LT1210CS#TRPBF [Linear]

LT1210 - 1.1A, 35MHz Current Feedback Amplifier; Package: SO; Pins: 16; Temperature Range: 0°C to 70°C;
LT1210CS#TRPBF
型号: LT1210CS#TRPBF
厂家: Linear    Linear
描述:

LT1210 - 1.1A, 35MHz Current Feedback Amplifier; Package: SO; Pins: 16; Temperature Range: 0°C to 70°C

放大器 光电二极管
文件: 总20页 (文件大小:1182K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1210  
1.1A, 35MHz Current  
Feedback Amplifier  
FEATURES  
DESCRIPTION  
The LT®1210 is a current feedback amplifier with high  
output current and excellent large-signal characteristics.  
The combination of high slew rate, 1.1A output drive  
and 15V operation enables the device to deliver signifi-  
cant power at frequencies in the 1MHz to 2MHz range.  
Short-circuit protection and thermal shutdown ensure  
the device’s ruggedness. The LT1210 is stable with large  
capacitive loads, and can easily supply the large currents  
required by the capacitive loading. A shutdown feature  
switches the device into a high impedance and low sup-  
ply current mode, reducing dissipation when the device  
is not in use. For lower bandwidth applications, the sup-  
ply current can be reduced with a single external resistor.  
n
1.1A Minimum Output Drive Current  
n
35MHz Bandwidth, A = 2, R = 10Ω  
V
V
L
L
n
n
n
900V/µs Slew Rate, A = 2, R = 10Ω  
High Input Impedance: 10MΩ  
Wide Supply Range: 5V to 15V  
(TO-220 and DD Packages)  
n
n
n
n
n
n
n
Enhanced θ SO-16 Package for 5V Operation  
JA  
Shutdown Mode: I < 200µA  
S
Adjustable Supply Current  
Stable with C = 10,000pF  
L
Operating Temperature Range: –40°C to 85°C  
Available in 7-Lead DD, TO-220 and  
16-Lead SO Packages  
The LT1210 is available in the TO-220 and DD pack-  
ages for operation with supplies up to 15V. For 5V  
applications the device is also available in a low thermal  
resistance SO-16 package.  
APPLICATIONS  
n
Cable Drivers  
n
Buffers  
All registered trademarks and trademarks are the property of their respective owners.  
n
Test Equipment Amplifiers  
Video Amplifiers  
n
n
ADSL Drivers  
TYPICAL APPLICATION  
Twisted Pair Driver  
Total Harmonic Distortion vs Frequency  
15V  
–50  
V
V
A
=
OUT  
= 4  
15V  
S
+
= 20V  
P-P  
100nF  
4.7µF*  
V
–60  
–70  
R
T
11Ω  
V
IN  
+
2.5W  
T1**  
LT1210  
R
= 12.5Ω  
= 10Ω  
L
SD  
R
R
100Ω  
2.5W  
L
L
–80  
1
3
R
= 50Ω  
L
–90  
4.7µF*  
100nF  
+
845Ω  
274Ω  
–15V  
–100  
* TANTALUM  
** MIDCOM 671-7783 OR EQUIVALENT  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
1210 TA02  
1210 TA01  
Rev C  
1
Document Feedback  
For more information www.analog.com  
LT1210  
(Note 1)  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage ..................................................... 18V  
Input Current....................................................... 15mA  
Output Short-Circuit Duration  
(Note 2) ..........................................Thermally Limited  
Operating Temperature Range (Note 3)  
Specified Temperature Range (Note 4)  
LT1210C................................................... 0°C to 70°C  
LT1210I................................................–40°C to 85°C  
Junction Temperature ........................................ 150°C  
Storage Temperature Range ..................–65°C to 150°C  
Lead Temperature (Soldering, 10 sec)...................300°C  
LT1210C...............................................–40°C to 85°C  
LT1210I................................................–40°C to 85°C  
PIN CONFIGURATION  
ꢀꢁꢂ ꢃꢄꢅꢆ  
ꢋꢌ  
ꢋꢔ  
ꢋꢘ  
ꢋꢠ  
ꢋꢟ  
ꢋꢋ  
ꢋꢕ  
ꢘRꢙꢚꢊ ꢛꢋꢄꢗ  
ꢟRꢊꢝꢀ ꢘꢞꢆꢖ  
ꢛC  
ꢙꢜꢊ  
ꢊꢗꢀ  
ꢁꢥꢀ  
Cꢙꢍꢀ  
Cꢊꢎꢂ  
Cꢁꢑꢂ  
ꢇꢧꢥꢀꢏꢁꢆꢛ  
ꢤꢄꢛ  
ꢉꢟꢜꢊꢈꢙꢗꢚ  
ꢛC  
ꢦꢄꢛ  
ꢛC  
ꢛꢜꢗꢀꢉꢊꢖꢝ  
ꢊꢁꢣ  
ꢋꢉ ꢛ  
ꢞꢋꢚ  
ꢝꢋꢚ  
ꢀꢃꢣ  
ꢚꢞꢝ  
ꢙꢞꢝ  
ꢞꢛ ꢘ  
R ꢀꢁCꢂꢁꢃꢄ  
ꢛC  
ꢀꢁ ꢂꢃCꢄꢃꢅꢆ  
ꢅꢆꢇꢄꢁꢈ ꢀꢇꢁꢉꢊꢋC ꢈ  
ꢁꢇꢈꢆꢃꢉ ꢀꢊꢇꢋꢋꢌ  
ꢏ ꢐꢑꢒꢓCꢔ θ ꢏ ꢕꢑꢓCꢖꢗꢈ  
ꢌꢍꢁꢎ  
ꢌꢁ  
ꢐ ꢑꢒꢌꢓCꢔ θ ꢐ ꢒꢓCꢕꢖ  
ꢍꢎꢃꢏ  
ꢍC  
ꢇ ꢂꢈCꢉꢈꢊꢅ  
ꢋꢌꢍꢎꢅꢈꢏ ꢂꢎꢈꢇꢀꢄC ꢇꢁ  
ꢓ ꢋꢔꢕꢖCꢗ θ ꢓ ꢘꢕꢖCꢙꢆ ꢚꢛꢜꢝe ꢔꢞ  
ꢐꢑꢈꢒ  
ꢐꢈ  
http://www.linear.com/product/LT1210#orderinfo  
ORDER INFORMATION  
LEAD FREE FINISH  
LT1210CR#PBF  
LT1210IR#PBF  
LT1210CS#PBF  
LT1210CT7#PBF  
TAPE AND REEL  
LT1210CR#TRPBF  
LT1210IR#TRPBF  
LT1210CS#TRPBF  
N/A  
PART MARKING*  
LT1210R  
PACKAGE DESCRIPTION  
7-Lead Plastic DDPAK  
7-Lead Plastic DDPAK  
16-Lead Plastic SOIC  
7-Lead TO-220  
TEMPERATURE RANGE  
0°C to 70°C  
LT1210R  
–40°C to 85°C  
0°C to 70°C  
LT1210CS  
LT1210CT7  
0°C to 70°C  
Consult ADI Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 500 unit reels through  
designated sales channels with #TRMPBF suffix.  
Rev C  
2
For more information www.analog.com  
LT1210  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCM = 0V, 5V ≤ VS ≤ 15V, pulse tested, VSD = 0V, unless  
otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
3
15  
20  
mV  
mV  
OS  
+
l
l
Input Offset Voltage Drift  
Noninverting Input Current  
10  
2
µV/°C  
I
I
5
20  
µA  
µA  
IN  
l
l
Inverting Input Current  
10  
60  
100  
µA  
µA  
IN  
e
Input Noise Voltage Density  
Input Noise Current Density  
Input Noise Current Density  
Input Resistance  
f = 10kHz, R = 1kΩ, R = 10Ω, R = 0Ω  
3.0  
2.0  
40  
nV/√Hz  
pA/√Hz  
pA/√Hz  
n
F
G
S
+i  
–i  
f = 10kHz, R = 1kΩ, R = 10Ω, R = 10kΩ  
F G S  
n
f = 10kHz, R = 1kΩ, R = 10Ω, R = 10kΩ  
n
F
G
S
l
l
R
V
IN  
V
IN  
=
=
12V, V = 15V  
1.50  
0.25  
10  
5
MΩ  
MΩ  
IN  
S
2V, V = 5V  
S
C
Input Capacitance  
V = 15V  
S
2
pF  
IN  
l
l
Input Voltage Range  
V = 15V  
S
12  
2
13.5  
3.5  
V
V
S
V = 5V  
l
l
CMRR  
PSRR  
Common Mode Rejection Ratio  
V = 15V, V  
S
=
=
12V  
2V  
55  
50  
62  
60  
dB  
dB  
S
CM  
V = 5V, V  
=
CM  
l
l
Inverting Input Current  
Common Mode Rejection  
V = 15V, V  
12V  
2V  
0.1  
0.1  
10  
10  
µA/V  
µA/V  
S
CM  
=
V = 5V, V  
S
CM  
l
l
Power Supply Rejection Ratio  
V = 5V to 15V  
S
60  
55  
77  
30  
dB  
Noninverting Input Current  
Power Supply Rejection  
V = 5V to 15V  
S
500  
5
nA/V  
l
Inverting Input Current  
Power Supply Rejection  
V = 5V to 15V  
S
0.7  
71  
µA/V  
dB  
A
Large-Signal Voltage Gain  
T = 25°C, V = 15V, V =  
OUT  
10V,  
V
A
S
R = 10Ω (Note 5)  
L
l
l
V = 15V, V  
=
8.5V, R = 10Ω (Note 5)  
55  
55  
68  
68  
dB  
dB  
S
OUT  
L
V = 5V, V  
= 2V, R = 10Ω  
L
S
OUT  
R
OL  
Transresistance, V /I  
T = 25°C, V = 15V, V =  
L
10V,  
OUT IN  
A
S
OUT  
R = 10Ω (Note 5)  
100  
75  
260  
200  
200  
11.5  
kΩ  
kΩ  
kΩ  
l
l
V = 15V, V  
= 8.5V, R = 10Ω (Note 5)  
S
OUT  
L
V = 5V, V  
S
=
2V, R = 10Ω  
75  
OUT  
L
V
Maximum Output Voltage Swing  
T = 25°C, V = 15V, R = 10Ω (Note 5)  
10.0  
8.5  
V
V
OUT  
A
S
L
l
T = 25°C, V = 5V, R = 10Ω  
2.5  
2.0  
3.0  
V
V
A
S
L
l
l
I
I
Maximum Output Current (Note 5)  
Supply Current (Note 5)  
V = 15V, R = 1Ω  
1.1  
2.0  
35  
A
OUT  
S
S
L
T = 25°C, V = 15V, V = 0V  
50  
65  
mA  
mA  
A
S
SD  
l
Supply Current, R = 51kΩ (Notes 5, 6) T = 25°C, V = 15V  
15  
30  
200  
10  
mA  
µA  
µA  
SD  
A
S
l
l
Positive Supply Current, Shutdown  
V = 15V, V = 15V  
S SD  
Output Leakage Current, Shutdown  
V = 15V, V = 15V  
S SD  
Rev C  
3
For more information www.analog.com  
LT1210  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCM = 0V, 5V ≤ VS ≤ 15V, pulse tested, VSD = 0V, unless  
otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
T = 25°C, A = 2, R = 400Ω  
MIN  
TYP  
MAX  
UNITS  
SR  
Slew Rate (Note 7)  
Slew Rate (Note 5)  
400  
900  
900  
V/µs  
V/µs  
A
V
L
T = 25°C, A = 2, R = 10Ω  
A
V
L
Differential Gain (Notes 5, 8)  
Differential Phase (Notes 5, 8)  
Small-Signal Bandwidth  
V = 15V, R = 750Ω, R = 750Ω, R = 15Ω  
0.3  
0.1  
55  
%
DEG  
MHz  
S
F
G
L
V = 15V, R = 750Ω, R = 750Ω, R = 15Ω  
S
F
G
L
BW  
A = 2, V = 15V, Peaking ≤ 1dB,  
V S  
R = R = 680Ω, R = 100Ω  
F
G
L
A = 2, V = 15V, Peaking ≤ 1dB,  
35  
MHz  
V
S
R = R = 576Ω, R = 10Ω  
F
G
L
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: A heat sink may be required to keep the junction temperature  
below the Absolute Maximum rating. Applies to short circuits to ground  
only. A short circuit between the output and either supply may permanently  
damage the part when operated on supplies greater than 10V.  
Note 5: SO package is recommended for 5V supplies only, as the power  
dissipation of the SO package limits performance on higher supplies. For  
supply voltages greater than 5V, use the TO-220 or DD package. See  
Thermal Considerations in the Applications Information section for details  
on calculating junction temperature. If the maximum dissipation of the  
package is exceeded, the device will go into thermal shutdown.  
Note 6: R is connected between the Shutdown pin and ground.  
SD  
Note 7: Slew rate is measured at 5V on a 10V output signal while  
Note 3: The LT1210C/LT1210I are guaranteed functional over the  
operating on 15V supplies with R = 1.5kΩ, R = 1.5kΩ and R = 400Ω.  
F G L  
temperature range of –40°C to 85°C.  
Note 8: NTSC composite video with an output level of 2V.  
Note 4: The LT1210C is guaranteed to meet specified performance from  
0°C to 70°C. The LT1210C is designed, characterized and expected to meet  
specified performance from –40°C to 85°C but not tested or QA sampled  
at these temperatures. The LT1210I is guaranteed to meet specified  
performance from –40°C to 85°C.  
Rev C  
4
For more information www.analog.com  
LT1210  
SMALL-SIGNAL BANDWIDTH  
RSD = 0Ω, IS = 30mA, VS = 5V, Peaking ≤ 1dB  
RSD = 0Ω, IS = 35mA, VS = 15V, Peaking ≤ 1dB  
3dB BW  
(MHz)  
3dB BW  
(MHz)  
A
V
R (Ω)  
L
R (Ω)  
F
R (Ω)  
G
A
R (Ω)  
L
R (Ω)  
F
R (Ω)  
G
V
–1  
150  
30  
10  
549  
590  
619  
549  
590  
619  
52.5  
39.7  
26.5  
–1  
150  
30  
10  
604  
649  
665  
604  
649  
665  
66.2  
48.4  
46.5  
1
150  
30  
10  
604  
649  
619  
53.5  
39.7  
27.4  
1
150  
30  
10  
750  
866  
845  
56.8  
35.4  
24.7  
2
150  
30  
10  
562  
590  
576  
562  
590  
576  
51.8  
38.8  
27.4  
2
150  
30  
10  
665  
715  
576  
665  
715  
576  
52.5  
38.9  
35.0  
10  
150  
30  
10  
392  
383  
215  
43.2  
42.2  
23.7  
48.4  
40.3  
36.0  
10  
150  
30  
10  
453  
432  
221  
49.9  
47.5  
24.3  
61.5  
43.1  
45.5  
RSD = 7.5kΩ, IS = 15mA, VS = 5V, Peaking ≤ 1dB  
RSD = 47.5kΩ, IS = 18mA, VS = 15V, Peaking ≤ 1dB  
3dB BW  
(MHz)  
3dB BW  
(MHz)  
A
V
R (Ω)  
L
R (Ω)  
F
R (Ω)  
G
A
R (Ω)  
L
R (Ω)  
F
R (Ω)  
G
V
–1  
150  
30  
10  
562  
619  
604  
562  
619  
604  
39.7  
28.9  
20.5  
–1  
150  
30  
10  
619  
698  
698  
619  
698  
698  
47.8  
32.3  
22.2  
1
150  
30  
10  
634  
681  
649  
41.9  
29.7  
20.7  
1
150  
30  
10  
732  
806  
768  
51.4  
33.9  
22.5  
2
150  
30  
10  
576  
604  
576  
576  
604  
576  
40.2  
29.6  
21.6  
2
150  
30  
10  
634  
698  
681  
634  
698  
681  
48.4  
33.0  
22.5  
10  
150  
30  
10  
324  
324  
210  
35.7  
35.7  
23.2  
39.5  
32.3  
27.7  
10  
150  
30  
10  
348  
357  
205  
38.3  
39.2  
22.6  
46.8  
36.7  
31.3  
RSD = 15kΩ, IS = 7.5mA, VS = 5V, Peaking ≤ 1dB  
RSD = 82.5kΩ, IS = 9mA, VS = 15V, Peaking ≤ 1dB  
3dB BW  
(MHz)  
3dB BW  
(MHz)  
A
V
R (Ω)  
L
R (Ω)  
F
R (Ω)  
G
A
R (Ω)  
L
R (Ω)  
F
R (Ω)  
G
V
–1  
150  
30  
10  
536  
549  
464  
536  
549  
464  
28.2  
20.0  
15.0  
–1  
150  
30  
10  
590  
649  
576  
590  
649  
576  
34.8  
22.5  
16.3  
1
150  
30  
10  
619  
634  
511  
28.6  
19.8  
14.9  
1
150  
30  
10  
715  
768  
649  
35.5  
22.5  
16.1  
2
150  
30  
10  
536  
549  
412  
536  
549  
412  
28.3  
19.9  
15.7  
2
150  
30  
10  
590  
665  
549  
590  
665  
549  
35.3  
22.5  
16.8  
10  
150  
30  
10  
150  
118  
100  
16.5  
13.0  
11.0  
31.5  
27.1  
19.4  
10  
150  
30  
10  
182  
182  
100  
20.0  
20.0  
11.0  
37.2  
28.9  
22.5  
Rev C  
5
For more information www.analog.com  
LT1210  
TYPICAL PERFORMANCE CHARACTERISTICS  
Bandwidth and Feedback Resistance  
vs Capacitive Load for Peaking ≤ 1dB  
Bandwidth vs Supply Voltage  
Bandwidth vs Supply Voltage  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10k  
100  
A
= 2  
= 100Ω  
PEAKING ≤ 1dB  
PEAKING ≤ 5dB  
A
R
= 2  
V
PEAKING ≤ 1dB  
PEAKING ≤ 5dB  
V
L
BANDWIDTH  
R
= 10Ω  
L
R = 470Ω  
F
R = 560Ω  
F
R = 560Ω  
F
R = 750Ω  
F
1k  
10  
R = 750Ω  
F
R = 1kΩ  
F
R = 680Ω  
F
FEEDBACK RESISTANCE  
R = 1kΩ  
F
A
= 2  
R = 2kΩ  
F
V
L
R
= ∞  
R = 1.5kΩ  
F
V
C
= 1ꢀV  
S
= 0.01µF  
COMP  
100  
1
16  
4
12  
14  
16  
4
12  
14  
6
8
10  
18  
1
10  
100  
1000  
10000  
6
8
10  
18  
18  
15  
SUPPLY VOLTAGE ( Vꢀ  
CAPACITIVE LOAD (pF)  
SUPPLY VOLTAGE ( Vꢀ  
1210 G03  
1210 G02  
1210 G01  
Bandwidth and Feedback Resistance  
vs Capacitive Load for Peaking ≤ 5dB  
Bandwidth vs Supply Voltage  
Bandwidth vs Supply Voltage  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10k  
100  
A
= 10  
= 10Ω  
PEAKING ≤ 1dB  
A
R
= 10  
= 100Ω  
PEAKING ≤ 1dB  
PEAKING ≤ 5dB  
V
L
V
L
R
BANDWIDTH  
R = 330Ω  
F
R =390Ω  
F
R = 680Ω  
F
R = 560Ω  
F
1k  
10  
R = 470Ω  
F
FEEDBACK  
RESISTANCE  
R = 1kΩ  
F
R = 680Ω  
F
A
= +2  
= ∞  
V
L
S
R
R = 1.5kΩ  
F
V
C
=
1ꢀV  
= 0.01µF  
R = 1.5kΩ  
F
COMP  
100  
1
10000  
4
12  
14  
16  
6
8
10  
18  
4
12  
14  
16  
6
8
10  
1
10  
100  
1000  
SUPPLY VOLTAGE ( Vꢀ  
CAPACITIVE LOAD (pF)  
SUPPLY VOLTAGE ( Vꢀ  
1210 G05  
1210 G04  
1210 G06  
Differential Phase vs  
Supply Voltage  
Differential Gain vs  
Supply Voltage  
Spot Noise Voltage and Current  
vs Frequency  
100  
10  
1
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
R
A
= R = 750Ω  
G
= 2  
F
V
R
= 10Ω  
L
–i  
n
R
= 10Ω  
L
R
A
= R = 750Ω  
G
F
V
= 2  
R
= 15Ω  
= 50Ω  
L
R
= 15Ω  
L
R
L
e
n
R
= 50Ω  
9
L
R = 30Ω  
L
R
= 30Ω  
+i  
n
L
5
7
9
11  
13  
5
7
11  
13  
15  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
SUPPLY VOLTAGE ( Vꢀ  
SUPPLY VOLTAGE ( Vꢀ  
1210 G09  
1210 G07  
1210 G08  
Rev C  
6
For more information www.analog.com  
LT1210  
TYPICAL PERFORMANCE CHARACTERISTICS  
Supply Current vs  
Ambient Temperature, VS = 5V  
Supply Current vs  
Ambient Temperature, VS = 15V  
Supply Current vs Supply Voltage  
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
R
SD  
= 0Ω  
A
= 1  
V
L
R
= ∞  
R
= 0Ω  
T
= 25°C  
= 85°C  
SD  
A
R
= 0Ω  
SD  
T
A
R
= 47.5kΩ  
SD  
R
= 7.5kΩ  
= 15kΩ  
SD  
T
= –40°C  
A
T
= 125°C  
A
R
SD  
= 82.5kΩ  
R
SD  
A
= 1  
V
L
R
= ∞  
0
–50  
0
–50  
0
25  
50  
75 100 125  
4
12  
14  
16  
–25  
6
8
10  
18  
0
25  
50  
75 100 125  
–25  
SUPPLY VOLTAGE ( Vꢀ  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1210 G11  
1210 G10  
1210 G12  
Supply Current vs  
Shutdown Pin Current  
Input Common Mode Limit vs  
Junction Temperature  
Output Short-Circuit Current vs  
Junction Temperature  
ꢓꢏ  
ꢔꢕ  
ꢔꢏ  
ꢖꢕ  
ꢖꢏ  
ꢗꢕ  
ꢗꢏ  
ꢌꢍꢋ  
ꢎꢍꢏ  
ꢎꢍꢐ  
ꢎꢍꢑ  
ꢎꢍꢎ  
ꢎꢍꢋ  
ꢒꢍꢏ  
ꢒꢍꢐ  
ꢚ ꢗꢕꢙ  
ꢉꢋꢑꢊ  
ꢉꢒꢑꢋ  
ꢉꢒꢑꢊ  
ꢉꢓꢑꢋ  
ꢓꢑꢋ  
ꢖꢕꢅRCꢙꢚꢔ  
ꢖꢙꢚꢛꢙꢚꢔ  
ꢒꢑꢊ  
ꢒꢑꢋ  
ꢋꢑꢊ  
ꢎꢊ  
ꢊꢋ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇCꢈ  
ꢓꢊ  
ꢒꢋꢋ ꢒꢎꢊ  
ꢗꢏꢏ  
ꢖꢏꢏ  
ꢔꢏꢏ  
ꢓꢏꢏ  
ꢕꢏꢏ  
ꢉꢊꢋ ꢉꢎꢊ  
ꢉꢊꢋ ꢉꢓꢊ  
ꢒꢋꢋ ꢒꢓꢊ  
ꢓꢊ  
ꢊꢋ  
ꢔꢊ  
ꢀꢁꢂꢃꢄꢅꢆꢇ ꢈꢉꢇ CꢂRRꢊꢇꢃ ꢋꢌꢍꢎ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇCꢈ  
ꢗꢖꢗꢏ ꢘꢗꢔ  
ꢒꢎꢒꢋ ꢔꢒꢊ  
ꢒꢓꢒꢋ ꢐꢒꢖ  
Output Saturation Voltage vs  
Junction Temperature  
Power Supply Rejection Ratio  
vs Frequency  
Supply Current vs Large-Signal  
Output Frequency (No Load)  
+
100  
90  
80  
70  
60  
50  
40  
30  
20  
V
70  
60  
50  
40  
30  
20  
10  
0
R
V
F
= 50Ω  
A
= 2  
L
S
V
=
15V  
V
L
S
R
L
= 2kΩ  
S
–1  
–2  
–3  
–4  
=
15V  
R
V
= ∞  
R
= R = 1kΩ  
G
NEGATIVE  
POSITIVE  
= 15V  
R
L
= 10Ω  
V
= 20V  
OUT  
P-P  
R
L
= 10Ω  
4
3
2
1
R
L
= 2kΩ  
V
10k  
100k  
1M  
10M  
10k  
100k  
1M  
10M  
100M  
–50 –25  
0
100 125  
25  
50  
75  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
1210 G17  
1210 G18  
1210 G16  
Rev C  
7
For more information www.analog.com  
LT1210  
TYPICAL PERFORMANCE CHARACTERISTICS  
Output Impedance in Shutdown  
vs Frequency  
Large-Signal Voltage Gain vs  
Frequency  
Output Impedance vs Frequency  
10k  
1k  
100  
10  
18  
15  
12  
9
V
O
=
1ꢀV  
S
A
= 4, R = 10Ω  
L
V
F
S
I
= 0mA  
R = 680Ω, R = 220Ω  
G
V
= 15V, V = 5V  
IN P-P  
R
= 82.ꢀkΩ  
SD  
R
SD  
= 0Ω  
100  
10  
1
1
6
0.1  
3
0
0.01  
3
4
5
6
7
8
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
10  
10  
10  
10  
10  
10  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1210 G20  
1210 G19  
1210 G21  
Test Circuit for 3rd Order Intercept  
3rd Order Intercept vs Frequency  
56  
54  
52  
50  
48  
46  
44  
42  
40  
V
=
15V  
S
L
F
G
R
= 10Ω  
+
R = 680Ω  
R
P
LT1210  
= 220Ω  
O
680Ω  
220Ω  
MEASURE INTERCEPT AT P  
10Ω  
O
1210 TC01  
0
4
6
8
10  
2
FREQUENCY (MHz)  
1210 G22  
Rev C  
8
For more information www.analog.com  
LT1210  
APPLICATIONS INFORMATION  
14  
12  
10  
8
The LT1210 is a current feedback amplifier with high out-  
put current drive capability. The device is stable with large  
capacitive loads and can easily supply the high currents  
required by capacitive loads. The amplifier will drive low  
impedance loads such as cables with excellent linearity  
at high frequencies.  
V
C
=
1ꢀV  
S
L
= 200pF  
R = 3.4kΩ  
F
NO COMPENSATION  
R = 1.ꢀkΩ  
F
COMPENSATION  
6
4
2
0
Feedback Resistor Selection  
–2  
–4  
–6  
R = 3.4kΩ  
F
The optimum value for the feedback resistors is a function  
of the operating conditions of the device, the load imped-  
ance and the desired flatness of response. The Typical AC  
Performance tables give the values which result in less  
than 1dB of peaking for various resistive loads and oper-  
ating conditions. If this level of flatness is not required,  
a higher bandwidth can be obtained by use of a lower  
feedback resistor. The characteristic curves of Bandwidth  
vs Supply Voltage indicate feedback resistors for peak-  
ing up to 5dB. These curves use a solid line when the  
response has less than 1dB of peaking and a dashed line  
when the response has 1dB to 5dB of peaking. The curves  
stop where the response has more than 5dB of peaking.  
COMPENSATION  
1
10  
100  
FREQUENCY (MHz)  
1210 F01  
Figure 1.  
Also shown is the –3dB bandwidth with the suggested  
feedback resistor vs the load capacitance.  
Although the optional compensation works well with  
capacitive loads, it simply reduces the bandwidth when  
it is connected with resistive loads. For instance, with a  
10Ω load, the bandwidth drops from 35MHz to 26MHz  
when the compensation is connected. Hence, the com-  
pensation was made optional. To disconnect the optional  
compensation, leave the COMP pin open.  
For resistive loads, the COMP pin should be left open (see  
Capacitive Loads section).  
Capacitive Loads  
Shutdown/Current Set  
The LT1210 includes an optional compensation network  
for driving capacitive loads. This network eliminates most  
of the output stage peaking associated with capacitive  
loads, allowing the frequency response to be flattened.  
Figure 1 shows the effect of the network on a 200pF load.  
Without the optional compensation, there is a 6dB peak  
at 40MHz caused by the effect of the capacitance on the  
output stage. Adding a 0.01µF bypass capacitor between  
the output and the COMP pins connects the compensation  
and greatly reduces the peaking. A lower value feedback  
resistor can now be used, resulting in a response which  
is flat to 1dB to 40MHz. The network has the greatest  
If the shutdown feature is not used, the SHUTDOWN pin  
must be connected to ground or V .  
The Shutdown pin can be used to either turn off the bias-  
ing for the amplifier, reducing the quiescent current to  
less than 200µA, or to control the quiescent current in  
normal operation.  
The total bias current in the LT1210 is controlled by  
the current flowing out of the Shutdown pin. When the  
Shutdown pin is open or driven to the positive supply,  
the part is shut down. In the shutdown mode, the output  
looks like a 70pF capacitor and the supply current is typi-  
cally less than 100µA. The Shutdown pin is referenced to  
the positive supply through an internal bias circuit (see  
the Simplified Schematic). An easy way to force shutdown  
is to use open-drain (collector) logic. The circuit shown  
in Figure 2 uses a 74C906 buffer to interface between 5V  
logic and the LT1210. The switching time between the  
effect for C in the range of 0pF to 1000pF. The graphs of  
L
Bandwidth and Feedback Resistance vs Capacitive Load  
can be used to select the appropriate value of feedback  
resistor. The values shown are for 1dB and 5dB peaking at  
a gain of 2 with no resistive load. This is a worst-case con-  
dition, as the amplifier is more stable at higher gains and  
with some resistive load in parallel with the capacitance.  
active and shutdown states is about 1µs. A 24kΩ pull-up  
Rev C  
9
For more information www.analog.com  
 
 
 
LT1210  
APPLICATIONS INFORMATION  
15V  
quiescent current can be reduced to 9mA in the inverting  
configuration without much change in response. In non-  
inverting mode, however, the slew rate is reduced as the  
quiescent current is reduced.  
V
+
IN  
V
OUT  
LT1210  
SD  
R
F
–15V  
5V  
R
G
74C906  
24kΩ  
15V  
ꢀꢁꢂꢃꢄꢀ  
1210 F02  
Figure 2. Shutdown Interface  
resistor speeds up the turn-off time and ensures that  
the LT1210 is completely turned off. Because the pin is  
referenced to the positive supply, the logic used should  
have a breakdown voltage of greater than the positive  
supply voltage. No other circuitry is necessary as the  
internal circuit limits the Shutdown pin current to about  
500µA. Figure 3 shows the resulting waveforms.  
1210 F04a  
R = 750Ω  
L
I
= 9mA, 18mA, 36mA  
F
Q
R
= 10Ω  
V
=
S
15V  
(a) AV = –1  
V
OUT  
1210 F04b  
R = 750Ω  
L
I
V
= 9mA, 18mA, 36mA  
Q
ꢀꢁꢂꢃꢄꢀ  
F
R
= 10Ω  
=
S
15V  
(b) AV = 2  
1210 F03  
A
= 1  
R
= 24k  
PULL-UP  
V
F
L
Figure 4. Large-Signal Response vs IQ  
R = 825Ω  
V
= 1V  
IN P-P  
R
= 50Ω  
V
= 15V  
S
Slew Rate  
Figure 3. Shutdown Operation  
Unlike a traditional op amp, the slew rate of a current  
feedback amplifier is not independent of the amplifier gain  
configuration. There are slew rate limitations in both the  
input stage and the output stage. In the inverting mode,  
and for higher gains in the noninverting mode, the signal  
amplitude on the input pins is small and the overall slew  
rate is that of the output stage. The input stage slew rate  
is related to the quiescent current and will be reduced as  
the supply current is reduced. The output slew rate is set  
by the value of the feedback resistors and the internal  
capacitance. Larger feedback resistors will reduce the  
slew rate as will lower supply voltages, similar to the way  
Rev C  
For applications where the full bandwidth of the amplifier  
is not required, the quiescent current of the device may be  
reduced by connecting a resistor from the Shutdown pin  
to ground. The quiescent current will be approximately 65  
times the current in the Shutdown pin. The voltage across  
+
the resistor in this condition is V – 3V . For example,  
BE  
a 82kΩ resistor will set the quiescent supply current to  
9mA with V = 15V.  
S
The photos in Figure 4 show the effect of reducing the qui-  
escent supply current on the large-signal response. The  
10  
For more information www.analog.com  
 
 
 
LT1210  
APPLICATIONS INFORMATION  
the bandwidth is reduced. The photos in Figure 5 show  
the large-signal response of the LT1210 for various gain  
configurations. The slew rate varies from 770V/µs for a  
gain of 1, to 1100V/µs for a gain of 1.  
When the LT1210 is used to drive capacitive loads, the  
available output current can limit the overall slew rate. In  
the fastest configuration, the LT1210 is capable of a slew  
rate of over 1V/ns. The current required to slew a capaci-  
tor at this rate is 1mA per picofarad of capacitance, so  
10,000pF would require 10A! The photo (Figure 6) shows  
the large-signal behavior with C = 10,000pF. The slew  
L
rate is about 150V/µs, determined by the current limit of  
1.5A.  
1210 F05a  
R = 825Ω  
L
V
=
S
15V  
F
R
= 10Ω  
(a) AV = 1  
±2±0 F06  
R = R = 3kΩ  
L
V = ±±1V  
S
F
G
R
= ∞  
Figure 6. Large-Signal Response, CL = 10,000pF  
Differential Input Signal Swing  
The differential input swing is limited to about 6V by  
an ESD protection device connected between the inputs.  
In normal operation, the differential voltage between the  
input pins is small, so this clamp has no effect; however,  
in the shutdown mode the differential swing can be the  
same as the input swing. The clamp voltage will then set  
the maximum allowable input voltage. To allow for some  
margin, it is recommended that the input signal be less  
than 5V when the device is shut down.  
1210 F05b  
R = R = 750Ω  
L
V = 15V  
S
F
G
R
= 10Ω  
(b) AV = –1  
Capacitance on the Inverting Input  
Current feedback amplifiers require resistive feedback  
from the output to the inverting input for stable operation.  
Take care to minimize the stray capacitance between the  
output and the inverting input. Capacitance on the invert-  
ing input to ground will cause peaking in the frequency  
response (and overshoot in the transient response), but  
it does not degrade the stability of the amplifier.  
1210 F05c  
R = R = 750Ω  
L
V = 15V  
S
F
G
R
= 10Ω  
(c) AV = 2  
Figure 5. Large-Signal Response  
Rev C  
11  
For more information www.analog.com  
 
 
LT1210  
APPLICATIONS INFORMATION  
Power Supplies  
For surface mount devices heat sinking is accomplished  
by using the heat spreading capabilities of the PC board  
and its copper traces. Experiments have shown that the  
heat spreading copper layer does not need to be electri-  
cally connected to the tab of the device. The PCB material  
can be very effective at transmitting heat between the pad  
area attached to the tab of the device, and a ground or  
power plane layer either inside or on the opposite side of  
the board. Although the actual thermal resistance of the  
PCB material is high, the length/area ratio of the thermal  
resistance between the layer is small. Copper board stiff-  
eners and plated through holes can also be used to spread  
the heat generated by the device.  
The LT1210 will operate from single or split supplies  
from 5V (10V total) to 15V (30V total). It is not neces-  
sary to use equal value split supplies, however the offset  
voltage and inverting input bias current will change. The  
offset voltage changes about 500µV per volt of supply  
mismatch. The inverting bias current can change as much  
as 5µA per volt of supply mismatch, though typically the  
change is less than 0.5µA per volt.  
Power Supply Bypassing  
To obtain the maximum output and the minimum distor-  
tion from the LT1210, the power supply rails should be  
well bypassed. For example, with the output stage pour-  
ing 1A current peaks into the load, a 1Ω power supply  
impedance will cause a droop of 1V, reducing the available  
output swing by that amount. Surface mount tantalum  
and ceramic capacitors make excellent low ESR bypass  
elements when placed close to the chip. For frequencies  
above 100kHz, use 1µF and 100nF ceramic capacitors.  
If significant power must be delivered below 100kHz,  
capacitive reactance becomes the limiting factor. Larger  
ceramic or tantalum capacitors, such as 4.7µF, are recom-  
mended in place of the 1µF unit mentioned above.  
Table 1 and Table 2 list thermal resistance for each pack-  
age. For the TO-220 package, thermal resistance is given  
for junction-to-case only since this package is usually  
mounted to a heat sink. Measured values of thermal resis-  
tance for several different board sizes and copper areas  
are listed for each surface mount package. All measure-  
ments were taken in still air on 3/32" FR-4 board with 2  
oz copper. This data can be used as a rough guideline in  
estimating thermal resistance. The thermal resistance for  
each application will be affected by thermal interactions  
with other components as well as board size and shape.  
Table 1. R Package, 7-Lead DD  
Inadequate bypassing is evidenced by reduced output  
swing and “distorted” clipping effects when the output  
is driven to the rails. If this is observed, check the supply  
pins of the device for ripple directly related to the output  
waveform. Significant supply modulation indicates poor  
bypassing.  
COPPER AREA  
THERMAL RESISTANCE  
TOPSIDE*  
BACKSIDE  
BOARD AREA (JUNCTION-TO-AMBIENT)  
2500 sq. mm 2500 sq. mm 2500 sq. mm  
1000 sq. mm 2500 sq. mm 2500 sq. mm  
125 sq. mm 2500 sq. mm 2500 sq. mm  
*Tab of device attached to topside copper  
25°C/W  
27°C/W  
35°C/W  
Thermal Considerations  
Table 2. Fused 16-Lead SO Package  
COPPER AREA  
The LT1210 contains a thermal shutdown feature which  
THERMAL RESISTANCE  
protects against excessive internal (junction) tempera  
-
TOPSIDE*  
BACKSIDE  
BOARD AREA (JUNCTION-TO-AMBIENT)  
ture. If the junction temperature of the device exceeds  
the protection threshold, the device will begin cycling  
between normal operation and an off state. The cycling  
is not harmful to the part. The thermal cycling occurs  
at a slow rate, typically 10ms to several seconds, which  
depends on the power dissipation and the thermal time  
constants of the package and heat sinking. Raising the  
ambient temperature until the device begins thermal shut-  
down gives a good indication of how much margin there  
is in the thermal design.  
2500 sq. mm 2500 sq. mm 5000 sq. mm  
1000 sq. mm 2500 sq. mm 3500 sq. mm  
600 sq. mm 2500 sq. mm 3100 sq. mm  
180 sq. mm 2500 sq. mm 2680 sq. mm  
180 sq. mm 1000 sq. mm 1180 sq. mm  
180 sq. mm 600 sq. mm 780 sq. mm  
180 sq. mm 300 sq. mm 480 sq. mm  
180 sq. mm 100 sq. mm 280 sq. mm  
40°C/W  
46°C/W  
48°C/W  
49°C/W  
56°C/W  
58°C/W  
59°C/W  
60°C/W  
61°C/W  
180 sq. mm  
0 sq. mm  
180 sq. mm  
Rev C  
12  
For more information www.analog.com  
 
 
 
LT1210  
APPLICATIONS INFORMATION  
T7 Package, 7-Lead TO-220  
5V  
Thermal Resistance (Junction-to-Case) = 5°C/W  
76mA  
SD  
A
Calculating Junction Temperature  
The junction temperature can be calculated from the  
equation:  
+
2V  
0V  
V
O
LT1210  
–2V  
10Ω  
T = (P )(θ ) + T  
J
D
JA  
A
V
= 1.4V  
RMS  
O
where:  
–5V  
T = Junction Temperature  
J
680Ω  
220Ω  
1210 F07  
T = Ambient Temperature  
A
P = Device Dissipation  
D
Figure 7.  
θ
JA  
= Thermal Resistance (Junction-to-Ambient)  
then:  
T = (0.56W)(46°C/W) + 70°C = 96°C  
As an example, calculate the junction temperature for the  
circuit in Figure 7 for the SO and R packages assuming a  
70°C ambient temperature.  
J
for the SO package with 1000 sq. mm topside  
heat sinking  
The device dissipation can be found by measuring the  
supply currents, calculating the total dissipation and  
then subtracting the dissipation in the load and feed-  
back network.  
T = (0.56W)(27°C/W) + 70°C = 85°C  
J
for the R package with 1000 sq. mm topside heat  
sinking  
Since the maximum junction temperature is 150°C,  
both packages are clearly acceptable.  
2
P = (76mA)(10V) – (1.4V) / 10 = 0.56W  
D
Rev C  
13  
For more information www.analog.com  
 
LT1210  
TYPICAL APPLICATIONS  
Precision × 10 High Current Amplifier  
CMOS Logic to Shutdown Interface  
15V  
V
+
IN  
+
LT1097  
+
LT1210  
COMP  
SD  
24kΩ  
LT1210  
SD  
OUT  
0.01µF  
500pF  
5V  
–15V  
3kΩ  
330Ω  
10kΩ  
2N3904  
9.09kΩ  
1210 TA04  
OUTPUT OFFSET: <500µV  
SLEW RATE: 2V/µs  
1kΩ  
1210 TA03  
BANDWIDTH: 4MHz  
STABLE WITH C < 10nF  
L
Distribution Amplifier  
Buffer AV = 1  
V
+
ꢐꢑ  
IN  
75Ω CABLE  
75Ω  
ꢂꢃꢄꢅꢄꢆ  
Cꢎꢛꢔ  
ꢇꢈ  
LT1210  
75Ω  
ꢎꢏꢃ  
SD  
ꢌ ꢎꢔꢃꢐꢎꢑꢒꢂꢕ ꢏꢇꢖ ꢗꢐꢃꢘ CꢒꢔꢒCꢐꢃꢐꢍꢖ ꢂꢎꢒꢈꢇ  
ꢆꢉꢆꢄꢊꢋꢌ  
75Ω  
R
R
F
ꢌꢌ ꢍꢒꢂꢏꢖ ꢎꢋ R ꢈꢖꢔꢖꢑꢈꢇ ꢎꢑ ꢇꢏꢔꢔꢂꢙ  
75Ω  
75Ω  
ꢍꢎꢂꢃꢒꢚꢖ ꢒꢑꢈ ꢂꢎꢒꢈꢐꢑꢚꢉ ꢇꢖꢂꢖCꢃ  
ꢋRꢎꢛ ꢃꢙꢔꢐCꢒꢂ ꢒC ꢔꢖRꢋꢎRꢛꢒꢑCꢖ  
ꢃꢒꢜꢂꢖ ꢎR ꢈꢖꢃꢖRꢛꢐꢑꢖ ꢖꢛꢔꢐRꢐCꢒꢂꢂꢙ  
R ꢌꢌ  
ꢄꢅꢄꢆ ꢃꢒꢆꢓ  
G
1210 TA05  
Rev C  
14  
For more information www.analog.com  
LT1210  
SIMPLIFIED SCHEMATIC  
+
V
TO ALL  
CURRENT  
SOURCES  
Q5  
Q10  
Q2  
D1  
Q11  
Q6  
Q15  
Q18  
Q1  
Q17  
Q9  
V
1.25kΩ  
+IN  
50Ω  
COMP  
V
C
C
–IN  
R
C
OUTPUT  
+
V
SHUTDOWN  
+
V
Q12  
Q3  
Q8  
Q16  
Q14  
D2  
Q4  
Q13  
Q7  
V
1210 SS  
Rev C  
15  
For more information www.analog.com  
LT1210  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/product/LT1210#packaging for the most recent package drawings.  
R Package  
7-Lead Plastic DD Pak  
(Reference LTC DWG # 05-08-1462 Rev G)  
ꢄꢋꢎꢏ ꢄꢋꢄꢎ  
ꢄꢋꢄꢇ ꢄꢋꢄꢆ  
ꢀꢇꢋꢌꢏꢄ ꢄꢋꢏꢄꢐꢃ  
ꢄꢋꢌꢑꢄ ꢍ ꢄꢋꢅꢆꢏ  
ꢀꢑꢋꢑꢄꢇ ꢍ ꢆꢄꢋꢏꢅꢆꢃ  
ꢀꢆꢋꢏꢎꢅ ꢄꢋꢎꢏꢅꢃ  
ꢄꢋꢄꢇ ꢄꢋꢄꢆ  
ꢓꢔꢕ  
ꢄꢋꢆꢇꢏ ꢍ ꢄꢋꢆꢐꢄ  
ꢀꢅꢋꢆꢑꢆ ꢍ ꢅꢋꢏꢂꢎꢃ  
ꢀꢆꢋꢏꢎꢅ ꢄꢋꢎꢏꢅꢃ  
ꢄꢋꢄꢅꢏ ꢍ ꢄꢋꢄꢏꢏ  
ꢀꢆꢋꢆꢅꢌ ꢍ ꢆꢋꢌꢑꢂꢃ  
ꢆꢏꢘ ꢏꢘ  
ꢄꢋꢌꢄ ꢄꢋꢄꢎ  
ꢀꢂꢋꢇꢎꢄ ꢄꢋꢏꢄꢐꢃ  
ꢄꢋꢄꢇ ꢄꢋꢄꢆ  
ꢀꢆꢋꢏꢎꢅ ꢄꢋꢎꢏꢅꢃ  
ꢒꢄꢋꢄꢄꢐ  
ꢄꢋꢄꢄꢅ  
ꢄꢋꢆꢐ ꢄꢋꢄꢆ  
ꢀꢅꢋꢏꢂꢎ ꢄꢋꢎꢏꢅꢃ  
ꢍꢄꢋꢄꢄꢅ  
ꢄꢋꢄꢇ ꢄꢋꢄꢆ  
ꢀꢆꢋꢏꢎꢅ ꢄꢋꢎꢏꢅꢃ  
ꢓꢔꢕ  
ꢄꢋꢌꢌꢄ ꢍ ꢄꢋꢌꢂꢄ  
ꢀꢐꢋꢌꢐꢎ ꢍ ꢑꢋꢌꢑꢐꢃ  
ꢒꢄꢋꢎꢄꢌ  
ꢍꢄꢋꢆꢄꢎ  
ꢄꢋꢏꢏ ꢄꢋꢄꢏ  
ꢀꢆꢌꢋꢑꢂꢄ ꢆꢋꢎꢂꢄꢃ  
ꢄꢋꢆꢄꢎ  
ꢄꢋꢄꢑꢏ ꢍ ꢄꢋꢆꢆꢏ  
ꢀꢎꢋꢅꢆꢌ ꢍ ꢎꢋꢑꢎꢆꢃ  
ꢄꢋꢄꢐꢏ ꢄꢋꢄꢆ  
ꢀꢎꢋꢆꢏꢑ ꢄꢋꢎꢏꢅꢃ  
ꢁꢈꢓꢝꢡꢜ ꢝ  
ꢄꢋꢄꢏꢄ  
ꢀꢆꢋꢎꢂꢄꢃ  
ꢖꢗC  
ꢄꢋꢄꢏꢄ ꢄꢋꢄꢆꢎ  
ꢀꢆꢋꢎꢂꢄ ꢄꢋꢌꢄꢏꢃ  
ꢄꢋꢄꢆꢌ ꢍ ꢄꢋꢄꢎꢌ  
ꢀꢄꢋꢌꢌꢄ ꢍ ꢄꢋꢏꢐꢅꢃ  
ꢒꢄꢋꢄꢆꢎ  
ꢄꢋꢆꢅꢌ  
ꢄꢋꢌꢄ ꢄꢋꢄꢎ  
ꢀꢂꢋꢇꢎꢄ ꢄꢋꢏꢄꢐꢃ  
ꢍꢄꢋꢄꢎꢄ  
ꢄꢋꢄꢎꢇ ꢍ ꢄꢋꢄꢌꢏ  
ꢀꢄꢋꢇꢇꢄ ꢍ ꢄꢋꢐꢐꢑꢃ  
ꢓꢔꢕ  
ꢒꢄꢋꢌꢄꢏ  
ꢌꢋꢇꢌꢎ  
ꢖꢙꢓꢓꢙꢚ ꢉꢡꢈꢥ ꢙꢟ ꢁꢁ ꢕꢝꢢ  
ꢠꢝꢓCꢠꢈꢁ ꢝRꢈꢝ ꢡꢗ ꢗꢙꢜꢁꢈR ꢕꢜꢝꢓꢈꢁ  
CꢙꢕꢕꢈR ꢠꢈꢝꢓ ꢗꢡꢛꢢ  
ꢍꢄꢋꢏꢄꢐ  
ꢁꢈꢓꢝꢡꢜ ꢝ  
ꢄꢘ ꢍ ꢂꢘ ꢓꢔꢕ  
ꢄꢘ ꢍ ꢂꢘ ꢓꢔꢕ  
ꢄꢋꢅꢎꢄ  
ꢄꢋꢎꢂꢇ  
ꢄꢋꢄꢐꢄ  
ꢄꢋꢅꢎꢄ  
ꢄꢋꢌꢏꢄ  
ꢄꢋꢌꢎꢏ  
ꢄꢋꢎꢄꢏ  
ꢄꢋꢌꢎꢄ  
ꢄꢋꢏꢐꢏ  
ꢄꢋꢏꢐꢏ  
ꢄꢋꢄꢑꢄ  
ꢄꢋꢄꢌꢏ  
ꢄꢋꢄꢑꢄ  
ꢄꢋꢄꢌꢏ  
ꢄꢋꢄꢏꢄ  
ꢄꢋꢄꢏꢄ  
RꢈCꢙꢚꢚꢈꢛꢁꢈꢁ ꢗꢙꢜꢁꢈR ꢕꢝꢁ ꢜꢝꢔꢙꢞꢓ  
RꢈCꢙꢚꢚꢈꢛꢁꢈꢁ ꢗꢙꢜꢁꢈR ꢕꢝꢁ ꢜꢝꢔꢙꢞꢓ  
ꢟꢙR ꢓꢠꢡCꢢꢈR ꢗꢙꢜꢁꢈR ꢕꢝꢗꢓꢈ ꢝꢕꢕꢜꢡCꢝꢓꢡꢙꢛꢗ  
ꢛꢙꢓꢈꢣ  
R ꢀꢁꢁꢂꢃ ꢄꢅꢆꢇ Rꢈꢉ ꢊ  
ꢆꢋ ꢁꢡꢚꢈꢛꢗꢡꢙꢛꢗ ꢡꢛ ꢡꢛCꢠꢤꢀꢚꢡꢜꢜꢡꢚꢈꢓꢈRꢃ  
ꢎꢋ ꢁRꢝꢥꢡꢛꢊ ꢛꢙꢓ ꢓꢙ ꢗCꢝꢜꢈ  
Rev C  
16  
For more information www.analog.com  
LT1210  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/product/LT1210#packaging for the most recent package drawings.  
S Package  
16-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610 Rev G)  
ꢀꢐꢋꢃ ꢄ ꢀꢐꢓꢇ  
ꢆꢓꢀꢋꢁꢇ ꢄ ꢂꢁꢀꢁꢁꢋꢊ  
ꢀꢁꢇꢅ ꢀꢁꢁꢅ  
ꢑꢔꢍꢕ ꢐ  
ꢀꢁꢅꢁ ꢙꢖC  
ꢂꢃ  
ꢂꢅ  
ꢂꢇ  
ꢂꢐ  
ꢂꢈ  
ꢂꢂ  
ꢂꢁ  
ꢀꢈꢇꢅ  
ꢚꢛꢑ  
ꢀꢂꢃꢁ ꢀꢁꢁꢅ  
ꢀꢂꢅꢁ ꢄ ꢀꢂꢅꢉ  
ꢀꢈꢈꢋ ꢄ ꢀꢈꢇꢇ  
ꢆꢅꢀꢉꢓꢂ ꢄ ꢃꢀꢂꢓꢉꢊ  
ꢆꢐꢀꢋꢂꢁ ꢄ ꢐꢀꢓꢋꢋꢊ  
ꢑꢔꢍꢕ ꢐ  
ꢑꢒꢈ  
ꢑꢒꢈ  
ꢀꢁꢐꢁ ꢀꢁꢁꢅ  
ꢍꢎꢏ  
RꢕCꢔꢚꢚꢕꢑꢜꢕꢜ ꢖꢔꢝꢜꢕR ꢏꢞꢜ ꢝꢞꢎꢔꢟꢍ  
ꢀꢁꢂꢁ ꢄ ꢀꢁꢈꢁ  
ꢆꢁꢀꢈꢅꢇ ꢄ ꢁꢀꢅꢁꢋꢊ  
× ꢇꢅ°  
ꢀꢁꢅꢐ ꢄ ꢀꢁꢃꢓ  
ꢆꢂꢀꢐꢇꢃ ꢄ ꢂꢀꢉꢅꢈꢊ  
ꢀꢁꢁꢇ ꢄ ꢀꢁꢂꢁ  
ꢆꢁꢀꢂꢁꢂ ꢄ ꢁꢀꢈꢅꢇꢊ  
ꢀꢁꢁꢋ ꢄ ꢀꢁꢂꢁ  
ꢆꢁꢀꢈꢁꢐ ꢄ ꢁꢀꢈꢅꢇꢊ  
ꢁꢌ ꢄ ꢋꢌ ꢍꢎꢏ  
ꢀꢁꢅꢁ  
ꢆꢂꢀꢈꢉꢁꢊ  
ꢙꢖC  
ꢀꢁꢂꢇ ꢄ ꢀꢁꢂꢓ  
ꢆꢁꢀꢐꢅꢅ ꢄ ꢁꢀꢇꢋꢐꢊ  
ꢍꢎꢏ  
ꢀꢁꢂꢃ ꢄ ꢀꢁꢅꢁ  
ꢆꢁꢀꢇꢁꢃ ꢄ ꢂꢀꢈꢉꢁꢊ  
ꢖꢂꢃ Rꢕꢗ ꢘ ꢁꢈꢂꢈ  
ꢑꢔꢍꢕꢡ  
ꢂꢀ ꢜꢛꢚꢕꢑꢖꢛꢔꢑꢖ ꢛꢑ  
ꢛꢑCꢠꢕꢖ  
ꢆꢚꢛꢝꢝꢛꢚꢕꢍꢕRꢖꢊ  
ꢈꢀ ꢜRꢞꢢꢛꢑꢘ ꢑꢔꢍ ꢍꢔ ꢖCꢞꢝꢕ  
ꢐꢀ ꢍꢠꢕꢖꢕ ꢜꢛꢚꢕꢑꢖꢛꢔꢑꢖ ꢜꢔ ꢑꢔꢍ ꢛꢑCꢝꢟꢜꢕ ꢚꢔꢝꢜ ꢣꢝꢞꢖꢠ ꢔR ꢏRꢔꢍRꢟꢖꢛꢔꢑꢖꢀ  
ꢚꢔꢝꢜ ꢣꢝꢞꢖꢠ ꢔR ꢏRꢔꢍRꢟꢖꢛꢔꢑꢖ ꢖꢠꢞꢝꢝ ꢑꢔꢍ ꢕꢤCꢕꢕꢜ ꢀꢁꢁꢃꢥ ꢆꢁꢀꢂꢅꢦꢦꢊ  
ꢇꢀ ꢏꢛꢑ ꢂ Cꢞꢑ ꢙꢕ ꢙꢕꢗꢕꢝ ꢕꢜꢘꢕ ꢔR ꢞ ꢜꢛꢚꢏꢝꢕ  
Rev C  
17  
For more information www.analog.com  
LT1210  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/product/LT1210#packaging for the most recent package drawings.  
T7 Package  
7-Lead Plastic TO-220 (Standard)  
(Reference LTC DWG # 05-08-1422)  
ꢀꢄꢈꢂ ꢉ ꢀꢄꢐꢁ  
ꢃꢌꢀꢄꢋꢄ ꢉ ꢌꢀꢂꢆꢅꢇ  
ꢀꢄꢌꢆ ꢉ ꢀꢄꢂꢂ  
ꢃꢊꢀꢆꢊꢌ ꢉ ꢊꢀꢋꢊꢆꢇ  
ꢔꢕꢖ  
ꢀꢊꢋꢁ ꢉ ꢀꢌꢄꢂ  
ꢃꢋꢀꢋꢁꢈ ꢉ ꢄꢁꢀꢂꢌꢄꢇ  
ꢀꢁꢌꢂ ꢉ ꢀꢁꢂꢂ  
ꢃꢄꢀꢄꢌꢊ ꢉ ꢄꢀꢊꢋꢆꢇ  
ꢀꢅꢊꢁ ꢉ ꢀꢅꢆꢁ  
ꢃꢂꢀꢐꢌꢅ ꢉ ꢈꢀꢐꢂꢐꢇ  
ꢀꢂꢆꢁ ꢉ ꢀꢈꢅꢁ  
ꢃꢄꢌꢀꢌꢆꢐ ꢉ ꢄꢂꢀꢆꢌꢐꢇ  
ꢀꢈꢅꢁ  
ꢃꢄꢂꢀꢆꢂꢇ  
ꢍꢑꢒ  
ꢀꢌꢈꢁ ꢉ ꢀꢂꢁꢁ  
ꢃꢄꢄꢀꢈꢐꢌ ꢉ ꢄꢅꢀꢆꢁꢁꢇ  
ꢀꢊꢊꢁ ꢉ ꢀꢊꢆꢁ  
ꢃꢐꢀꢊꢐꢅ ꢉ ꢋꢀꢊꢋꢐꢇ  
ꢀꢆꢁꢁ ꢉ ꢀꢆꢅꢐ  
ꢃꢄꢆꢀꢆꢐꢁ ꢉ ꢄꢐꢀꢌꢋꢄꢇ  
ꢀꢁꢋꢂ ꢉ ꢀꢄꢄꢂ  
ꢃꢅꢀꢌꢄꢊ ꢉ ꢅꢀꢋꢅꢄꢇ  
ꢀꢄꢂꢂ ꢉ ꢀꢄꢋꢂꢓ  
ꢃꢊꢀꢋꢊꢆ ꢉ ꢌꢀꢋꢂꢊꢇ  
ꢘꢙꢖꢍꢕꢚꢛ ꢒꢜꢖꢚꢙ  
ꢀꢄꢂꢅ ꢉ ꢀꢅꢁꢅ  
ꢃꢊꢀꢐꢈꢁ ꢉ ꢂꢀꢄꢊꢁꢇ  
ꢀꢅꢈꢁ ꢉ ꢀꢊꢅꢁ  
ꢃꢈꢀꢈꢁꢌ ꢉ ꢐꢀꢄꢅꢐꢇ  
ꢀꢁꢄꢊ ꢉ ꢀꢁꢅꢊ  
ꢃꢁꢀꢊꢊꢁ ꢉ ꢁꢀꢂꢐꢌꢇ  
ꢀꢁꢂꢁ  
ꢗꢘC  
ꢀꢁꢅꢈ ꢉ ꢀꢁꢊꢈ  
ꢃꢁꢀꢈꢈꢁ ꢉ ꢁꢀꢋꢄꢌꢇ  
ꢃꢄꢀꢅꢆꢇ  
ꢀꢄꢊꢂ ꢉ ꢀꢄꢈꢂ  
ꢃꢊꢀꢌꢅꢋ ꢉ ꢌꢀꢄꢋꢄꢇ  
ꢓꢝꢙꢖꢘꢞRꢙꢔ ꢖꢍ ꢍꢟꢙ ꢘꢙꢖꢍꢕꢚꢛ ꢒꢜꢖꢚꢙ  
ꢍꢆ ꢃꢍꢎꢏꢅꢅꢁꢇ ꢁꢐꢁꢄ  
Rev C  
18  
For more information www.analog.com  
LT1210  
REVISION HISTORY (Revision history begins at Rev B)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
1 to 3, 20  
B
11/15 Added LT1210IR#PBF  
04/18 Added Ohmic symbols  
C
1 to 20  
Rev C  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog  
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications  
subject to change without notice. No license is ante lic on otherw de any patent or patent rights of Analog Devices.  
19  
grdbyimpatioriseun r
LT1210  
TYPICAL APPLICATION  
Wideband 9W Bridge Amplifier  
15V  
INPUT  
P-P  
P
O
+
Frequency Response  
5V  
9W  
LT1210  
SD  
ꢏꢐ  
ꢏꢑ  
ꢏꢒ  
ꢓꢔ  
ꢓꢕ  
ꢓꢓ  
T1*  
R
50Ω  
9W  
L
10nF  
1
1
1
1
680Ω  
100nF  
–15V  
220Ω  
15V  
1
1
910Ω  
ꢘꢓ  
ꢘꢕ  
LT1210  
SD  
ꢓꢒꢙ  
ꢓꢒꢒꢙ  
ꢓꢚ  
ꢓꢒꢚ  
ꢓꢒꢒꢚ  
10nF  
+
ꢀRꢁꢂꢃꢁꢄCꢅ ꢆꢇꢈꢉ  
ꢓꢏꢓꢒ ꢛꢋꢒꢖ  
* COILTRONICS Versa-Pac™ CTX-01-13033-X2  
OR EQUIVALENT  
–15V  
1210 TA07  
RELATED PARTS  
PART NUMBER  
LT1010  
DESCRIPTION  
COMMENTS  
20MHz Bandwidth, 75V/µs Slew Rate  
Fast 150mA Power Buffer  
LT1166  
Power Output Stage Automatic Bias System  
Sets Class AB Bias Currents for High Voltage/High Power  
Output Stages  
LT1206  
Single 250mA, 60MHz Current Feedback Amplifier  
Shutdown Function, Stable with C = 10,000pF, 900V/µs  
L
Slew Rate  
LT1207  
LT1227  
LT1360  
LT1363  
Dual 250mA, 60MHz Current Feedback Amplifier  
Single 140MHz Current Feedback Amplifier  
Single 50MHz, 800V/µs Op Amp  
Dual Version of LT1206  
Shutdown Function, 1100V/µs Slew Rate  
Voltage Feedback, Stable with C = 10,000pF  
L
Single 70MHz, 1000V/µs Op Amp  
140V Operational Amplifier  
Voltage Feedback, Stable with C = 10,000pF  
L
LTC6090/  
LTC6090-5  
50pA I , 1.6mV V , 9.5V to 140V V , 4.5µA I RR Output  
B OS S S  
LTC6091  
140V Operational Amplifier  
50pA I , 1.6mV V , 9.5V to 140V V , 4.5µA I RR Output  
B OS S S  
Rev C  
D16837-0-4/18(C)  
www.analog.com  
20  
ANALOG DEVICES, INC. 1996-2018  

相关型号:

LT1210CT7

1.1A, 35MHz Current Feedback Amplifier
Linear

LT1210CT7#TR

IC OP-AMP, 20000 uV OFFSET-MAX, 35 MHz BAND WIDTH, PZFM7, PLASTIC, TO-220, 7 PIN, Operational Amplifier
Linear

LT1210X

High Temperature 1.0A, 35MHz Current Feedback Amplifier
ADI

LT1210XDICE

High Temperature 1.0A, 35MHz Current Feedback Amplifier
ADI

LT1210XDWF

High Temperature 1.0A, 35MHz Current Feedback Amplifier
ADI

LT1210_06

1.1A, 35MHz Current Feedback Amplifier
Linear

LT1211

14MHz, 7V/us, Single Supply Dual and Quad Precision Op Amps
Linear

LT1211ACJ8

IC DUAL OP-AMP, 400 uV OFFSET-MAX, 14 MHz BAND WIDTH, CDIP8, HERMETIC SEALED, CERDIP-8, Operational Amplifier
Linear

LT1211ACN8

14MHz, 7V/us, Single Supply Dual and Quad Precision Op Amps
Linear

LT1211AIJ8

IC DUAL OP-AMP, 1000 uV OFFSET-MAX, CDIP8, HERMETIC SEALED, CERDIP-8, Operational Amplifier
Linear

LT1211AMJ8

14MHz, 7V/us, Single Supply Dual and Quad Precision Op Amps
Linear

LT1211C

14MHz, 7V/us, Single Supply Dual and Quad Precision Op Amps
Linear