LT1218LCN8 [Linear]

Precision Rail-to-Rail Input and Output Op Amps; 精密轨到轨输入和输出运算放大器
LT1218LCN8
型号: LT1218LCN8
厂家: Linear    Linear
描述:

Precision Rail-to-Rail Input and Output Op Amps
精密轨到轨输入和输出运算放大器

运算放大器 放大器电路 光电二极管
文件: 总16页 (文件大小:378K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1218/LT1219  
Precision Rail-to-Rail Input  
and Output Op Amps  
U
FEATURES  
DESCRIPTION  
The LT®1218/LT1219 are bipolar op amps which combine  
rail-to-railinputandoutputoperationwithprecisionspeci-  
fications. Unlike other rail-to-rail amplifiers, the LT1218/  
LT1219’s input offset voltage is a low 90µV across the  
entire rail-to-rail input range, not just a portion of it. Using  
a patented technique, both input stages of the LT1218/  
LT1219 are trimmed: one at the negative supply and the  
other at the positive supply. The resulting common mode  
rejection of 97dB minimum is much better than other rail-  
to-rail input op amps. A minimum open-loop gain of  
500V/mV into a 10k load virtually eliminates all gain error.  
Rail-to-Rail Input and Output  
90µ  
V VOS(MAX) for VCM = Vto V+  
High Common Mode Rejection Ratio: 97dB Min  
C-LoadTM Stable Version (LT1219)  
High AVOL: 500V/mV Minimum Driving 10kLoad  
Wide Supply Range:  
2V to ±15V (LT1218/LT1219)  
2V to ±5V (LT1218L/LT1219L)  
Shutdown Mode: IS < 30µA  
Low Supply Current: 420µA Max  
Low Input Bias Current: 18nA Typical  
300kHz Gain-Bandwidth Product (LT1218)  
Slew Rate: 0.10V/µs (LT1218)  
The LT1218 has conventional compensation which  
assures stability for capacitive loads of 1000pF or less.  
The LT1219 has compensation that requires the use of a  
0.1µF output capacitor, which improves the amplifier’s  
supply rejection and reduces output impedance at high  
frequencies. The output capacitor’s filtering action also  
reduces high frequency noise, which is beneficial when  
driving A/D converters.  
U
APPLICATIONS  
Driving A/D Converters  
Test Equipment Amplifiers  
MUX Amplifiers  
High and low voltage versions of the devices are offered.  
Operation is specified for 3V, 5V and ±5V supplies for the  
LT1218L/LT1219L and 3V, 5V and ±15V for the LT1218/  
LT1219.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
C-Load is a trademark of Linear Technology Corporation.  
U
TYPICAL APPLICATION  
MUX Amplifier  
Voltage Follower Input to Output Error  
10  
5V  
V
A
= 5V  
= 1  
S
V
+
V
NO LOAD  
IN1  
V
LT1218L  
OUT  
1.0  
0.1  
SHDN  
MAX ERROR = 110µV  
0.05V V 4.8V  
5V  
IN  
+
V
IN2  
LT1218L  
MAXIMUM IN  
TO OUT ERROR  
= 110µV FOR  
SHDN  
0.01  
0
1
2
3
4
5
0.05  
4.95  
0.05V V 4.8V  
IN  
INPUT VOLTAGE (V)  
R
= 10k  
L
INPUT  
LT1218/19 • TA02  
SELECT  
1218/19 • TA01  
74HCO4  
1
LT1218/LT1219  
W W  
U W  
U
W U  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE/ORDER INFORMATION  
Supply Voltage  
ORDER PART  
NUMBER  
LT1218/LT1219 ................................................. ±18V  
LT1218L/LT1219L ............................................... ±8V  
Input Current ...................................................... ±15mA  
Output Short-Circuit Duration (Note 1).........Continuous  
Operating Temperature Range ................ 40°C to 85°C  
Specified Temperature Range (Note 3)... 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Junction Temperature........................................... 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
TOP VIEW  
LT1218CN8  
V
TRIM  
–IN  
1
2
3
4
V
V
TRIM  
8
7
6
5
OS  
OS  
+
LT1218CS8  
LT1218LCN8  
LT1218LCS8  
LT1219CN8  
LT1219CS8  
LT1219LCN8  
LT1219LCS8  
+IN  
OUT  
SHDN  
V
N8 PACKAGE  
8-LEAD PDIP  
S8 PACKAGE  
8-LEAD PLASTIC SO  
TJMAX = 150°C, θJA = 130°C/ W (N8)  
TJMAX = 150°C, θJA = 190°C/ W (S8)  
S8 PART MARKING  
1218 1219  
1218L 1219L  
Consult factory for Industrial and Military grades.  
ELECTRICAL CHARACTERISTICS  
TA = 25°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VO = half supply, VSHDN = V+, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
V
Input Offset Voltage  
V
V
V
V
V
V
V
V
V
= V  
= V  
= V to V  
= V  
= V  
= V to V  
= V  
= V  
= V to V  
25  
25  
15  
30  
18  
50  
5
2
5
33  
0.09  
1000  
750  
110  
106  
90  
90  
70  
70  
µV  
µV  
µV  
nA  
nA  
nA  
OS  
CM  
CM  
+
+
+
V  
Input Offset Voltage Shift  
Input Bias Current  
OS  
CM  
+
I
B
CM  
CM  
70  
I  
Input Bias Current Shift  
Input Offset Current  
140  
18  
18  
B
CM  
+
I
nA  
nA  
OS  
CM  
CM  
I  
Input Offset Current Shift  
Input Noise Voltage Density  
Input Noise Current Density  
Large-Signal Voltage Gain  
18  
nA  
nV/Hz  
pA/Hz  
V/mV  
V/mV  
OS  
CM  
e
f = 1kHz  
f = 1kHz  
n
i
n
A
V = 5V, V = 50mV to 4.8V, R = 10k  
250  
200  
97  
92  
VOL  
S
O
L
V = 3V, V = 50mV to 2.8V, R = 10k  
S
O
L
+
+
CMRR  
Common Mode Rejection Ratio  
V = 5V, V = V to V  
dB  
dB  
S
CM  
V = 3V, V = V to V  
S
CM  
PSRR  
Power Supply Rejection Ratio  
Output Voltage Swing LOW  
V = 2.3V to 12V, V = 0V, V = 0.5V  
No Load  
90  
100  
4
45  
120  
dB  
S
CM  
O
V
V
12  
90  
240  
mV  
mV  
mV  
V
V
V
OL  
OH  
I
I
= 0.5mA  
= 2.5mA  
SINK  
SINK  
+
+
Output Voltage Swing HIGH  
No Load  
V – 0.012 V – 0.003  
V – 0.130 V – 0.065  
V – 0.400 V – 0.210  
+
+
I
= 0.5mA  
= 2.5mA  
SOURCE  
SOURCE  
+
+
I
I
I
Short-Circuit Current  
Supply Current  
V = 5V  
5
4
10  
7
370  
370  
mA  
mA  
µA  
µA  
SC  
S
V = 3V  
S
V = 5V  
420  
410  
S
S
V = 3V  
S
Positive Supply Current, SHDN  
V = 5V, V  
V = 3V, V  
S
= 0V  
= 0V  
9
6
30  
20  
µA  
µA  
S
SHDN  
SHDN  
2
LT1218/LT1219  
ELECTRICAL CHARACTERISTICS  
TA = 25°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VO = half supply, VSHDN = V+, unless otherwise noted.  
SYMBOL PARAMETER CONDITIONS MIN  
TYP  
MAX  
UNITS  
SR  
Slew Rate (LT1218/LT1218L)  
(LT1219/LT1219L)  
Gain Bandwidth Product  
A = 1  
A = 1  
V
0.10  
0.05  
V/µs  
V/µs  
V
GBW  
(LT1218/LT1218L)  
(LT1219/LT1219L)  
A = 1000  
A = 1000  
V
0.30  
0.15  
MHz  
MHz  
V
0°C TA 70°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VO = half supply, VSHDN = V+, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
V
OS  
Input Offset Voltage  
V
CM  
V
CM  
= V  
= V  
75  
75  
200  
200  
µV  
µV  
V
V  
TC  
Input Offset Drift  
Input Offset Voltage Shift  
Input Bias Current  
(Note 2)  
1
25  
30  
18  
50  
5
3
3
80  
75  
µV/°C  
µV  
OS  
+
+
+
V
= V to V  
OS  
CM  
+
I
V
CM  
V
CM  
= V  
= V  
= V to V  
= V  
nA  
nA  
nA  
nA  
nA  
nA  
V/mV  
V/mV  
dB  
dB  
B
75  
I  
Input Bias Current Shift  
Input Offset Current  
V
CM  
150  
25  
25  
B
+
I
V
CM  
V
CM  
OS  
= V  
I  
Input Offset Current Shift  
Large-Signal Voltage Gain  
V
CM  
= V to V  
5
25  
OS  
A
VOL  
V = 5V, V = 50mV to 4.8V, R = 10k  
250  
150  
96  
91  
1000  
750  
104  
106  
100  
4
S
O
L
V = 3V, V = 50mV to 2.8V, R = 10k  
S
O
L
+
+
CMRR  
PSRR  
Common Mode Rejection Ratio  
V = 5V, V = V to V  
S
CM  
V = 3V, V = V to V  
S
CM  
Power Supply Rejection Ratio  
Output Voltage Swing LOW  
V = 2.3V to 12V, V = 0V, V = 0.5V  
88  
dB  
S
CM  
O
V
OL  
No Load  
14  
100  
290  
mV  
mV  
mV  
V
V
V
I
I
= 0.5mA  
= 2.5mA  
45  
130  
SINK  
SINK  
+
+
V
OH  
Output Voltage Swing HIGH  
No Load  
V – 0.014 V – 0.004  
V – 0.150 V – 0.075  
V – 0.480 V – 0.240  
+
+
I
I
= 0.5mA  
= 2.5mA  
SOURCE  
SOURCE  
+
+
I
I
Short-Circuit Current  
Supply Current  
V = 5V  
4
3
7
6
370  
370  
mA  
mA  
µA  
µA  
SC  
S
V = 3V  
S
V = 5V  
485  
475  
S
S
V = 3V  
S
Positive Supply Current, SHDN  
V = 5V, V  
V = 3V, V  
S
= 0V  
= 0V  
9
6
36  
26  
µA  
µA  
S
SHDN  
SHDN  
40°C TA 85°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VO = half supply, VSHDN = V+, unless otherwise noted. (Note 3)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
V
OS  
Input Offset Voltage  
V
CM  
V
CM  
= V – 0.15  
= V + 0.15  
400  
400  
µV  
µV  
V
V  
TC  
Input Offset Drift  
Input Offset Voltage Shift  
Input Bias Current  
(Note 2)  
1
30  
4
105  
80  
µV/°C  
µV  
OS  
+
V
CM  
= V – 0.15 to V + 0.15  
OS  
+
I
V
CM  
V
CM  
= V – 0.15  
= V + 0.15  
nA  
nA  
nA  
nA  
nA  
nA  
B
80  
+
I  
Input Bias Current Shift  
Input Offset Current  
V
CM  
= V – 0.15 to V + 0.15  
160  
40  
40  
B
+
I
V
CM  
V
CM  
= V – 0.15  
= V + 0.15  
OS  
+
I  
Input Offset Current Shift  
V
CM  
= V – 0.15 to V + 0.15  
40  
OS  
3
LT1218/LT1219  
ELECTRICAL CHARACTERISTICS  
40°C TA 85°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VO = half supply, VSHDN = V+, unless otherwise noted. (Note 3)  
SYMBOL PARAMETER  
CONDITIONS  
V = 5V, V = 50mV to 4.8V, R = 10k  
MIN  
TYP  
MAX  
UNITS  
A
VOL  
Large-Signal Voltage Gain  
150  
100  
93  
88  
500  
500  
102  
100  
100  
5
V/mV  
V/mV  
dB  
dB  
S
O
L
V = 3V, V = 50mV to 2.8V, R = 10k  
S
O
L
+
CMRR  
PSRR  
Common Mode Rejection Ratio  
V = 5V, V = V – 0.15 to V + 0.15  
S
CM  
+
V = 3V, V = V – 0.15 to V + 0.15  
S
CM  
Power Supply Rejection Ratio  
Output Voltage Swing LOW  
V = 2.3V to 12V, V = 0V, V = 0.5V  
86  
dB  
S
CM  
O
V
OL  
No Load  
15  
105  
300  
mV  
mV  
mV  
mV  
mV  
mV  
I
I
= 0.5mA  
= 2.5mA  
50  
130  
SINK  
SINK  
+
+
V
OH  
Output Voltage Swing HIGH  
No Load  
V – 0.015 V – 0.004  
V – 0.160 V – 0.070  
V – 0.500 V – 0.250  
+
+
I
= 0.5mA  
= 2.5mA  
SOURCE  
SOURCE  
+
+
I
I
I
Short-Circuit Current  
Supply Current  
V = 5V  
4
3
7
7
410  
400  
mA  
mA  
µA  
µA  
SC  
S
V = 3V  
S
V = 5V  
505  
495  
S
S
V = 3V  
S
Positive Supply Current, SHDN  
V = 5V, V  
V = 3V, V  
S
= 0V  
= 0V  
15  
13  
50  
40  
µA  
µA  
S
SHDN  
SHDN  
LT1218L/LT1219L only; TA = 25°C, VS = ±5V, VCM = 0V, VO = 0V, VSHDN = 5V, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
35  
35  
20  
30  
18  
50  
5
2
5
MAX  
140  
140  
70  
70  
UNITS  
+
V
OS  
Input Offset Voltage  
V
V
= V  
= V  
= V to V  
= V  
= V  
= V to V  
= V  
= V  
= V to V  
µV  
µV  
µV  
nA  
nA  
nA  
nA  
nA  
nA  
V/mV  
V/mV  
dB  
CM  
CM  
+
+
+
V  
Input Offset Voltage Shift  
Input Bias Current  
V
CM  
OS  
+
I
V
CM  
V
CM  
B
70  
I  
Input Bias Current Shift  
Input Offset Current  
V
CM  
140  
18  
18  
B
+
I
V
CM  
V
CM  
OS  
I  
Input Offset Current Shift  
Large-Signal Voltage Gain  
V
CM  
18  
OS  
A
VOL  
V = 4.7V to 4.7V, R = 10k  
500  
300  
103  
2800  
1300  
114  
O
L
V = 4.5V to 4.5V, R = 2k  
O
L
+
CMRR  
Common Mode Rejection Ratio  
Output Voltage Swing LOW  
V
= V to V  
CM  
V
No Load  
V + 0.004 V + 0.012  
V + 0.045 V + 0.090  
V + 0.180 V + 0.525  
V
V
V
V
V
V
OL  
OH  
I
I
= 0.5mA  
= 5mA  
SINK  
SINK  
+
+
V
Output Voltage Swing HIGH  
No Load  
V – 0.012 V – 0.003  
V – 0.130 V – 0.065  
V – 0.800 V – 0.350  
+
+
I
I
= 0.5mA  
= 5mA  
SOURCE  
SOURCE  
+
+
I
I
Short-Circuit Current  
Supply Current  
Positive Supply Current, SHDN  
6
12  
400  
10  
mA  
µA  
µA  
SC  
430  
40  
S
V
SHDN  
= 0V  
SR  
Slew Rate (LT1218/LT1218L)  
(LT1219/LT1219L)  
A = 1, R = Open, V = ±3.5V  
0.06  
0.03  
0.10  
0.05  
V/µs  
V/µs  
V
L
O
A = 1, R = Open, V = ±3.5V  
V
L
O
GBW  
Gain-Bandwidth Product  
(LT1218/LT1218L)  
(LT1219/LT1219L)  
A = 1000  
A = 1000  
V
0.2  
0.1  
0.30  
0.15  
MHz  
MHz  
V
4
LT1218/LT1219  
ELECTRICAL CHARACTERISTICS  
LT1218L/LT1219L only; 0°C TA 70°C, VS = ±5V, VCM = 0V, VO = 0V, VSHDN = 5V, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
100  
100  
30  
30  
18  
50  
5
3
5
2800  
1300  
110  
+ 0.004  
+ 0.045  
+ 0.200  
MAX  
250  
250  
90  
75  
UNITS  
+
V
Input Offset Voltage  
V
V
V
V
V
V
V
V
V
= V  
= V  
= V to V  
= V  
= V  
= V to V  
= V  
= V  
= V to V  
µV  
µV  
µV  
nA  
nA  
nA  
nA  
nA  
nA  
V/mV  
V/mV  
dB  
OS  
CM  
CM  
+
+
+
V  
Input Offset Voltage Shift  
Input Bias Current  
OS  
CM  
+
I
B
CM  
CM  
75  
I  
Input Bias Current  
Input Offset Current  
150  
25  
25  
B
CM  
+
I
OS  
CM  
CM  
I  
Input Offset Current Shift  
Large-Signal Voltage Gain  
20  
OS  
CM  
A
V = 4.7V to 4.7V, R = 10k  
375  
275  
100  
VOL  
O
L
V = 4.5V to 4.5V, R = 2k  
O
L
+
CMRR  
Common Mode Rejection Ratio  
Output Voltage Swing LOW  
V
= V to V  
CM  
V
No Load  
V
V
V
V
V
V
+ 0.014  
+ 0.100  
+ 0.580  
V
V
V
V
V
V
OL  
I
I
= 0.5mA  
= 5mA  
SINK  
SINK  
+
+
V
Output Voltage Swing HIGH  
No Load  
V – 0.014 V – 0.004  
V – 0.150 V – 0.075  
V – 0.920 V – 0.450  
OH  
+
+
I
= 0.5mA  
= 5mA  
SOURCE  
SOURCE  
+
+
I
I
I
Short-Circuit Current  
Supply Current  
Positive Supply Current, SHDN  
5
10  
400  
11  
mA  
µA  
µA  
SC  
495  
54  
S
V
= 0V  
SHDN  
LT1218L, LT1219L only; 40°C TA 85°C, VS = ±5V; VCM = 0V, VO = 0V, VSHDN = 5V, unless otherwise noted. (Note 3)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
125  
125  
MAX  
500  
500  
120  
80  
UNITS  
+
V
OS  
Input Offset Voltage  
V
V
= V – 0.15  
µV  
µV  
µV  
nA  
nA  
nA  
nA  
nA  
nA  
V/mV  
V/mV  
dB  
CM  
CM  
= V + 0.15  
+
V  
Input Offset Voltage Shift  
Input Bias Current  
V
CM  
= V – 0.15 to V + 0.15  
35  
OS  
+
I
V
CM  
V
CM  
= V – 0.15  
B
= V + 0.15  
80  
+
I  
Input Bias Current  
V
CM  
= V – 0.15 to V + 0.15  
160  
40  
40  
B
+
I
Input Offset Current Shift  
V
CM  
V
CM  
= V – 0.15  
OS  
= V + 0.15  
+
I  
Input Offset Current Shift  
Large-Signal Voltage Gain  
V
CM  
= V – 0.15 to V + 0.15  
40  
OS  
A
VOL  
V = 4.7V to 4.7V, R = 10k  
300  
200  
98  
2000  
600  
109  
+ 0.005  
+ 0.050  
+ 0.200  
O
L
V = 4.5V to 4.5V, R = 2k  
O
L
+
CMRR  
Common Mode Rejection Ratio  
Output Voltage Swing LOW  
V
= V – 0.15 to V + 0.15  
CM  
V
No Load  
V
V
V
V
V
V
+ 0.015  
+ 0.105  
+ 0.620  
V
V
V
V
V
V
OL  
OH  
I
I
= 0.5mA  
= 2.5mA  
SINK  
SINK  
+
+
V
Output Voltage Swing HIGH  
No Load  
V – 0.015 V – 0.004  
V – 0.160 V – 0.070  
V – 1.000 V – 0.400  
+
+
I
I
= 0.5mA  
= 2.5mA  
SOURCE  
SOURCE  
+
+
I
I
Short-Circuit Current  
Supply Current  
Positive Supply Current, SHDN  
5
10  
420  
18  
mA  
µA  
µA  
SC  
525  
60  
S
V
SHDN  
= 0V  
5
LT1218/LT1219  
ELECTRICAL CHARACTERISTICS  
LT1218/LT1219 only; TA = 25°C, VS = ±15V, VCM = 0V, VO = 0V, VSHDN = 15V, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
V
OS  
Input Offset Voltage  
V
V
= V  
= V  
= V to V  
= V  
= V  
= V to V  
= V  
= V  
= V to V  
85  
85  
30  
30  
18  
50  
5
2
200  
200  
70  
70  
µV  
µV  
µV  
nA  
nA  
nA  
nA  
nA  
nA  
V/mV  
V/mV  
dB  
dB  
CM  
CM  
+
+
+
V  
Input Offset Voltage Shift  
Input Bias Current  
V
CM  
OS  
+
I
V
CM  
V
CM  
B
70  
I  
Input Bias Current  
Input Offset Current  
V
CM  
140  
18  
18  
B
+
I
V
CM  
V
CM  
OS  
I  
Input Offset Current Shift  
Large-Signal Voltage Gain  
V
CM  
5
18  
OS  
A
VOL  
V = 14.7V to 14.7V, R = 10k  
1000  
500  
113  
100  
4000  
2000  
120  
110  
+ 0.004  
+ 0.045  
+ 0.270  
O
L
V = 10V to 10V, R = 2k  
O
L
+
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Output Voltage Swing LOW  
V
= V to V  
CM  
V = ±5V to ±15V  
S
V
OL  
No Load  
V
V
V
V
V
V
+ 0.012  
+ 0.090  
+ 0.525  
V
V
V
V
V
V
I
I
= 0.5mA  
= 5mA  
SINK  
SINK  
+
+
V
OH  
Output Voltage Swing HIGH  
No Load  
V – 0.012 V – 0.003  
V – 0.130 V – 0.065  
V – 0.800 V – 0.580  
+
+
I
I
= 0.5mA  
= 5mA  
SOURCE  
SOURCE  
+
+
I
I
Short-Circuit Current  
Supply Current  
Positive Supply Current, SHDN  
10  
20  
425  
15  
mA  
µA  
µA  
SC  
550  
40  
S
V
SHDN  
= 0V  
SR  
Slew Rate (LT1218/LT1218L)  
(LT1219/LT1219L  
A = 1  
A = 1  
V
0.10  
0.05  
V/µs  
V/µs  
V
GBW  
Gain Bandwidth Product  
(LT1218/LT1218L)  
(LT1219/LT1219L)  
A = 1000  
A = 1000  
V
0.28  
0.15  
MHz  
MHz  
V
LT1218/LT1219 only; 0°C TA 70°C, VS = ±15V, VCM = 0V, VO = 0V, VSHDN = 15V, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
V
OS  
Input Offset Voltage  
V
V
= V  
= V  
= V to V  
= V  
= V  
= V to V  
= V  
= V  
= V to V  
120  
120  
50  
30  
18  
50  
5
3
300  
300  
105  
75  
µV  
µV  
µV  
nA  
nA  
nA  
nA  
nA  
nA  
V/mV  
V/mV  
dB  
dB  
CM  
CM  
+
+
+
V  
Input Offset Voltage Shift  
Input Bias Current  
V
CM  
OS  
+
I
V
CM  
V
CM  
B
75  
I  
Input Bias Current  
Input Offset Current  
V
CM  
150  
25  
25  
B
+
I
V
CM  
V
CM  
OS  
I  
Input Offset Current Shift  
Large-Signal Voltage Gain  
V
CM  
5
20  
OS  
A
VOL  
V = 14.7V to 14.7V, R = 10k  
750  
500  
109  
97  
3000  
1500  
114  
110  
+ 0.004  
+ 0.045  
+ 0.310  
O
L
V = 10V to 10V, R = 2k  
O
L
+
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Output Voltage Swing LOW  
V
= V to V  
CM  
V = ±5V to ±15V  
S
V
OL  
No Load  
V
V
V
V
V
V
+ 0.014  
+ 0.100  
+ 0.580  
V
V
V
V
V
V
I
I
= 0.5mA  
= 5mA  
SINK  
SINK  
+
+
V
OH  
Output Voltage Swing HIGH  
No Load  
V – 0.014 V – 0.003  
V – 0.150 V – 0.075  
V – 0.920 V – 0.700  
+
+
I
I
= 0.5mA  
= 5mA  
SOURCE  
SOURCE  
+
+
6
LT1218/LT1219  
ELECTRICAL CHARACTERISTICS  
LT1218/LT1219 only; 0°C TA 70°C, VS = ±15V, VCM = 0V, VO = 0V, VSHDN = 15V, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
17  
450  
20  
MAX  
UNITS  
mA  
I
I
Short-Circuit Current  
Supply Current  
8
SC  
S
600  
54  
µA  
µA  
Positive Supply Current, SHDN  
V
SHDN  
= 0V  
LT1218, LT1219 only; 40°C TA 85°C, VS = ±15V; VCM = 0V = VO = 0V, VSHDN = 15V, unless otherwise noted. (Note 3)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
150  
150  
MAX  
600  
600  
165  
80  
UNITS  
+
V
OS  
Input Offset Voltage  
V
V
= V – 0.15  
µV  
µV  
µV  
nA  
nA  
nA  
nA  
nA  
nA  
V/mV  
V/mV  
dB  
dB  
CM  
CM  
= V + 0.15  
+
V  
Input Offset Voltage Shift  
Input Bias Current  
V
CM  
= V – 0.15 to V + 0.15  
50  
OS  
+
I
V
CM  
V
CM  
= V – 0.15  
B
= V + 0.15  
80  
+
I  
Input Bias Current  
Input Offset Current  
V
CM  
= V – 0.15 to V + 0.15  
160  
40  
40  
B
+
I
V
CM  
V
CM  
= V – 0.15  
OS  
= V + 0.15  
+
I  
Input Offset Current Shift  
Large-Signal Voltage Gain  
V
CM  
= V – 0.15 to V + 0.15  
40  
OS  
A
VOL  
V = 14.7V to 14.7V, R = 10k  
500  
400  
105  
96  
3000  
1000  
114  
110  
+ 0.005  
+ 0.050  
+ 0.200  
O
L
V = 10V to 10V, R = 2k  
O
L
+
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Output Voltage Swing LOW  
V
= V – 0.15 to V + 0.15  
CM  
V = ±5V to ±15V  
S
V
OL  
No Load  
V
V
V
V
V
V
+ 0.015  
+ 0.105  
+ 0.620  
V
V
V
V
V
V
I
I
= 0.5mA  
= 2.5mA  
SINK  
SINK  
+
+
V
OH  
Output Voltage Swing HIGH  
No Load  
V – 0.015 V – 0.004  
V – 0.160 V – 0.070  
V – 1.000 V – 0.400  
+
+
I
I
= 0.5mA  
= 2.5mA  
SOURCE  
SOURCE  
+
+
I
I
Short-Circuit Current  
Supply Current  
Positive Supply Current, SHDN  
5
14  
mA  
µA  
µA  
SC  
650  
60  
S
V
SHDN  
= 0V  
The  
denotes specifications which apply over the full operating  
Note 2: This parameter is not 100% tested.  
temperature range.  
Note 3: The LT1218/LT1219 are designed, characterized and expected to  
meet these extended temperature limits, but are not tested at –40°C and  
85°C. Guaranteed I grade part are available: consult factory.  
Note 1: A heat sink may be required to keep the junction temperature  
below the Absolute Maximum Rating when the output is shorted  
indefinitely.  
7
LT1218/LT1219  
TYPICAL PERFORMANCE CHARACTERISTICS  
W
U
VOS Distribution, VCM = 0V  
VOS Shift, VCM = 0V to 5V  
VOS Distribution, VCM = 5V  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
V
V
= 5V, 0V  
= 0V  
V
V
= 5V, 0V  
CM  
S
CM  
V
V
= 5V, 0V  
= 5V  
S
S
CM  
= 0V TO 5V  
0
0
0
–100  
–60  
–20  
20  
60  
100  
–100  
–60  
–20  
20  
60  
100  
–100  
–60  
–20  
20  
60  
100  
INPUT OFFSET VOLTAGE (µV)  
INPUT OFFSET VOLTAGE (µV)  
INPUT OFFSET VOLTAGE (µV)  
LT1218/19 • TPC01  
LT1218/19 • TPC03  
LT1218/19 • TPC02  
Input Bias Current vs  
Common Mode Voltage  
Supply Current vs Temperature  
Minimum Supply Voltage  
200  
150  
100  
50  
500  
400  
300  
200  
100  
0
50  
25  
V
= 5V, 0V  
S
T
= –40°C  
A
V
= ±15V  
S
T
A
= 25°C  
= 85°C  
T = 25°C  
A
V
= ±2.5V  
T
= 85°C  
S
A
T
= 40°C  
A
T
A
0
–25  
0
T
= 25°C  
A
–50  
–50  
3
4
1.0 1.5 2.0 2.5  
3.0 3.5 4.0 4.5 5.0  
TOTAL SUPPLY VOLTAGE (V)  
–1  
0
1
2
5
6
7
–40  
0
20  
40  
60  
80 100  
–20  
COMMON MODE VOLTAGE (V)  
TEMPERATURE (°C)  
LT1218/19 • TPC06  
LT1218/19 • TPC05  
LT1218/19 • TPC04  
Output Saturation Voltage vs  
Load Current (Output Low)  
Output Saturation Voltage vs  
Load Current (Output High)  
0.1Hz to 10Hz Output  
Voltage Noise  
10  
1
10  
1
V
S
= 5V, 0V  
V = 5V, 0V  
S
V
V
= ±2.5V  
CM  
S
= 0V  
T
A
= 85°C  
T
= 25°C  
A
0.1  
0.1  
T
= 25°C  
A
T
= –40°C  
A
T
= 85°C  
A
0.01  
0.001  
0.01  
0.001  
T
= –40°C  
A
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
TIME (1s/DIV)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LT1218/19 • TPC08  
LT1218/19 • TPC07  
LT1218/19 • TPC09  
8
LT1218/LT1219  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Noise Voltage Spectrum  
Noise Current Spectrum  
2.5  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 5V, 0V  
S
V = 5V, 0V  
S
2.0  
1.5  
1.0  
0.5  
0
V
= 4V  
CM  
V
= 2.5V  
CM  
V
= 2.5V  
CM  
V
= 4V  
CM  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
LT1218/19 • TPC11  
LT1218/19 • TPC10  
LT1218 Gain and Phase  
Shift vs Frequency  
LT1219 Gain and Phase  
Shift vs Frequency  
70  
60  
140  
120  
100  
80  
70  
60  
140  
120  
100  
80  
V
S
= ±2.5V  
V
S
C
L
= ±2.5V  
= 0.1µF  
50  
50  
PHASE  
40  
40  
30  
60  
30  
60  
20  
40  
20  
40  
GAIN  
PHASE  
1000  
10  
20  
10  
20  
0
0
0
0
–10  
–20  
–30  
–20  
–40  
–60  
–10  
–20  
–30  
–20  
–40  
–60  
GAIN  
1
10  
100  
FREQUENCY (kHz)  
1000  
10000  
1
10  
100  
FREQUENCY (kHz)  
10000  
LT1218/19 • TPC12  
LT1218/19 • TPC13  
LT1218 Gain Bandwidth and  
Phase Margin vs Supply Voltage  
LT1218 Common Mode Rejection  
Ratio vs Frequency  
LT1219 Power Supply Rejection  
Ratio vs Frequency  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
400  
350  
300  
250  
200  
150  
100  
50  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= ±2.5V  
V
POSITIVE SUPPLY  
NEGATIVE SUPPLY  
= ±2.5V  
S
S
PHASE MARGIN  
GBW  
0
1
10  
100  
1000  
1
10  
100  
1000  
5
10  
20  
0
25  
30  
15  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
SUPPLY VOLTAGE (V)  
LT1218/19 • TPC15  
LT1218/19 • TPC16  
LT1218/19 • TPC  
9
LT1218/LT1219  
TYPICAL PERFORMANCE CHARACTERISTICS  
W
U
LT1218 Power Supply Rejection  
Ratio vs Frequency  
LT1218 Closed Loop Output  
Impedance vs Frequency  
LT1219 Closed Loop Output  
Impedance vs Frequency  
1000  
100  
10  
1000  
100  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
S
= ±2.5V  
V
S
C
L
= ±2.5V  
= 0.1µF  
V
= ±2.5V  
S
A
= 10  
V
A
V
= 10  
POSITIVE SUPPLY  
A
= 1  
A
V
= 1  
V
1.0  
1.0  
NEGATIVE SUPPLY  
10  
0.1  
0.1  
1
100  
1000  
0.1  
1
10  
FREQUENCY (kHz)  
100  
1000  
0.1  
1
10  
FREQUENCY (kHz)  
100  
1000  
FREQUENCY (kHz)  
LT1218/19 • TPC17  
LT1218/19 • TPC18  
LT1218/19 • TPC19  
LT1219 Overshoot vs Load  
Current, VS = ±2.5V  
LT1219 Overshoot vs Load  
Current, VS = ±15V  
LT1218 Capacitive Load Handling  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
V
= ±2.5V  
V
A
= ±15V  
S
V
S
A
V
= ±2.5V  
S
V
= 1  
= 1  
C
L
= 0.22µF  
C
L
= 0.22µF  
C
L
= 0.047µF  
A
= 1  
V
C
L
= 0.047µF  
A
= 5  
V
C
= 0.1µF  
L
C
= 0.1µF  
A
= 10  
L
V
–5  
0
10  
10  
100  
1000  
10000  
100000  
–10  
–5  
0
5
10  
–10  
5
CAPACITIVE LOAD (pF)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LT1218/19 • TPC20  
LT1218/19 • TPC22  
LT1218/19 • TPC21  
Input Offset Drift vs Time  
THD + Noise vs Frequency  
Open-Loop Gain, VS = ±15V  
40  
30  
1
0.1  
40  
V
V
= ±1.5V  
S
V
S
= ±15V  
= 2V  
IN P-P  
= 10k  
30  
20  
R
L
20  
10  
10  
R
= 10k  
V
S
= ±15V  
L
0
0
A
= 1  
V
V
S
= ±2.5V  
R
= 2k  
L
–10  
–20  
–30  
–40  
–10  
–20  
–30  
–40  
0.01  
0.001  
A
= –1  
V
0
5
0.01  
0.1  
1
10  
–20 –15 –10 –5  
10 15 20  
0
20 40 60 80 100 120 140 160 180 200  
TIME AFTER POWER-UP (SEC)  
LT1218/19 • TPC24  
FREQUENCY (kHz)  
OUTPUT VOLTAGE (V)  
LT1218/19 • TPC25  
LT1218/19 • TPC23  
10  
LT1218/LT1219  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
THD + Noise vs  
Peak-to-Peak Voltage  
Small-Signal Response  
VS = ±15V  
Large-Signal Response  
VS = ±15V  
10  
1
f = 1kHz  
R
= 10k  
L
(ALL CURVES)  
V
V
= ±1.5V  
= –1  
V
S
A
V
= ±1.5V  
= 1  
S
0.1  
A
V
S
A
V
= ±2.5V  
= 1  
0.01  
0.001  
AV = 1  
AV = 1  
VS = ±15V  
V
A
= ±2.5V  
= –1  
S
V
V
S = ±15V  
LT1218/18 • TPC27  
LT1218/18 • TPC28  
0
1
2
3
4
5
INPUT VOLTAGE (PEAK-TO-PEAK)  
LT1218/19 • TPC26  
U
W U U  
APPLICATIONS INFORMATION  
Q1/Q2 and an NPN stage Q3/Q4, which are active over  
different portions of the input common mode range.  
Lateral devices are used in both input stages, eliminating  
theneedforclampsacrosstheinputpins.Eachinputstage  
is trimmed for offset voltage. A complementary output  
configuration (Q23 through Q26) is employed to create an  
Rail-to-Rail Operation  
The LT1218/LT1219 differ from conventional op amps in  
the design of both the input and output stages. Figure 1  
shows a simplified schematic of the amplifier. The input  
stage consists of two differential amplifiers, a PNP stage  
TRIM  
+
V
D7  
D6  
D4  
D5  
BIAS  
CONTROL  
Q21  
Q24  
I1  
Q10  
Q17  
Q11  
Q23  
SHDN  
Q16  
Q5  
V
V
V
C1  
OUT  
V
+
+
V
V
+
IN  
C2  
V
Q1 Q2  
+
+
V
C
C
D1  
D2  
IN  
Q3 Q4  
Q20  
Q7  
Q14 Q15  
Q25  
Q8  
Q9  
Q26  
Q22  
Q12  
+
V
Q6  
D8  
– 300mV  
Q13  
Q18  
Q19  
D3  
D7  
V
LT1218/19 • F01  
Figure 1. LT1218 Simplified Schematic Diagram  
11  
LT1218/LT1219  
U
W U U  
APPLICATIONS INFORMATION  
output stage with rail-to-rail swing. The amplifier is fabri-  
cated on Linear Technology’s proprietary complementary  
bipolar process, which ensures very similar DC and AC  
characteristics for the output devices Q24 and Q26.  
ure 1) turns on, pulling the output of the second stage low,  
which forces the output high. For input below the negative  
supply, diodes D1 and D2 turn on, overcoming the satu-  
ration of the input pair Q1/Q2.  
A simple comparator Q5 steers current from current  
source I1 between the two input stages. When the input  
common mode voltage VCM is near the negative supply,  
Q5isreversebiased,andI1 becomesthetailcurrentforthe  
PNP differential pair Q1/Q2. At the other extreme, when  
VCM is within about 1.3V from the positive supply, Q5  
diverts I1 to the current mirror D3/Q6, which furnishes the  
tail current for the NPN differential pair Q3/Q4.  
When overdriven, the amplifier draws input current that  
exceeds the normal input bias current. Figures 2 and 3  
show typical input current as a function of input voltage.  
The input current must be less than 10mA for the phase  
reversalprotectiontoworkproperly. Whentheamplifieris  
severelyoverdriven, anexternalresistorshouldbeusedto  
limit the overdrive current.  
110  
MEASURED AS A  
FOLLOWER  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
The collector currents of the two input pairs are combined  
in the second stage, consisting of Q7 through Q11. Most  
of the voltage gain in the amplifier is contained in this  
stage. Differential amplifier Q14/Q15 buffers the output of  
the second stage, converting the output voltage to differ-  
ential currents. The differential currents pass through  
current mirrors D4/Q17 and D5/Q16, and are converted to  
differential voltages by Q18 and Q19. These voltages are  
also buffered and applied to the output Darlington pairs  
Q23/Q24 and Q25/Q26. Capacitors C1 and C2 form local  
feedback loops around the output devices, lowering the  
output impedance at high frequencies.  
+
T = 25°C  
T = 85°C  
T = 70°C  
T = –55°C  
–500  
–300  
–100 V 100  
300  
500  
S
COMMON MODE VOLTAGE RELATIVE TO  
POSITIVE SUPPLY (mV)  
LT1218/19 • F02  
Figure 2. Input Bias Current vs Common Mode Voltage  
Input Offset Voltage  
0
Since the amplifier has two input stages, the input offset  
voltage changes depending upon which stage is active.  
The input offsets are random, but bounded voltages.  
When the amplifier switches between stages, offset volt-  
ages may go up, down or remain flat; but will not exceed  
the guaranteed limits. This behavior is illustrated in three  
distribution plots of input offset voltage in the Typical  
Performance Characteristics section.  
MEASURED AS A FOLLOWER  
–10  
+
20  
30  
40  
T = 55°C T = 25°C  
T = 70°C  
50  
60  
T = 85°C  
70  
80  
90  
–100  
–110  
Overdrive Protection  
800  
600  
400  
–200  
V
S
200  
Two circuits prevent the output from reversing polarity  
when the input voltage exceeds the common mode range.  
When the noninverting input exceeds the positive supply  
by approximately 300mV, the clamp transistor Q12 (Fig-  
COMMON MODE VOLTAGE RELATIVE TO  
NEGATIVE SUPPLY (mV)  
LT1218/19 • F03  
Figure 3. Input Bias Current vs Common Mode Voltage  
12  
LT1218/LT1219  
U
W U U  
APPLICATIONS INFORMATION  
Shutdown  
TheSHDNpincanbedrivendirectlyfromCMOSlogicifthe  
logic and the LT1218/LT1219 are operated from the same  
supplies. For higher supply operation, an interface is  
required. An easy way to interface between supplies is to  
use open-drain logic, an example is shown in Figure 5.  
BecausetheSHDNpinisreferencedtothepositivesupply,  
the logic used should have a breakdown voltage greater  
than the positive supply.  
The biasing of the LT1218/LT1219 is controlled by the  
SHDN pin. When the SHDN pin is low, the part is shut  
down. In the shutdown mode, the output looks like a 40pF  
capacitor and the supply current is less than 30µA. The  
SHDN pin is referenced to the positive supply through an  
internal bias circuit (see Figure 1). The SHDN pin current  
with the pin low is typically 3µA.  
15V  
The switching time between the shutdown and active  
states is about 20µs, however, the total time to settle will  
be greater by the slew time of the amplifier. For example,  
if the DC voltage at the amplifier output is 0V in shutdown  
and –2V in the active mode, an additional 20µs is required.  
Figures 4a and 4b show the switching waveforms for a  
sinusoidal and a –2V DC input to the LT1218.  
LT1218/  
+
LT1219  
SHDN  
–15V  
5V  
SHDN  
74C906  
LT1218/19 • F05  
0V  
VOUT  
Figure 5. Shutdown Interface  
Trim Pins  
Trim pins are provided for compatibility with other single  
op amps. Input offset voltage can be adjusted over a  
±2.3mV range with a 10k potentiometer.  
SHDN  
0V  
+
RL = 10V  
V
V
S = ±2.5V  
LT1218/19 • F04a  
Figure 4a  
10k  
1
2
3
8
7
LT1218/  
LT1219  
0V  
OUT  
+
VOUT  
4
LT1218/19 • F06  
V
Figure 6. Optional Offset Nulling  
SHDN  
Improved Supply Rejection in the LT1219  
0V  
The LT1219 is a variation of the LT1218 offering greater  
supply rejection and lower high frequency output imped-  
ance. The LT1219 requires a 0.1µF load capacitance for  
R
L = 10V  
VS = ±2.5V  
LT1218/19 • F04a  
Figure 4b  
13  
LT1218/LT1219  
U
W U U  
APPLICATIONS INFORMATION  
compensation. The output capacitance forms a filter,  
which reduces pickup from the supply and lowers the  
output impedance. This additional filtering is helpful in  
mixed analog/digital systems with common supplies or  
systems employing switching supplies. Filtering also  
reduces high frequency noise, which may be beneficial  
when driving A/D converters.  
positive supply. The LT1219 power supply rejection is  
about ten times greater than that of the LT1218 at 50kHz.  
Note the 5-to-1 scale change in the output voltage traces.  
The tolerance of the external compensation capacitor is  
not critical. The plots of Overshoot vs Load Current in the  
Typical Performance Characteristics section illustrate the  
effect of a capacitive load.  
Figures7aand7bshowtheoutputsoftheLT1218/LT1219  
perturbed by a 200mVP-P 50kHz square wave added to the  
V+  
(AC)  
V+  
(AC)  
VOUT  
VOUT  
LT1218/19 • F07b  
LT1218/19 • F07a  
Figure 7b. LT1219 Power Supply Rejection Test  
Figure 7a. LT1218 Power Supply Rejection Test  
U
TYPICAL APPLICATIONS  
Buffer for 12-Bit A/D Converter  
High-Side Current Source  
V
3V  
R
CC  
SENSE  
0.2Ω  
1µF  
1k  
0.1µF  
0.1µF  
+
V
IN  
0.0033µF  
100Ω  
LT1004-1.2  
LT1219  
1
2
3
4
8
7
6
5
Q1  
MTP23P06  
V
V
CC  
LT1218  
R
REF  
P
10k  
+
+IN  
IN  
CLK  
LTC1285  
I
LOAD  
D
OUT  
TO µP  
40k  
GND CS/SHDN  
5V < V < 30V  
CC  
0A < I  
< 1A AT V = 5V  
LOAD  
0mA < I  
CC  
LT1218/19 • TA03  
< 160mA AT V = 30V  
LOAD  
CC  
Q2  
2N4340  
LT1218/19 • TA04  
14  
LT1218/LT1219  
U
TYPICAL APPLICATIONS  
Positive Supply Current Sense  
V
CC  
R1  
200Ω  
R
S
0.2Ω  
Q1  
TP0610L  
LT1218  
+
I
LOAD  
V
O
R2  
R1  
R2  
20k  
LOAD  
V
= (I  
= (I  
)(R )  
S
O
LOAD  
(
)
)(20)  
LOAD  
1218/19 • TA06  
U
PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.  
N8 Package  
8-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
0.130 ± 0.005  
(3.302 ± 0.127)  
0.300 – 0.325  
(7.620 – 8.255)  
0.045 – 0.065  
(1.143 – 1.651)  
0.400*  
(10.160)  
MAX  
8
1
7
6
5
4
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
0.255 ± 0.015*  
(6.477 ± 0.381)  
0.125  
(3.175)  
MIN  
0.005  
0.015  
(0.380)  
MIN  
(0.127)  
MIN  
+0.025  
–0.015  
0.325  
+0.635  
8.255  
2
3
(
)
–0.381  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
(0.457 ± 0.076)  
N8 0695  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
7
5
8
6
0.228 – 0.244  
(5.791 – 6.197)  
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.150 – 0.157**  
(3.810 – 3.988)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
1
3
4
2
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
SO8 0996  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT1218/LT1219  
TYPICAL APPLICATION  
U
8-Channel, 12-Bit Data Acquisition System with Programmable Gain  
5V  
5V  
1µF  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
+
V
1µF  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
D
+
V
LT1219L  
5V  
D
0.1µF  
OUT  
INPUTS  
D
IN  
17  
ADCIN  
16  
V
15, 19  
1µF  
CS  
CLK  
V
REF  
CC  
64R  
32R  
16R  
8R  
4R  
2R  
R
20 CH0  
21 CH1  
22 CH2  
23 CH3  
24 CH4  
CH7 GND  
10  
6
CSADC  
CSMUX  
CLK  
LTC1391  
8-CHANNEL  
MUX  
5, 14  
11  
8-CHANNEL  
MUX  
12-BIT  
SAMPLING  
ADC  
+
µP/µC  
D
OUT  
1
2
3
CH5  
CH6  
CH7  
7
D
IN  
R
GAIN  
MUX  
LTC1598  
12  
13  
CHANNEL  
GAIN  
1
2
4
8
16  
32  
64  
18 MUXOUT  
COM  
NC  
NC  
0
1
2
3
4
5
6
7
8
GND  
4, 9  
1218/19 • TA05  
128  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
High DC Accuracy, 10µV V  
LTC®1152  
Rail-to-Rail Input and Output, Zero-Drift Op Amp  
, 100nV/°C Drift, 0.7MHz GBW, 0.5V/µs  
OS(MAX)  
Slew Rate, Maximum Supply Current 3mA  
LT1366/LT1367  
LT1466/LT1467  
Dual/Quad Precision, Rail-to-Rail Input and Output  
Op Amps  
475µV V , 400kHz GBW, 0.13V/µs Slew Rate,  
Maximum Supply Current 520µA per Op Amp  
OS(MAX)  
Dual/Quad Micropower, Rail-to-Rail Input and Output  
Op Amps  
Maximum Supply Current 75µA per Op Amp, 390µV V  
120kHz Gain Bandwidth  
,
OS(MAX)  
12189f LT/TP 0697 7K • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1997  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408)432-1900  
16  
FAX: (408) 434-0507 TELEX: 499-3977 www.linear-tech.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY