offset Voltage  
±12V Minimum Output Swing into 500Ω  
Wide Supply Range: ±2.5V to ±15V  
7mA Supply Current per Amplifier  
90ns Settling Time to 0.1%, 10V Step  
Drives All Capacitive Loads  
O U  
PPLICATI  
S
A
The LT1208/LT1209 are members of a family of fast, high  
performance amplifiers that employ Linear Technology  
Corporation’s advanced bipolar complementary  
processing.  
Wideband Amplifiers  
Buffers  
Active Filters  
Video and RF Amplification  
Cable Drivers  
Data Acquisition Systems  
U
O
TYPICAL APPLICATI  
1MHz, 4th Order Butterworth Filter  
Inverter Pulse Response  
909Ω  
1.1k  
47pF  
909Ω  
2.67k  
+
V
IN  
22pF  
1.1k  
2.21k  
+
1/2  
LT1208  
220pF  
1/2  
LT1208  
470pF  
V
OUT  
1208/09 TA01  
1208/09 TA02  
1
LT1208/LT1209  
W W W  
U
ABSOLUTE AXI U RATI GS  
Total Supply Voltage (V+ to V).............................. 36V  
Differential Input Voltage ........................................ ±6V  
Input Voltage ........................................................... ±VS  
Output Short-Circuit Duration (Note 1)........... Indefinite  
Operating Temperature Range  
Maximum Junction Temperature  
Plastic Package ............................................. 150°C  
Storage Temperature Range ................ – 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
LT1208C/LT1209C .......................... 40°C to 85°C  
W
U
/O  
PACKAGE RDER I FOR ATIO  
TOP VIEW  
TOP VIEW  
ORDER PART  
NUMBER  
ORDER PART  
+
+
OUT A  
–IN A  
+IN A  
1
2
3
4
V
8
7
6
5
1
2
3
4
8
7
6
5
NUMBER  
OUT A  
–IN A  
+IN A  
V
OUT B  
–IN B  
+IN B  
OUT B  
–IN B  
+IN B  
A
A
LT1208CS8  
LT1208CN8  
B
B
V
V
S8 PART MARKING  
1208  
N8 PACKAGE  
8-LEAD PLASTIC DIP  
S8 PACKAGE  
8-LEAD PLASTIC SOIC  
CONTACT FACTORY FOR  
MILITARY/883B PARTS  
T
JMAX = 150°C, θJA = 100°C/W  
TJMAX = 150°C, θJA = 150°C/W  
TOP VIEW  
TOP VIEW  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
OUT A  
1
2
3
4
5
6
7
8
16 OUT D  
15 –IN D  
OUT A  
–IN A  
+IN A  
1
2
3
4
5
6
7
OUT D  
–IN D  
+IN D  
14  
13  
12  
11  
10  
9
–IN A  
D
C
A
B
D
C
A
B
+IN A  
14 +IN D  
LT1209CS  
LT1209CN  
+
V
13  
V
+
V
V
+IN B  
–IN B  
OUT B  
NC  
12 +IN C  
11 –IN C  
10 OUT C  
+IN B  
–IN B  
OUT B  
+IN C  
–IN C  
OUT C  
8
9
NC  
N PACKAGE  
14-LEAD PLASTIC DIP  
S PACKAGE  
16-LEAD PLASTIC SOIC  
T
JMAX = 150°C, θJA = 70°C/W  
TJMAX = 150°C, θJA = 100°C/W  
VS = ±15V, TA = 25°C, RL = 1k, VCM = 0V, unless otherwise noted.  
ELECTRICAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
V = ±5V (Note 2)  
0°C to 70°C  
0.5  
3.0  
4.0  
mV  
mV  
OS  
S
V = ±15V (Note 2)  
1.0  
5.0  
6.0  
mV  
mV  
S
0°C to 70°C  
Input V Drift  
25  
µV/°C  
OS  
I
I
Input Offset Current  
V = ±5V and V = ±15V  
0°C to 70°C  
100  
400  
600  
8
9
nA  
nA  
µA  
µA  
OS  
S
S
Input Bias Current  
V = ±5V and V = ±15V  
4
B
S
S
0°C to 70°C  
e
Input Noise Voltage  
Input Noise Current  
f = 10kHz  
f = 10kHz  
22  
1.1  
nV/Hz  
pA/Hz  
n
i
n
2
LT1208/LT1209  
VS = ±15V, TA = 25°C, RL = 1k, VCM = 0V, unless otherwise noted.  
ELECTRICAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
R
IN  
Input Resistance  
V
= ±12V  
20  
40  
250  
MΩ  
kΩ  
CM  
Differential  
C
Input Capacitance  
2
pF  
IN  
CMRR  
Common-Mode Rejection Ratio  
V = ±15V, V = ±12V; V = ±5V,  
86  
83  
76  
75  
98  
dB  
dB  
dB  
dB  
S
CM  
S
V
= ±2.5V, 0°C to 70°C  
CM  
PSRR  
Power Supply Rejection Ratio  
Input Voltage Range  
V = ±5V to ±15V  
84  
S
0°C to 70°C  
V = ±15V  
±12  
±2.5  
±13  
±3  
V
V
S
V = ±5V  
S
A
V
Large-Signal Voltage Gain  
V = ±15V, V  
0°C to 70°C  
= ±10V, R = 500Ω  
3.3  
2.5  
7
7
3
V/mV  
V/mV  
VOL  
S
OUT  
L
V = ±5V, V  
0°C to 70°C  
= ±2.5V, R = 500Ω  
2.5  
2.0  
V/mV  
V/mV  
V/mV  
S
OUT  
OUT  
L
V = ±5V, V  
S
= ±2.5V, R = 150Ω  
L
Output Swing  
Output Current  
Slew Rate  
V = ±15V, R = 500, 0°C to 70°C  
12.0  
3.0  
24  
20  
13.3  
3.3  
40  
40  
±V  
±V  
mA  
mA  
OUT  
OUT  
S
L
V = ±5V, R = 150, 0°C to 70°C  
S
L
I
V = ±15V, V  
= ±12V, 0°C to 70°C  
= ± 3V, 0°C to 70°C  
S
OUT  
V = ±5V, V  
S
OUT  
SR  
V = ±15V, A  
S
= 2, (Note 3)  
VCL  
250  
200  
150  
130  
400  
250  
6.4  
V/µs  
V/µs  
V/µs  
V/µs  
0°C to 70°C  
V = ±5V, A  
= 2, (Note 3)  
S
VCL  
0°C to 70°C  
Full Power Bandwidth  
Gain-Bandwidth  
10V Peak, (Note 4)  
V = ±15V, f = 1MHz  
MHz  
MHz  
MHz  
GBW  
45  
34  
S
V = ±5V, f = 1MHz  
S
t , t  
r
Rise Time, Fall Time  
Overshoot  
V = ±15V, A = 1, 10% to 90%, 0.1V  
VCL  
5
7
30  
20  
ns  
ns  
%
%
f
S
V = ± 5V, A  
= 1, 10% to 90%, 0.1V  
S
VCL  
V = ± 15V, A  
= 1, 0.1V  
= 1, 0.1V  
S
VCL  
V = ± 5V, A  
S
VCL  
Propagation Delay  
Settling Time  
V = ± 15V, 50% V to 50%V  
OUT  
5
7
90  
ns  
ns  
ns  
S
IN  
V = ± 5V, 50% V to 50%V  
S
IN  
OUT  
t
V = ± 15V, 10V Step, V = ±5V,  
s
S
S
5V Step, 0.1%  
Differential Gain  
Differential Phase  
f = 3.58MHz, R = 150Ω  
1.30  
0.09  
%
%
L
f = 3.58MHz, R = 1k  
L
f = 3.58MHz, R = 150Ω  
1.8  
0.1  
Deg  
Deg  
L
f = 3.58MHz, R = 1k  
L
R
Output Resistance  
Crosstalk  
A
V
= 1, f = 1MHz  
2.5  
–100  
7
O
VCL  
OUT  
= ±10V, R = 500Ω  
94  
dB  
L
I
Supply Current  
Each Amplifier, V = ±5V and V = ±15V  
0°C to 70°C  
9
10.5  
mA  
mA  
S
S
S
The  
denotes the specifications which apply over the full operating  
Note 3: Slew rate is measured in a gain of –2. For ±15V supplies measure  
between ±10V on the output with ±6V on the input. For ±5V supplies  
measure between ±2V on the output with ±1.75V on the input.  
temperature range.  
Note 1: A heat sink may be required to keep the junction temperature  
below absolute maximum when the output is shorted indefinitely.  
Note 2: Input offset voltage is tested with automated test equipment and is  
Note 4: Full power bandwidth is calculated from the slew rate  
measurement: FPBW = SR/2πV .  
P
exclusive of warm-up drift.  
3
LT1208/LT1209  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Input Common-Mode Range vs  
Supply Voltage  
Supply Current vs Supply Voltage  
and Temperature  
Output Voltage Swing vs  
Supply Voltage  
20  
15  
10  
5
20  
15  
10  
5
12  
10  
8
T
= 25°C  
A
L
T
= 25°C  
OS  
A
R
= 500Ω  
V < 1mV  
125°C  
25°C  
V = 30mV  
OS  
+V  
SW  
6
+V  
–V  
CM  
–V  
SW  
–55°C  
CM  
4
2
0
0
0
0
5
10  
15  
20  
0
5
10  
15  
20  
0
5
10  
15  
20  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
1208/09 G01  
1208/09 G02  
1208/09 G03  
Output Voltage Swing vs  
Resistive Load  
Input Bias Current vs Input  
Common-Mode Voltage  
Open-Loop Gain vs  
Resistive Load  
5.0  
4.5  
4.0  
3.5  
3.0  
100  
90  
80  
70  
60  
50  
30  
25  
20  
15  
10  
5
V
= ±15V  
T
A
= 25°C  
T
= 25°C  
OS  
S
A
A
T
= 25°C  
V = 30mV  
+
I
+ I  
2
B
B
I
=
B
V
= ±15V  
V
= ±15V  
S
S
V
S
= ±5V  
V
S
= ±5V  
0
–15 –10  
–5  
0
5
10  
15  
10  
100  
1k  
10k  
10  
100  
1k  
10k  
INPUT COMMON-MODE VOLTAGE (V)  
LOAD RESISTANCE ()  
LOAD RESISTANCE ()  
1208/09 G05  
1208/09 G06  
1208/09 G04  
Output Short-Circuit Current  
vs Temperature  
Input Bias Current vs Temperature  
Input Noise Spectral Density  
5.00  
4.75  
4.50  
4.25  
4.00  
3.75  
3.50  
55  
50  
45  
40  
35  
30  
25  
10000  
1000  
100  
100  
10  
1
V
= ±15V  
V
= ±15V  
V
S
= ±5V  
S
S
A
+
I
+ I  
2
T
= 25°C  
= 101  
B
B
I
=
B
A
R
V
= 100k  
S
i
n
SINK  
SOURCE  
e
n
10  
0.1  
100k  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
10  
100  
1k  
10k  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
1208/09 G07  
1208/09 G08  
1208/09 G09  
4
LT1208/LT1209  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Power Supply Rejection Ratio  
vs Frequency  
Common-Mode Rejection Ratio  
vs Frequency  
Crosstalk vs Frequency  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
–20  
–30  
V
= ±15V  
= 25°C  
S
A
V
T
= ±15V  
= 25°C  
T
V
A
= 25°C  
S
A
A
T
= 0dBm  
IN  
= 1  
–40  
V
–50  
+PSRR  
–60  
–70  
–PSRR  
V
L
= ±5V  
S
–80  
R
= 500Ω  
–90  
V
= ±15V  
= 1k  
–100  
–110  
–120  
S
L
R
100  
1k  
10k 100k  
1M  
10M 100M  
1k  
10k  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1208/09 G11  
1208/09 G12  
1208/09 G10  
Voltage Gain and Phase vs  
Frequency  
Frequency Response vs  
Capacitive Load  
Output Swing vs Settling Time  
10  
8
100  
80  
60  
10  
8
V
= ±15V  
= 25°C  
= –1  
S
A
V
T
A
V
= ±5V  
6
80  
60  
40  
20  
0
S
6
V
S
= ±15V  
4
4
2
0
C = 100pF  
C = 50pF  
A
V
= 1  
A
V
= –1  
40  
2
0
V
S
= ±5V  
20  
–2  
–4  
–2  
–4  
–6  
–8  
A
V
= 1  
A
V
= –1  
C = 0  
V
S
= ±15V  
C = 500pF  
C = 1000pF  
–6  
–8  
0
V
= ±15V  
= 25°C  
S
A
T
T
A
= 25°C  
1k  
10mV SETTLING  
–10  
–20  
–10  
1M  
10M  
FREQUENCY (Hz)  
100M  
100  
10k 100k  
1M  
10M 100M  
0
25  
50  
75  
100  
125  
FREQUENCY (Hz)  
SETTLING TIME (ns)  
1208/09 G15  
1208/09 B13  
1208/09 G14  
Closed-Loop Output Impedance  
vs Frequency  
Gain-Bandwidth vs Temperature  
Slew Rate vs Temperature  
500  
450  
400  
350  
300  
250  
200  
48  
47  
46  
45  
44  
43  
42  
100  
10  
V
T
= ±15V  
= 25°C  
= +1  
V
A
= ±15V  
= –2  
V
= ±15V  
S
A
V
S
V
S
A
–SR  
+SR  
1
0.1  
0.01  
–50 –25  
0
25  
50  
75 100 125  
10k  
100k  
1M  
10M  
100M  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
1208/09 G18  
1208/09 G16  
1208/09 G17  
5
LT1208/LT1209  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Gain-Bandwidth and Phase Margin  
Total Harmonic Distortion  
vs Frequency  
vs Supply Voltage  
Slew Rate vs Supply Voltage  
0.01  
62  
60  
58  
56  
54  
52  
50  
48  
46  
600  
500  
400  
300  
200  
100  
60  
55  
50  
45  
40  
35  
30  
25  
20  
T
= 25°C  
T
V
R
= 25°C  
= 3V  
A
T
= 25°C  
= –1  
A
OUT  
L
A
V
A
RMS  
PHASE MARGIN  
= 500Ω  
+SR  
–SR  
A
= –1  
V
GAIN BANDWIDTH  
A
= 1  
V
0.001  
10  
0
5
10  
15  
0
5
15  
20  
20  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
1208/09 G21  
1208/09 G19  
1208/09 G20  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
Capacitive Loading  
Layout and Passive Components  
The LT1208/LT1209 amplifiers are stable with capacitive  
loads. This is accomplished by sensing the load induced  
outputpoleandaddingcompensationattheamplifiergain  
node.Asthecapacitiveloadincreases,boththebandwidth  
and phase margin decrease so there will be peaking in the  
frequency domain and in the transient response. The  
photo of the small-signal response with 1000pF load  
shows 50% peaking. The large-signal response with a  
10,000pF load shows the output slew rate being limited by  
the short-circuit current. To reduce peaking with capaci-  
tive loads, insert a small decoupling resistor between the  
output and the load, and add a capacitor between the  
output and inverting input to provide an AC feedback path.  
Coaxial cable can be driven directly, but for best pulse  
fidelity the cable should be doubly terminated with a  
resistor in series with the output.  
As with any high speed operational amplifier, care must be  
taken in board layout in order to obtain maximum perfor-  
mance. Key layout issues include: use of a ground plane,  
minimization of stray capacitance at the input pins, short  
lead lengths, RF-quality bypass capacitors located close  
to the device (typically 0.01µF to 0.1µF), and use of low  
ESR bypass capacitors for high drive current applications  
(typically 1µF to 10µF tantalum). Sockets should be  
avoided when maximum frequency performance is re-  
quired, although low profile sockets can provide reason-  
able performance up to 50MHz. For more details see  
Design Note 50. The parallel combination of the feedback  
resistor and gain setting resistor on the inverting input  
combine with the input capacitance to form a pole which  
can cause peaking. If feedback resistors greater than 5k  
are used, a parallel capacitor of value  
CF RG × CIN/RF  
should be used to cancel the input pole and optimize  
dynamic performance. For unity-gain applications where  
alargefeedbackresistorisused, CF shouldbegreaterthan  
or equal to CIN.  
6
LT1208/LT1209  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
Small-Signal Capacitive Loading  
caused by a second pole beyond the unity-gain crossover.  
This is reflected in the 50° phase margin and shows up as  
overshoot in the unity-gain small-signal transient re-  
sponse. Higher noise gain configurations exhibit less  
overshoot as seen in the inverting gain of one response.  
The large-signal response in both inverting and non-  
inverting gain show symmetrical slewing characteristics.  
Normally the noninverting response has a much faster  
rising edge due to the rapid change in input common-  
mode voltage which affects the tail current of the input  
differential pair. Slew enhancement circuitry has been  
added to the LT1208/LT1209 so that the falling edge slew  
rate is balanced.  
AV = –1  
C
L = 1000pF  
1208/09 AI01  
Large-Signal Capacitive Loading  
Small-Signal Transient Response  
AV = 1  
CL = 10,000pF  
1208/09 AI02  
AV = 1  
1208/09 AI03  
Input Considerations  
Small-Signal Transient Response  
Resistors in series with the inputs are recommended for  
the LT1208/LT1209 in applications where the differential  
input voltage exceeds ±6V continuously or on a transient  
basis. An example would be in noninverting configura-  
tions with high input slew rates or when driving heavy  
capacitive loads. The use of balanced source resistance at  
each input is recommended for applications where DC  
accuracy must be maximized.  
Transient Response  
TheLT1208/LT1209gain-bandwidthis45MHzwhenmea-  
sured at 100kHz. The actual frequency response in unity-  
gain is considerably higher than 45MHz due to peaking  
AV = –1  
1208/09 AI04  
7
LT1208/LT1209  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
Large-Signal Transient Response  
Power Dissipation  
TheLT1208/LT1209combinehighspeedandlargeoutput  
current drive in small packages. Because of the wide  
supply voltage range, it is possible to exceed the maxi-  
mum junction temperature under certain conditions.  
Maximumjunctiontemperature(TJ)iscalculatedfromthe  
ambient temperature (TA) and power dissipation (PD) as  
follows:  
LT1208CN8: TJ = TA + (PD × 100°C/W)  
LT1208CS8: TJ = TA + (PD × 150°C/W)  
LT1209CN: TJ = TA + (PD × 70°C/W)  
LT1209CS: TJ = TA + (PD × 100°C/W)  
AV = 1  
1208/09 AI04  
Large-Signal Transient Response  
Maximum power dissipation occurs at the maximum  
supply current and when the output voltage is at 1/2 of  
either supply voltage (or the maximum swing if less than  
1/2 supply voltage).  
For each amplifier PDMAX is as follows:  
(0.5V+)2  
P
= (V+ – V)(I  
) +  
SMAX  
DMAX  
R
L
Example: LT1208 in S8 at 70°C, VS = ±10V, RL = 500Ω  
(5V)2  
500Ω  
P
= (20V)(10.5mA) +  
= 260mW  
DMAX  
AV = –1  
1208/09 AI06  
T = 70°C + (2 × 260mW)(150°C/W) = 148°C  
J
Low Voltage Operation  
DAC Current-to-Voltage Converter  
The LT1208/LT1209 are functional at room temperature  
with only 3V of total supply voltage. Under this condition,  
however, the undistorted output swing is only 0.8VP-P . A  
more realistic condition is operation at ±2.5V supplies (or  
5V and ground). Under these conditions, at room tem-  
perature, the typical input common-mode range is 1.9V to  
–1.3V (for a VOS change of 1mV), and a 5MHz, 2VP-P sine  
wave can be faithfully reproduced. With 5V total supply  
voltage the gain-bandwidth is reduced to 26MHz and the  
slew rate is reduced to 135V/µs.  
The wide bandwidth, high slew rate and fast settling time  
of the LT1208/LT1209 make them well-suited for current-  
to-voltageconversionaftercurrentoutputD/Aconverters.  
A typical application with a DAC-08 type converter (full-  
scale output of 2mA) uses a 5k feedback resistor. A 7pF  
compensation capacitor across the feedback resistor is  
used to null the pole at the inverting input caused by the  
DAC output capacitance. The combination of the LT1208/  
LT1209 and DAC settles to less than 40mV (1LSB) in  
140ns for a 10V step.  
8
LT1208/LT1209  
U
O
TYPICAL APPLICATI S  
Cable Driving  
DAC Current-to-Voltage Converter  
7pF  
R3  
75Ω  
+
V
75CABLE  
IN  
1/2  
LT1208  
5k  
V
OUT  
R4  
75Ω  
R1  
1k  
DAC-08  
TYPE  
1/2  
V
OUT  
LT1208  
R2  
1k  
+
1208/09 TA06  
0.1µF  
5k  
1 LSB SETTLING = 140ns  
1208/09 TA04  
Instrumentation Amplifier  
R5  
220Ω  
R4  
10k  
R1  
10k  
R2  
1k  
R3  
1k  
1/2  
LT1208  
1/2  
LT1208  
+
V
OUT  
+
+
V
IN  
R4  
R3  
1
2
R2 R3  
+
R2 + R3  
R5  
A
=
1 +  
+
= 102  
V
(
)
R1 R4  
TRIM R5 FOR GAIN  
1208/09 TA03  
TRIM R1 FOR COMMON-MODE REJECTION  
BW = 430kHz  
Full-Wave Rectifier  
1N4148  
1k  
V
+
IN  
1/2  
LT1208  
1k  
1N4148  
500Ω  
1k  
1k  
+
1/2  
LT1208  
V
OUT  
1208/09 TA05  
9
LT1208/LT1209  
W
W
SI PLIFIED SCHE ATIC  
+
V
BIAS 1  
–IN  
BIAS 2  
+IN  
OUT  
V
1208/09 SS  
U
PACKAGE DESCRIPTIO Dimensions in inches (millimeters) unless otherwise noted.  
N8 Package  
8-Lead Plastic DIP  
0.400  
(10.160)  
MAX  
0.130 ± 0.005  
0.300 – 0.320  
0.045 – 0.065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.128)  
8
1
7
6
5
4
0.065  
(1.651)  
TYP  
0.250 ± 0.010  
(6.350 ± 0.254)  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
0.020  
(0.508)  
MIN  
(3.175)  
MIN  
+0.025  
–0.015  
2
3
0.045 ± 0.015  
(1.143 ± 0.381)  
0.325  
+0.635  
8.255  
(
)
–0.381  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
(0.457 ± 0.076)  
N8 0392  
S8 Package  
8-Lead Plastic SOIC  
0.189 – 0.197  
(4.801 – 5.004)  
0.010 – 0.020  
(0.254 – 0.508)  
7
5
8
6
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0.228 – 0.244  
0.150 – 0.157  
(5.791 – 6.197)  
(3.810 – 3.988)  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
0°– 8° TYP  
1
3
4
2
SO8 0392  
10  
LT1208/LT1209  
U
PACKAGE DESCRIPTIO Dimensions in inches (millimeters) unless otherwise noted.  
N Package  
14-Lead Plastic DIP  
0.770  
(19.558)  
MAX  
14  
13  
12  
11  
10  
9
8
7
0.260 ± 0.010  
(6.604 ± 0.254)  
1
2
3
5
6
4
0.300 – 0.325  
(7.620 – 8.255)  
0.045 – 0.065  
(1.143 – 1.651)  
0.130 ± 0.005  
(3.302 ± 0.127)  
0.015  
(0.380)  
MIN  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
+0.025  
–0.015  
0.325  
0.125  
(3.175)  
MIN  
0.075 ± 0.015  
(1.905 ± 0.381)  
0.018 ± 0.003  
(0.457 ± 0.076)  
+0.635  
8.255  
(
)
–0.381  
0.100 ± 0.010  
(2.540 ± 0.254)  
N14 0392  
S Package  
16-Lead Plastic SOIC  
0.386 – 0.394*  
(9.804 – 10.008)  
16  
15  
14  
13  
12  
11  
10  
9
0.150 – 0.157*  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
5
7
8
1
2
3
4
6
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
0° – 8° TYP  
0.016 – 0.050  
0.406 – 1.270  
SO16 0392  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006 INCH (0.15mm).  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LT1208/LT1209  
U.S. Area Sales Offices  
NORTHEAST REGION  
Linear Technology Corporation  
One Oxford Valley  
2300 E. Lincoln Hwy.,Suite 306  
Langhorne, PA 19047  
SOUTHEAST REGION  
Linear Technology Corporation  
17060 Dallas Parkway  
Suite 208  
Dallas, TX 75248  
Phone: (214) 733-3071  
FAX: (214) 380-5138  
SOUTHWEST REGION  
Linear Technology Corporation  
22141 Ventura Blvd.  
Suite 206  
Woodland Hills, CA 91364  
Phone: (818) 703-0835  
FAX: (818) 703-0517  
Phone: (215) 757-8578  
FAX: (215) 757-5631  
Linear Technology Corporation  
266 Lowell St., Suite B-8  
Wilmington, MA 01887  
CENTRAL REGION  
Linear Technology Corporation  
Chesapeake Square  
NORTHWEST REGION  
Linear Technology Corporation  
782 Sycamore Dr.  
Phone: (508) 658-3881  
FAX: (508) 658-2701  
229 Mitchell Court, Suite A-25  
Addison, IL 60101  
Phone: (708) 620-6910  
FAX: (708) 620-6977  
Milpitas, CA 95035  
Phone: (408) 428-2050  
FAX: (408) 432-6331  
International Sales Offices  
FRANCE  
KOREA  
TAIWAN  
Linear Technology S.A.R.L.  
Immeuble "Le Quartz"  
58 Chemin de la Justice  
92290 Chatenay Malabry  
France  
Linear Technology Korea Branch  
Namsong Building, #505  
Itaewon-Dong 260-199  
Yongsan-Ku, Seoul  
Korea  
Linear Technology Corporation  
Rm. 801, No. 46, Sec. 2  
Chung Shan N. Rd.  
Taipei, Taiwan, R.O.C.  
Phone: 886-2-521-7575  
FAX: 886-2-562-2285  
Phone: 33-1-41079555  
FAX: 33-1-46314613  
Phone: 82-2-792-1617  
FAX: 82-2-792-1619  
UNITED KINGDOM  
GERMANY  
SINGAPORE  
Linear Technology (UK) Ltd.  
The Coliseum, Riverside Way  
Camberley, Surrey GU15 3YL  
United Kingdom  
Phone: 44-276-677676  
FAX: 44-276-64851  
Linear Techonolgy GMBH  
Untere Hauptstr. 9  
D-8057 Eching  
Germany  
Phone: 49-89-3197410  
FAX: 49-89-3194821  
Linear Technology Pte. Ltd.  
101 Boon Keng Road  
#02-15 Kallang Ind. Estates  
Singapore 1233  
Phone: 65-293-5322  
FAX: 65-292-0398  
JAPAN  
Linear Technology KK  
5F YZ Bldg.  
Iidabashi, Chiyoda-Ku  
Tokyo, 102 Japan  
Phone: 81-3-3237-7891  
FAX: 81-3-3237-8010  
World Headquarters  
Linear Technology Corporation  
1630 McCarthy Blvd.  
Milpitas, CA 95035-7487  
Phone: (408) 432-1900  
FAX: (408) 434-0507  
03/10/93  
LT/GP 0493 10K REV 0  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7487  
12  
(408) 432-1900 FAX: (408) 434-0507 TELEX: 499-3977  
LINEAR TECHNOLOGY CORPORATION 1993  

相关型号:

LT1208CS8#PBF

LT1208 - Dual and Quad 45MHz, 400V/&#181;s Op Amps; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1208CS8#TR

暂无描述
Linear

LT1208CS8#TRPBF

暂无描述
Linear

LT1208_15

Dual and Quad 45MHz, 400V/s Op Amps
Linear

LT1209

Dual and Quad 45MHz, 400V/us Op Amps
Linear

LT1209C

Dual and Quad 45MHz, 400V/us Op Amps
Linear

LT1209CN

Dual and Quad 45MHz, 400V/us Op Amps
Linear

LT1209CN14

IC QUAD OP-AMP, 3000 uV OFFSET-MAX, 45 MHz BAND WIDTH, PDIP14, Operational Amplifier
Linear

LT1209CS

Dual and Quad 45MHz, 400V/us Op Amps
Linear

LT1209CS#PBF

LT1209 - Quad 45MHz, 400V/&#181;s Op Amps; Package: SO; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1209CS#TR

LT1209 - Quad 45MHz, 400V/&#181;s Op Amps; Package: SO; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1209CS16

IC QUAD OP-AMP, 3000 uV OFFSET-MAX, 45 MHz BAND WIDTH, PDSO16, Operational Amplifier
Linear