LT1226CS8#TRPBF [Linear]

LT1226 - Low Noise Very High Speed Operational Amplifier; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C;
LT1226CS8#TRPBF
型号: LT1226CS8#TRPBF
厂家: Linear    Linear
描述:

LT1226 - Low Noise Very High Speed Operational Amplifier; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C

放大器 光电二极管
文件: 总8页 (文件大小:211K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1226  
Low Noise Very High Speed  
Operational Amplifier  
U
DESCRIPTIO  
EATURE  
S
F
Gain of 25 Stable  
The LT1226 is a low noise, very high speed operational  
amplifier with excellent DC performance. The LT1226  
features low input offset voltage and high DC gain. The  
circuit is a single gain stage with outstanding settling  
characteristics. The fast settling time makes the circuit an  
ideal choice for data acquisition systems. The output is  
capableofdrivinga500loadto±12Vwith ±15Vsupplies  
anda150loadto±3Von±5Vsupplies.Thecircuitisalso  
capable of driving large capacitive loads which makes it  
useful in buffer or cable driver applications.  
1GHz Gain Bandwidth  
400V/µs Slew Rate  
2.6nV/Hz Input Noise Voltage  
50V/mV Minimum DC Gain, RL = 500Ω  
1mV Maximum Input Offset Voltage  
±12V Minimum Output Swing into 500Ω  
Wide Supply Range ±2.5V to ±15V  
7mA Supply Current  
100ns Settling Time to 0.1%, 10V Step  
Drives All Capacitive Loads  
The LT1226 is a member of a family of fast, high per-  
formance amplifiers that employ Linear Technology  
Corporation’s advanced bipolar complementary  
processing.  
O U  
PPLICATI  
S
A
Wideband Amplifiers  
Buffers  
Active Filters  
Video and RF Amplification  
Cable Drivers  
Data Acquisition Systems  
U
O
TYPICAL APPLICATI  
Photodiode Preamplifier, AV = 5.1k, BW = 15MHz  
Gain of +25 Pulse Response  
+
V
+
LT1226  
51Ω  
5.1k  
51Ω  
LT1226 TA01  
LT1226 TA02  
1
LT1226  
W W W  
U
/O  
ABSOLUTE AXI U RATI GS  
PACKAGE RDER I FOR ATIO  
Total Supply Voltage (V+ to V) ............................... 36V  
Differential Input Voltage ......................................... ±6V  
Input Voltage ............................................................±VS  
Output Short Circuit Duration (Note 1) ............ Indefinite  
Operating Temperature Range  
LT1226C................................................ 0°C to 70°C  
Maximum Junction Temperature  
Plastic Package .............................................. 150°C  
Storage Temperature Range ................. – 65°C to 150°C  
Lead Temperature (Soldering, 10 sec.)................. 300°C  
ORDER PART  
NUMBER  
TOP VIEW  
1
2
3
4
NULL  
–IN  
8
7
6
5
NULL  
LT1226CN8  
LT1226CS8  
+
V
OUT  
NC  
+IN  
V
S8 PART MARKING  
1226  
N8 PACKAGE  
S8 PACKAGE  
8-LEAD PLASTIC DIP 8-LEAD PLASTIC SOIC  
LT1226 PO01  
ELECTRICAL CHARACTERISTICS VS = ±15V, TA = 25°C, VCM = 0V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
0.3  
100  
4
MAX  
1.0  
400  
8
UNITS  
mV  
V
Input Offset Voltage  
Input Offset Current  
Input Bias Current  
Input Noise Voltage  
Input Noise Current  
Input Resistance  
(Note 2)  
OS  
I
I
nA  
OS  
µA  
B
e
f = 10kHz  
f = 10kHz  
2.6  
1.5  
nV/Hz  
pA/Hz  
n
i
n
R
V
= ±12V  
CM  
24  
12  
40  
15  
MΩ  
kΩ  
IN  
Differential  
C
Input Capacitance  
Input Voltage Range +  
Input Voltage Range –  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large Signal Voltage Gain  
Output Swing  
2
pF  
V
IN  
14  
13  
12  
V
CMRR  
PSRR  
V
= ±12V  
94  
103  
110  
150  
13.3  
40  
dB  
CM  
V = ±5V to ±15V  
S
94  
dB  
A
V
V
= ±10V, R = 500Ω  
50  
V/mV  
±V  
VOL  
OUT  
OUT  
OUT  
L
R = 500Ω  
L
12.0  
24  
I
Output Current  
V
= ±12V  
mA  
V/µs  
MHz  
GHz  
ns  
OUT  
SR  
Slew Rate  
(Note 3)  
250  
400  
6.4  
1
Full Power Bandwidth  
Gain Bandwidth  
10V Peak, (Note 4)  
f = 1MHz  
GBW  
t , t  
Rise Time, Fall Time  
Overshoot  
A
A
= +25,10% to 90%, 0.1V  
= +25, 0.1V  
5.5  
35  
r
f
VCL  
VCL  
%
Propagation Delay  
Settling Time  
50% V to 50% V  
5.5  
100  
0.7  
0.6  
3.1  
7
ns  
IN  
OUT  
t
10V Step, 0.1%, A = 25  
ns  
s
V
Differential Gain  
f = 3.58MHz, A = +25, R = 150Ω  
%
V
L
Differential Phase  
Output Resistance  
Supply Current  
f = 3.58MHz, A = +25, R = 150Ω  
Deg  
V
L
R
A
= +25, f = 1MHz  
VCL  
O
I
9
mA  
S
2
LT1226  
ELECTRICAL CHARACTERISTICS V = ±5V, T = 25°C, V  
CM = 0V unless otherwise noted.  
S
A
SYMBOL  
PARAMETER  
CONDITIONS  
(Note 2)  
MIN  
TYP  
1.0  
100  
4
MAX  
1.4  
400  
8
UNITS  
mV  
nA  
V
Input Offset Voltage  
Input Offset Current  
Input Bias Current  
OS  
I
I
OS  
µA  
V
B
Input Voltage Range +  
Input Voltage Range –  
Common-Mode Rejection Ratio  
Large Signal Voltage Gain  
2.5  
4
–3  
–2.5  
V
CMRR  
V
= ±2.5V  
94  
50  
103  
dB  
CM  
A
V
OUT  
V
OUT  
= ±2.5V, R = 500Ω  
= ±2.5V, R = 150Ω  
100  
75  
V/mV  
V/mV  
VOL  
OUT  
OUT  
L
L
V
Output Voltage  
R = 500Ω  
R = 150Ω  
3.0  
3.0  
3.7  
3.3  
±V  
±V  
L
L
I
Output Current  
Slew Rate  
V
OUT  
= ±3V  
20  
40  
250  
13.3  
700  
8
mA  
V/µs  
MHz  
MHz  
ns  
SR  
(Note 3)  
Full Power Bandwidth  
Gain Bandwidth  
Rise Time, Fall Time  
Overshoot  
3V Peak, (Note 4)  
f = 1MHz  
GBW  
t , t  
A
VCL  
A
VCL  
= +25, 10% to 90%, 0.1V  
= +25, 0.1V  
r
f
25  
8
%
Propagation Delay  
Settling Time  
50% V to 50% V  
ns  
IN  
OUT  
t
I
– 2.5V to 2.5V, 0.1%, A = 24  
60  
7
ns  
s
V
Supply Current  
9
mA  
S
0°C TA 70°C, VCM = 0V unless otherwise noted.  
ELECTRICAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
CONDITIONS  
V = ±15V, (Note 2)  
MIN  
TYP  
MAX  
UNITS  
V
OS  
Input Offset Voltage  
0.3  
1.0  
1.3  
1.8  
mV  
mV  
S
V = ± 5V, (Note 2)  
S
Input V Drift  
6
µV/°C  
nA  
OS  
I
I
Input Offset Current  
V = ±15V and V = ±5V  
100  
4
600  
9
OS  
S
S
Input Bias Current  
V = ±15V and V = ±5V  
µA  
B
S
S
CMRR  
PSRR  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large Signal Voltage Gain  
V = ±15V, V = ±12V and V = ±5V, V = ±2.5V  
92  
92  
103  
110  
dB  
S
CM  
S
CM  
V = ±5V to ±15V  
S
dB  
A
V = ±15V, V  
= ±10V, R = 500Ω  
35  
35  
150  
100  
V/mV  
V/mV  
VOL  
OUT  
OUT  
S
OUT  
L
V = ±5V, V  
= ±2.5V, R = 500Ω  
S
OUT  
L
V
Output Swing  
Output Current  
V = ±15V, R = 500Ω  
12.0  
3.0  
13.3  
3.3  
±V  
±V  
S
L
V = ±5V, R = 500or 150Ω  
S
L
I
V = ±15V, V  
= ±12V  
OUT  
24  
20  
40  
40  
mA  
mA  
S
V = ±5V, V  
= ±3V  
S
OUT  
SR  
Slew Rate  
V = ±15V, (Note 3)  
250  
400  
7
V/µs  
S
I
Supply Current  
V = ±15V and V = ±5V  
10.5  
mA  
S
S
S
Note 1: A heat sink may be required to keep the junction temperature  
below absolute maximum when the output is shorted indefinitely.  
Note 3: Slew rate is measured between ±10V on an output swing of ±12V  
on ±15V supplies, and ±2V on an output swing of ±3.5V on ±5V supplies.  
Note 2: Input offset voltage is tested with automated test equipment  
in <1 second.  
Note 4: Full power bandwidth is calculated from the slew rate  
measurement: FPBW = SR/2πVp.  
3
LT1226  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Input Common Mode Range vs  
Supply Voltage  
Output Voltage Swing vs  
Supply Voltage  
Supply Current vs Supply Voltage  
8.0  
7.5  
7.0  
6.5  
6.0  
20  
15  
10  
5
20  
15  
10  
5
T
= 25°C  
A
L
T
= 25°C  
T
= 25°C  
OS  
A
A
R
= 500Ω  
V < 1mV  
V = 30mV  
OS  
+V  
SW  
+V  
–V  
CM  
–V  
SW  
CM  
0
0
0
5
10  
15  
20  
0
5
10  
15  
20  
0
5
10  
15  
20  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
LT1226 TPC02  
LT1226 TPC01  
LT1226 TPC03  
Output Voltage Swing vs  
Resistive Load  
Input Bias Current vs Input  
Common Mode Voltage  
Open Loop Gain vs  
Resistive Load  
30  
25  
20  
15  
10  
5
120  
110  
100  
90  
5.0  
4.5  
4.0  
3.5  
3.0  
T
= 25°C  
OS  
T
= 25°C  
A
A
V
= ±15V  
= 25°C  
S
A
V = 30mV  
T
I
+ I  
B+ B–  
I
=
V
V
= ±15V  
= ±5V  
B
2
S
S
V
= ±15V  
S
V
= ±5V  
S
80  
0
70  
10  
100  
1k  
10k  
10  
100  
1k  
10k  
–15  
–10  
–5  
0
5
10  
15  
LOAD RESISTANCE ()  
LOAD RESISTANCE ()  
INPUT COMMON MODE VOLTAGE (V)  
LT1226 TPC04  
LT1226 TPC06  
LT1226 TPC05  
Output Short Circuit Current vs  
Temperature  
Supply Current vs Temperature  
Input Bias Current vs Temperature  
10  
9
55  
50  
45  
40  
35  
30  
25  
5.0  
4.75  
4.5  
V
= ±15V  
V
= ±5V  
S
V
= ±15V  
S
S
I
+ I  
B+ B–  
I
=
B
2
8
7
4.25  
4.0  
SINK  
SOURCE  
6
5
3.75  
3.5  
4
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
LT1226 TPC07  
LT1226 TPC09  
LT1226 TPC08  
4
LT1226  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Power Supply Rejection Ratio vs  
Common Mode Rejection Ratio vs  
Frequency  
Input Noise Spectral Density  
Frequency  
120  
100  
80  
1000  
100  
10  
10  
120  
100  
V
T
= ±15V  
= 25°C  
V
T
= ±15V  
V
T
= ±15V  
= 25°C  
S
A
S
A
V
S
S
A
= 25°C  
= +101  
= 100kΩ  
A
i
R
n
1.0  
0.1  
0.01  
80  
60  
–PSRR  
+PSRR  
60  
40  
20  
0
40  
0
e
n
1
100  
10k  
100k 1M  
10M 100M  
1k  
1k  
10k  
100k  
1M  
10M  
100M  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
LT1226 TPC11  
LT1226 TPC12  
LT1226 TPC10  
Voltage Gain and Phase vs  
Frequency  
Frequency Response vs  
Capacitive Load  
Output Swing vs Settling Time  
38  
36  
34  
110  
90  
100  
80  
10  
8
V
= ±15  
S
A
V
= ±15V  
= 25°C  
= –25  
S
A
V
V
= ±15V  
T
= 25°C  
S
T
C = 100pF  
C = 50pF  
10mV SETTLING  
A
6
A
= +25  
V
S
= ±5V  
V
C = 0pF  
4
32  
30  
28  
26  
24  
22  
20  
18  
A
V
= –25  
2
0
70  
60  
V
S
= ±15V  
V
= ±5V  
S
–2  
–4  
–6  
–8  
–10  
50  
40  
A
V
= –25  
C = 1000pF  
C = 500pF  
30  
10  
20  
0
A
V
= +25  
60  
T
= 25°C  
1k  
A
1M  
10M  
FREQUENCY (HZ)  
100M  
100  
10k  
100k 1M  
10M 100M  
0
20  
40  
80  
100  
120  
FREQUENCY (Hz)  
SETTLING TIME (ns)  
LT1226 TPC15  
LT1226 TPC13  
LTC1226 TPC14  
Closed Loop Output Impedance vs  
Frequency  
Gain Bandwidth vs Temperature  
Slew Rate vs Temperature  
100  
10  
1.15  
1.10  
1.05  
1.0  
500  
450  
400  
350  
V
S
A
V
= ±15V  
= –25  
V
= ±15V  
= 25°C  
= +25  
V
S
= ±15V  
S
A
V
T
A
–SR  
+SR  
1
0.95  
0.90  
0.85  
300  
250  
200  
0.1  
0.01  
1M  
10M  
10k  
100M  
100k  
50  
TEMPERATURE (˚C)  
100 125  
50  
TEMPERATURE (˚C)  
100 125  
–50 –25  
0
25  
75  
–50 –25  
0
25  
75  
FREQUENCY (Hz)  
LT1226 TPC16  
LT1226 TPC17  
LT1226 TPC18  
5
LT1226  
PPLICATI  
O U  
W
U
A
S I FOR ATIO  
Small Signal, AV = +25  
Small Signal, AV = 25  
TheLT1226maybeinserteddirectlyintoHA2541,HA2544,  
AD847, EL2020 and LM6361 applications, provided that  
the amplifier configuration is a noise gain of 25 or greater,  
andthenullingcircuitryisremoved.Thesuggestednulling  
circuit for the LT1226 is shown below.  
Offset Nulling  
+
V
5k  
LT1226 AI02  
0.1µF  
Thelargesignalresponse inbothinvertingandnoninvert-  
ing gain shows symmetrical slewing characteristics. Nor-  
mally the noninverting response has a much faster rising  
edge due to the rapid change in input common mode  
voltage which affects the tail current of the input differen-  
tial pair. Slew enhancement circuitry has been added to  
the LT1226 so that the falling edge slew rate is enhanced  
which balances the noninverting slew rate response.  
1
8
3
2
+
7
4
6
LT1226  
0.1µF  
V
LT1226 AI01  
Layout and Passive Components  
Large Signal, AV = +25  
Large Signal, AV = – 25  
As with any high speed operational amplifier, care must be  
taken in board layout in order to obtain maximum perfor-  
mance. Key layout issues include: use of a ground plane,  
minimization of stray capacitance at the input pins, short  
lead lengths, RF-quality bypass capacitors located close  
to the device (typically 0.01µF to 0.1µF), and use of low  
ESR bypass capacitors for high drive current applications  
(typically 1µF to 10µF tantalum). Sockets should be  
avoided when maximum frequency performance is  
required, although low profile sockets can provide  
reasonable performance up to 50MHz. For more details  
see Design Note 50. Feedback resistors greater than 5kΩ  
are not recommended because a pole is formed with the  
input capacitance which can cause peaking. If feedback  
resistors greater than 5kare used, a parallel  
capacitorof5pFto10pFshouldbeusedtocanceltheinput  
pole and optimize dynamic performance.  
LT1226 AI03  
Input Considerations  
Resistors in series with the inputs are recommended for  
the LT1226 in applications where the differential input  
voltage exceeds ±6V continuously or on a transient basis.  
An example would be in noninverting configurations with  
high input slew rates or when driving heavy capacitive  
loads. The use of balanced source resistance at each input  
is recommended for applications where DC accuracy  
must be maximized.  
Transient Response  
Capacitive Loading  
The LT1226 gain bandwidth is 1GHz when measured at  
1MHz. The actual frequency response in a gain of +25 is  
considerablyhigherthan40MHzduetopeakingcausedby  
a second pole beyond the gain of 25 crossover point. This  
is reflected in the small signal transient response. Higher  
noisegainconfigurationsexhibitlessovershootasseenin  
the inverting gain of 25 response.  
The LT1226 is stable with all capacitive loads. This is  
accomplished by sensing the load induced output pole  
and adding compensation at the amplifier gain node. As  
the capacitive load increases, both the bandwidth and  
phase margin decrease so there will be peaking in the  
6
LT1226  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
configurations (i.e., in a gain of 1000 it will have a  
bandwidth of about 1MHz). The amplifier is stable in a  
noise gain of 25 so the ratio of the output signal to the  
inverting input must be 1/25 or less. Straightforward gain  
configurationsof+25or24arestable, butthereareafew  
configurations that allow the amplifier to be stable for  
lowersignalgains(thenoisegain, however, remains25or  
more). Oneexampleistheinvertingamplifiershowninthe  
typical applications sections below. The input signal has a  
gain of –RF/RIN to the output, but it is easily seen that this  
configuration is equivalent to a gain of –24 as far as the  
amplifier is concerned. Lag compensation can also be  
used to give a low frequency gain less than 25 with a high  
frequency gain of 25 or greater. The example below has a  
DC gain of 6, but an AC gain of +31. The break frequency  
of the RC combination across the amplifier inputs should  
beatleastafactorof10lessthanthegainbandwidthofthe  
amplifier divided by the high frequency gain (in this case  
1/10 of 1GHz/31 or 3MHz).  
frequency domain and in the transient response. The  
photo of the small signal response with 1000pF load  
shows 55% peaking. The large signal response with a  
10,000pF load shows the output slew rate being limited by  
the short circuit current.  
AV = –25, CL = 1000pF  
AV = +25, CL = 10,000pF  
LT1226 AI04  
The LT1226 can drive coaxial cable directly, but for best  
pulse fidelity the cable should be doubly terminated with  
a resistor in series with the output.  
Compensation  
The LT1226 has a typical gain bandwidth product of 1GHz  
which allows it to have wide bandwidth in high gain  
U
O
Cable Driving  
TYPICAL APPLICATI S  
R3  
75  
+
V
75CABLE  
IN  
Lag Compensation  
LT1226  
V
OUT  
R4  
R1  
1.2k  
75Ω  
V
IN  
+
LT1226  
V
OUT  
200Ω  
R2  
50Ω  
330pF  
5k  
LT1226 TA04  
V
OS Null Loop  
LT1226 TA03  
1k  
A
V
= +6, f < 2MHz  
300k 300k  
1
V
+
IN  
8
Compensation for Lower Closed-Loop Gains  
LT1226  
V
OUT  
R
F
25k  
R
IN  
V
IN  
+
100pF  
10k  
10k  
25Ω  
LT1226  
V
OUT  
R
C
+
LT1097  
LT1226 TA05  
100pF  
R
R
F
; R 24 × (R || R )  
A
= –  
F
IN  
C
V
A
= 1001  
LT1226 TA06  
V
IN  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection of circuits as described herein will not infringe on existing patent rights.  
7
LT1226  
W
W
SI PLIFIED SCHE ATIC  
+
V
7
NULL  
1
8
BIAS 1  
–IN  
BIAS 2  
+IN  
3
2
6
OUT  
V
4
LT1226 SS  
U
PACKAGE DESCRIPTIO Dimensions in inches (millimeters) unless otherwise noted.  
N8 Package  
8-Lead Plastic DIP  
0.300 – 0.320  
(7.620 – 8.128)  
0.130 ± 0.005  
(3.302 ± 0.127)  
0.400  
(10.160)  
MAX  
0.045 – 0.065  
(1.143 – 1.651)  
0.065  
(1.651)  
TYP  
8
1
7
6
5
4
0.009 - 0.015  
(0.229 - 0.381)  
0.250 ± 0.010  
(6.350 ± 0.254)  
0.125  
(3.175)  
MIN  
0.020  
(0.508)  
MIN  
+0.025  
–0.015  
0.045 ± 0.015  
(1.143 ± 0.381)  
0.325  
+0.635  
8.255  
(
)
3
2
–0.381  
0.100 ± 0.010  
0.018 ± 0.003  
(2.540 ± 0.254)  
(0.457 ± 0.076)  
N8 1291  
TJ MAX  
θJA  
150°C  
130°C/W  
S8 Package  
8-Lead Plastic SOIC  
0.189 – 0.197  
(4.801 – 5.004)  
7
5
8
6
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.753)  
0.004 – 0.010  
(0.102 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0.228 – 0.244  
0.150 – 0.157  
(5.791 – 6.198)  
(3.810 – 3.988)  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.356 – 0.483)  
0°– 8° TYP  
TJ MAX  
θJA  
220°C/W  
1
2
3
4
S8 1291  
150°C  
LT/GP 0692 10K REV 0  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7487  
8
(408) 432-1900 FAX: (408) 434-0507 TELEX: 499-3977  
LINEAR TECHNOLOGY CORPORATION 1992  

相关型号:

LT1226MJ8

IC OP-AMP, CDIP8, HERMETIC SEALED, CERDIP-8, Operational Amplifier
Linear

LT1226MN8

IC OP-AMP, PDIP8, PLASTIC, DIP-8, Operational Amplifier
Linear

LT1226MS8

IC OP-AMP, PDSO8, 0.150 INCH, PLASTIC, SO-8, Operational Amplifier
Linear

LT1227

140MHz Video Current Feedback Amplifier
Linear

LT1227C

140MHz Video Current Feedback Amplifier
Linear

LT1227CJ8

IC OP-AMP, 10000 uV OFFSET-MAX, 140 MHz BAND WIDTH, CDIP8, Operational Amplifier
Linear

LT1227CN8

140MHz Video Current Feedback Amplifier
Linear

LT1227CN8#PBF

暂无描述
Linear

LT1227CS8

140MHz Video Current Feedback Amplifier
Linear

LT1227CS8#PBF

LT1227 - 140MHz Video Current Feedback Amplifier; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1227CS8#TR

暂无描述
Linear

LT1227CS8#TRPBF

LT1227 - 140MHz Video Current Feedback Amplifier; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear