LT1224CS8 [Linear]

Very High Speed Operational Amplifier; 超高速运算放大器
LT1224CS8
型号: LT1224CS8
厂家: Linear    Linear
描述:

Very High Speed Operational Amplifier
超高速运算放大器

运算放大器 光电二极管
文件: 总8页 (文件大小:235K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1224  
Very High Speed  
Operational Amplifier  
U
DESCRIPTIO  
EATURE  
S
F
Unity-Gain Stable  
TheLT1224isaveryhighspeedoperationalamplifierwith  
excellent DC performance. The LT1224 features reduced  
input offset voltage and higher DC gain than devices with  
comparable bandwidth and slew rate. The circuit is a  
singlegainstagewithoutstandingsettlingcharacteristics.  
The fast settling time makes the circuit an ideal choice for  
data acquisition systems. The output is capable of driving  
a 500load to ±12V with ±15V supplies and a 150load  
to ±3V on ±5V supplies. The circuit is also capable of  
driving large capacitive loads which makes it useful in  
buffer or cable driver applications.  
45MHz Gain-Bandwidth  
400V/µs Slew Rate  
7V/mV DC Gain: RL = 500Ω  
Maximum Input Offset Voltage: 2mV  
±12V Minimum Output Swing into 500Ω  
Wide Supply Range: ±2.5V to ±15V  
7mA Supply Current  
90ns Settling Time to 0.1%, 10V Step  
Drives All Capacitive Loads  
O U  
PPLICATI  
S
A
The LT1224 is a member of a family of fast, high per-  
formance amplifiers that employ Linear Technology  
Corporation’s advanced bipolar complementary  
processing.  
Wideband Amplifiers  
Buffers  
Active Filters  
Video and RF Amplification  
Cable Drivers  
Data Acquisition Systems  
U
O
TYPICAL APPLICATI  
DAC Current-to-Voltage Converter  
Inverter Pulse Response  
7pF  
5k  
DAC-08  
TYPE  
+
LT1224  
V
OUT  
0.1µF  
5k  
1 LSB SETTLING = 140ns  
LT1224 • TA01  
LT1224 • TA02  
1
LT1224  
W W W  
U
/O  
ABSOLUTE AXI U RATI GS  
PACKAGE RDER I FOR ATIO  
Total Supply Voltage (V+ to V) ............................... 36V  
Differential Input Voltage ......................................... ±6V  
Input Voltage ............................................................±VS  
Output Short Circuit Duration (Note 1) ............ Indefinite  
Operating Temperature Range  
LT1224C................................................ 0°C to 70°C  
Maximum Junction Temperature  
Plastic Package .............................................. 150°C  
Storage Temperature Range ................. – 65°C to 150°C  
Lead Temperature (Soldering, 10 sec.)................. 300°C  
TOP VIEW  
ORDER PART  
NUMBER  
NULL  
–IN  
1
2
3
4
8
7
6
5
NULL  
+
V
LT1224CN8  
LT1224CS8  
+IN  
OUT  
NC  
V
N8 PACKAGE  
S8 PACKAGE  
8-LEAD PLASTIC DIP 8-LEAD PLASTIC SOIC  
S8 PART MARKING  
1224  
LT1224 • POI01  
TJMAX = 150°C, θJA = 100°C/W (N8)  
JMAX = 150°C, θJA = 150°C/W (S8)  
T
ELECTRICAL CHARACTERISTICS VS = ±15V, TA = 25°C, RL = 1k, VCM = 0V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
0.5  
100  
4
MAX  
2.0  
400  
8
UNITS  
mV  
V
Input Offset Voltage  
Input Offset Current  
Input Bias Current  
Input Noise Voltage  
Input Noise Current  
Input Resistance  
(Note 2)  
OS  
I
I
nA  
OS  
µA  
B
e
f = 10kHz  
f = 10kHz  
22  
nV/Hz  
pA/Hz  
n
i
1.5  
n
R
V
= ±12V  
CM  
24  
12  
40  
250  
MΩ  
kΩ  
IN  
Differential  
C
Input Capacitance  
Input Voltage Range  
Input Voltage Range  
2
14  
13  
100  
84  
7
pF  
V
IN  
+
12  
V
CMRR  
PSRR  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
Output Swing  
V
= ±12V  
86  
75  
dB  
CM  
V = ±5V to ±15V  
S
dB  
A
V
V
= ±10V, R = 500Ω  
3.3  
V/mV  
V
VOL  
OUT  
OUT  
OUT  
L
R = 500Ω  
L
±12.0  
24  
±13.3  
40  
400  
6.4  
45  
5
I
Output Current  
V
A
= ±12V  
mA  
V/µs  
MHz  
MHz  
ns  
OUT  
VCL  
SR  
Slew Rate  
= –2, (Note 3)  
250  
Full Power Bandwidth  
Gain-Bandwidth  
10V Peak, (Note 4)  
f = 1MHz  
GBW  
t , t  
r
Rise Time, Fall Time  
Overshoot  
A
A
= 1, 10% to 90%, 0.1V  
= 1, 0.1V  
f
VCL  
VCL  
30  
5
%
Propagation Delay  
Settling Time  
50% V to 50% V  
ns  
IN  
OUT  
t
10V Step, 0.1%  
90  
1
ns  
s
Differential Gain  
f = 3.58MHz, R = 150Ω  
%
L
Differential Phase  
Output Resistance  
Supply Current  
f = 3.58MHz, R = 150Ω  
2.4  
2.5  
7
Deg  
L
R
A
= 1, f = 1MHz  
VCL  
O
I
9
mA  
S
2
LT1224  
ELECTRICAL CHARACTERISTICS  
VS = ±5V, TA = 25°C, RL = 1k, VCM = 0V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
1
MAX  
4
UNITS  
mV  
nA  
V
Input Offset Voltage  
Input Offset Current  
Input Bias Current  
Input Voltage Range  
Input Voltage Range  
(Note 2)  
OS  
I
I
100  
4
400  
8
OS  
µA  
V
B
+
2.5  
4
–3  
98  
2.5  
V
CMRR  
Common-Mode Rejection Ratio  
Large-Signal Voltage Gain  
V
= ±2.5V  
86  
dB  
CM  
A
V
V
= ±2.5V, R = 500Ω  
2.5  
7
3
V/mV  
V/mV  
VOL  
OUT  
OUT  
OUT  
OUT  
L
= ±2.5V, R = 150Ω  
L
V
Output Swing  
R = 500Ω  
R = 150Ω  
±3.0  
±3.0  
±3.7  
±3.3  
V
V
L
L
I
Output Current  
Slew Rate  
V
A
= ±3V  
20  
40  
250  
13.3  
34  
7
mA  
V/µs  
MHz  
MHz  
ns  
OUT  
VCL  
SR  
= –2, (Note 3)  
Full Power Bandwidth  
Gain-Bandwidth  
Rise Time, Fall Time  
Overshoot  
3V Peak, (Note 4)  
f = 1MHz  
GBW  
t , t  
A
A
= 1, 10% to 90%, 0.1V  
= 1, 0.1V  
r
f
VCL  
VCL  
20  
7
%
Propagation Delay  
Settling Time  
50% V to 50% V  
ns  
IN  
OUT  
t
I
–2.5V to 2.5V, 0.1%  
90  
7
ns  
s
Supply Current  
9
mA  
S
0°C TA 70°C, RL = 1k, VCM = 0V unless otherwise noted.  
ELECTRICAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
CONDITIONS  
V = ±15V, (Note 2)  
MIN  
TYP  
MAX  
UNITS  
V
OS  
Input Offset Voltage  
1
2
4
5
mV  
mV  
S
V = ±5V, (Note 2)  
S
Input V Drift  
25  
100  
4
µV/°C  
nA  
OS  
I
I
Input Offset Current  
V = ±15V and V = ±5V  
600  
9
OS  
S
S
Input Bias Current  
V = ±15V and V = ±5V  
µA  
B
S
S
CMRR  
PSRR  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V = ±15V, V = ±12V and V = ±5V, V = ±2.5V  
83  
73  
98  
84  
dB  
S
CM  
S
CM  
V = ±5V to ±15V  
S
dB  
A
V = ±15V, V  
= ±10V, R = 500Ω  
2.5  
2.0  
7
7
V/mV  
V/mV  
VOL  
OUT  
OUT  
S
OUT  
L
V = ±5V, V  
= ±2.5V, R = 500Ω  
S
OUT  
L
V
Output Swing  
Output Current  
V = ±15V, R = 500Ω  
±12.0  
±3.0  
±13.3  
±3.3  
V
V
S
L
V = ±5V, R = 500or 150Ω  
S
L
I
V = ±15V, V  
= ±12V  
= ±3V  
24  
20  
40  
40  
mA  
mA  
S
OUT  
V = ±5V, V  
S
OUT  
SR  
Slew Rate  
V = ±15V, A  
= –2, (Note 3)  
VCL  
250  
400  
7
V/µs  
S
I
Supply Current  
V = ±15V and V = ±5V  
S
10.5  
mA  
S
S
Note 1: A heat sink may be required to keep the junction temperature  
below absolute maximum when the output is shorted indefinitely.  
Note 2: Input offset voltage is tested with automated test equipment  
Note 3: Slew rate is measured in a gain of –2 between ±10V on the output  
with ±6V on the input for ±15V supplies and ±2V on the output with  
±1.75V on the input for ±5V supplies.  
in <1 second.  
Note 4: Full power bandwidth is calculated from the slew rate  
measurement: FPBW = SR/2πVp.  
3
LT1224  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Input Common-Mode Range vs  
Supply Voltage  
Output Voltage Swing vs  
Supply Voltage  
Supply Current vs Supply Voltage  
20  
15  
10  
5
8.0  
7.5  
7.0  
6.5  
6.0  
20  
15  
10  
5
T
= 25°C  
A
L
T
= 25°C  
OS  
T = 25°C  
A
A
R
= 500Ω  
V < 1mV  
V = 30mV  
OS  
+V  
SW  
+V  
–V  
CM  
–V  
SW  
CM  
0
0
0
5
10  
15  
20  
0
5
10  
15  
20  
0
5
10  
15  
20  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
LT1224 • TPC03  
LT1224 • TPC01  
LT1224 • TPC02  
Output Voltage Swing vs  
Resistive Load  
Input Bias Current vs Input  
Common-Mode Voltage  
Open-Loop Gain vs  
Resistive Load  
30  
25  
20  
15  
10  
5
5.0  
4.5  
4.0  
3.5  
3.0  
100  
90  
80  
70  
60  
50  
T
= 25°C  
OS  
T
= 25°C  
A
A
V
= ±15V  
S
A
V = 30mV  
T
= 25°C  
+
I
+ I  
2
B
B
I
=
B
V
= ±15V  
S
V
= ±15V  
= ±5V  
S
V
S
V
= ±5V  
S
0
10  
100  
1k  
10k  
–15 –10  
–5  
0
5
10  
15  
10  
100  
1k  
10k  
LOAD RESISTANCE ()  
INPUT COMMON-MODE VOLTAGE (V)  
LOAD RESISTANCE ()  
LT1224 • TPC04  
LT1224 • TPC05  
LT1224 • TPC06  
Output Short Circuit Current vs  
Temperature  
Supply Current vs Temperature  
Input Bias Current vs Temperature  
10  
9
50  
4.75  
4.5  
55  
50  
45  
40  
35  
30  
25  
V
= ±15V  
S
V
= ±15V  
V = ±5V  
S
S
+
I
+ I  
2
B
B
I
=
B
8
7
4.25  
4.0  
SINK  
SOURCE  
6
5
3.75  
3.5  
4
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
LT1224 • TPC07  
LT1224 • TPC08  
LT1224 • TPC09  
4
LT1224  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Power Supply Rejection Ratio vs  
Frequency  
Common Mode Rejection Ratio vs  
Frequency  
Input Noise Spectral Density  
100  
80  
60  
40  
20  
0
10000  
1000  
100  
100  
10  
1
120  
100  
80  
60  
40  
20  
0
V
T
= ±15V  
= 25°C  
V
T
V
R
= ±15V  
V
T
= ±15V  
= 25°C  
S
A
S
A
S
A
= 25°C  
= +101  
= 100k  
A
S
+PSRR  
–PSRR  
i
n
e
n
10  
0.1  
100k  
100  
1k  
10k 100k  
1M  
10M 100M  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
LT1224 • TPC11  
LT1224 • TPC10  
LT1224 • TPC12  
Voltage Gain and Phase vs  
Frequency  
Frequency Response vs  
Capacitive Load  
Output Swing vs Settling Time  
10  
8
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
10  
8
V
= ±15V  
= 25°C  
= –1  
S
A
V
V
= ±15V  
= 25°C  
S
A
V
= ±15V  
S
T
T
A
V
= ±5V  
6
10mV SETTLING  
S
6
4
4
2
0
V
= ±15V  
S
A
= +1  
A
= –1  
= –1  
C = 100pF  
C = 50pF  
V
V
2
V
= ±5V  
S
0
–2  
–4  
–2  
–4  
–6  
–8  
–10  
C = 0  
C = 500pF  
C = 1000pF  
A
= +1  
40  
A
V
V
–6  
–8  
T
= 25°C  
1k  
A
–10  
–20  
1M  
10M  
FREQUENCY (Hz)  
100M  
100  
10k 100k  
1M  
10M 100M  
0
20  
60  
80  
100  
120  
FREQUENCY (Hz)  
SETTLING TIME (ns)  
LT1224 • TPC15  
LT1224 • TPC14  
LT1224 • TPC13  
Closed-Loop Output Impedance vs  
Frequency  
Gain-Bandwidth vs Temperature  
Slew Rate vs Temperature  
48  
47  
46  
45  
44  
43  
42  
500  
450  
400  
350  
300  
250  
200  
100  
10  
V
= ±15V  
= 25°C  
= 1  
S
A
V
V
= ±15V  
V
A
= ±15V  
= –2  
S
S
V
T
A
–SR  
+SR  
1
0.1  
0.01  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
10k  
100k  
1M  
10M  
100M  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
LT1224 • TPC17  
LT1224 • TPC18  
LT1224 • TPC16  
5
LT1224  
PPLICATI  
O U  
W
U
A
S I FOR ATIO  
TheLT1224maybeinserteddirectlyintoHA2541,HA2544,  
AD847, EL2020 and LM6361 applications, provided that  
the nulling circuitry is removed. The suggested nulling  
circuit for the LT1224 is shown below.  
overshoot in the unity-gain small-signal transient re-  
sponse. Higher noise gain configurations exhibit less  
overshoot as seen in the inverting gain of one response.  
Small Signal, AV = 1  
Small Signal, AV = –1  
Offset Nulling  
+
V
5k  
1
0.1µF  
8
3
2
+
7
4
6
LT1224  
LT1224 • TA04  
0.1µF  
The large-signal responses in both inverting and non-  
inverting gain show symmetrical slewing characteristics.  
Normally the noninverting response has a much faster  
rising edge than falling edge due to the rapid change in  
input common-mode voltage which affects the tail current  
of the input differential pair. Slew enhancement circuitry  
has been added to the LT1224 so that the noninverting  
slew rate response is balanced.  
V
LT1224 • TA03  
Layout and Passive Components  
As with any high speed operational amplifier, care must be  
taken in board layout in order to obtain maximum perfor-  
mance. Key layout issues include: use of a ground plane,  
minimization of stray capacitance at the input pins, short  
lead lengths, RF-quality bypass capacitors located close  
to the device (typically 0.01µF to 0.1µF), and use of low  
ESR bypass capacitors for high drive current applications  
(typically 1µF to 10µF tantalum). Sockets should be  
avoided when maximum frequency performance is  
required, although low profile sockets can provide  
reasonable performance up to 50MHz. For more details  
see Design Note 50. Feedback resistor values greater than  
5karenotrecommendedbecauseapoleisformedwiththe  
input capacitance which can cause peaking. If feedback  
resistors greater than 5k are used, a parallel  
capacitorof5pFto10pFshouldbeusedtocanceltheinput  
pole and optimize dynamic performance.  
Large Signal, AV = 1  
Large Signal, AV = –1  
LT1224 • TA06  
Input Considerations  
Resistors in series with the inputs are recommended for  
the LT1224 in applications where the differential input  
voltage exceeds ±6V continuously or on a transient basis.  
An example would be in noninverting configurations with  
high input slew rates or when driving heavy capacitive  
loads. The use of balanced source resistance at each input  
isrecommendedforapplicationswhereDCaccuracymust  
be maximized.  
Transient Response  
The LT1224 gain bandwidth is 45MHz when measured at  
f = 1MHz. The actual frequency response in unity-gain is  
considerablyhigherthan45MHzduetopeakingcausedby  
a second pole beyond the unity-gain crossover. This is  
reflected in the 50° phase margin and shows up as  
6
LT1224  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
Capacitive Loading  
The LT1224 is stable with all capacitive loads. This is  
accomplishedbysensingtheloadinducedoutputpoleand  
adding compensation at the amplifier gain node. As the  
capacitive load increases, both the bandwidth and phase  
margin decrease so there will be peaking in the frequency  
domain and in the transient response. The photo of the  
small-signalresponsewith1000pFloadshows50%peak-  
ing.Thelarge-signalresponsewitha10,000pFloadshows  
the output slew rate being limited by the short-circuit  
current.  
Cable Driving  
R3  
75Ω  
+
V
75CABLE  
IN  
LT1224  
V
OUT  
R4  
R1  
1k  
75Ω  
R2  
1k  
LT1224 • TA07  
AV = 1, CL = 1000pF  
AV = 1, CL = 10,000pF  
DAC Current-to-Voltage Converter  
The wide bandwidth, high slew rate and fast settling time  
of the LT1224 make it well-suited for current-to-voltage  
conversion after current output D/A converters. A typical  
application is shown on the first page of this data sheet  
with a DAC-08 type converter with a full-scale output of  
2mA. A compensation capacitor is used across the feed-  
back resistor to null the pole at the inverting input caused  
by the DAC output capacitance. The combination of the  
LT1224 and DAC settles to 40mV in 140ns for both a 0V  
to 10V step and for a 10V to 0V step.  
LT1224 • TA06  
The LT1224 can drive coaxial cable directly, but for best  
pulse fidelity the cable should be doubly terminated with  
a resistor in series with the output.  
U
O
TYPICAL APPLICATI S  
Two Op Amp Instrumentation Amplifier  
1MHz, 2nd Order Butterworth Filter  
R5  
220Ω  
R4  
10k  
R2  
619Ω  
R1  
10k  
R2  
1k  
C2  
100pF  
R1  
619Ω  
R3  
R3  
1k  
825Ω  
+
V
+
IN  
LT1224  
+
LT1224  
V
OUT  
LT1224  
V
IN  
OUT  
C1  
500pF  
V
+
R4  
R3  
1
2
R2  
R1  
R3  
R4  
R2 + R3  
R5  
A
=
1 +  
+
+
= 102  
[
(
)
]
V
–38dB AT 10MHz  
SMALL SIGNAL OVERSHOOT = 10%  
LT1224 • TA08  
TRIM R5 FOR GAIN  
LT1224 • TA09  
TRIM R1 FOR COMMON-MODE REJECTION  
BW = 430kHz  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection of circuits as described herein will not infringe on existing patent rights.  
7
LT1224  
W
W
SI PLIFIED SCHE ATIC  
V+  
7
NULL  
1
8
BIAS 1  
–IN  
BIAS 2  
+IN  
3
2
6
OUT  
V–  
4
LT1224 • TA10  
U
PACKAGE DESCRIPTIO Dimensions in inches (millimeters) unless otherwise noted.  
N8 Package  
8-Lead Plastic DIP  
0.300 – 0.320  
(7.620 – 8.128)  
0.130 ± 0.005  
(3.302 ± 0.127)  
0.400  
(10.160)  
MAX  
0.045 – 0.065  
(1.143 – 1.651)  
0.065  
(1.651)  
TYP  
8
1
7
6
5
4
0.009 - 0.015  
(0.229 - 0.381)  
0.250 ± 0.010  
(6.350 ± 0.254)  
0.125  
(3.175)  
MIN  
0.020  
(0.508)  
MIN  
+0.025  
–0.015  
0.045 ± 0.015  
(1.143 ± 0.381)  
0.325  
+0.635  
8.255  
(
)
3
2
–0.381  
0.100 ± 0.010  
0.018 ± 0.003  
(2.540 ± 0.254)  
(0.457 ± 0.076)  
N8 1291  
S8 Package  
8-Lead Plastic SOIC  
0.189 – 0.197  
(4.801 – 5.004)  
7
5
8
6
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.753)  
0.004 – 0.010  
(0.102 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0.228 – 0.244  
0.150 – 0.157  
(5.791 – 6.198)  
(3.810 – 3.988)  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.356 – 0.483)  
0°– 8° TYP  
1
2
3
4
S8 1291  
LT/GP 1192 5K REV A  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7487  
8
(408) 432-1900 FAX: (408) 434-0507 TELEX: 499-3977  
LINEAR TECHNOLOGY CORPORATION 1991  

相关型号:

LT1224CS8#TR

LT1224 - Very High Speed Operational Amplifier; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1224MN8

IC OP-AMP, PDIP8, PLASTIC, DIP-8, Operational Amplifier
Linear

LT1224MS8

IC OP-AMP, PDSO8, 0.150 INCH, PLASTIC, SO-8, Operational Amplifier
Linear

LT1225

Very High Speed Operational Amplifier
Linear

LT1225C

Very High Speed Operational Amplifier
Linear

LT1225CN8

Very High Speed Operational Amplifier
Linear

LT1225CN8#PBF

暂无描述
Linear

LT1225CS8

Very High Speed Operational Amplifier
Linear

LT1225CS8#PBF

LT1225 - Very High Speed Operational Amplifier; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1225MJ8

IC OP-AMP, CDIP8, HERMETIC SEALED, CERDIP-8, Operational Amplifier
Linear

LT1225MN8

IC OP-AMP, PDIP8, PLASTIC, DIP-8, Operational Amplifier
Linear

LT1225MS8

IC OP-AMP, PDSO8, 0.150 INCH, PLASTIC, SO-8, Operational Amplifier
Linear