LT1259CS#PBF [Linear]

LT1259 - Low Cost Dual and Triple 130MHz Current Feedback Amplifiers with Shutdown; Package: SO; Pins: 14; Temperature Range: 0°C to 70°C;
LT1259CS#PBF
型号: LT1259CS#PBF
厂家: Linear    Linear
描述:

LT1259 - Low Cost Dual and Triple 130MHz Current Feedback Amplifiers with Shutdown; Package: SO; Pins: 14; Temperature Range: 0°C to 70°C

放大器 光电二极管
文件: 总12页 (文件大小:326K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1259/LT1260  
Low Cost Dual and Triple  
130MHz Current Feedback  
Amplifiers with Shutdown  
U
FEATURES  
DESCRIPTIO  
The LT®1259 contains two independent 130MHz current  
feedback amplifiers, each with a shutdown pin. These  
amplifiersaredesignedforexcellentlinearitywhiledriving  
cables and other low impedance loads. The LT1260 is a  
triple version especially suited to RGB video applications.  
These amplifiers operate on all supplies from single 5V to  
±15V and draw only 5mA per amplifier when active.  
90MHz Bandwidth on ±5V  
0.1dB Gain Flatness >30MHz  
Completely Off in Shutdown, 0µA Supply Current  
High Slew Rate: 1600V/µs  
Wide Supply Range: ±2V(4V) to ±15V(30V)  
60mA Output Current  
Low Supply Current: 5mA/Amplifier  
Differential Gain: 0.016%  
When shut down, the LT1259/LT1260 amplifiers draw  
zero supply current and their outputs become high  
impedance. Only two LT1260s are required to make a  
complete 2-input RGB MUX and cable driver. These  
amplifiers turn on in only 100ns and turn off in 40ns,  
making them ideal in spread spectrum and portable  
equipment applications.  
Differential Phase: 0.075°  
Fast Turn-On Time: 100ns  
Fast Turn-Off Time: 40ns  
14-Pin and 16-Pin Narrow SO Packages  
U
APPLICATIO S  
The LT1259/LT1260 amplifiers are manufactured on  
Linear Technology’s proprietary complementary bipolar  
process.  
RGB Cable Drivers  
Spread Spectrum Amplifiers  
MUX Amplifiers  
Composite Video Cable Drivers  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Portable Equipment  
U
TYPICAL APPLICATIO  
2-Input Video MUX Cable Driver  
Square Wave Response  
CHANNEL  
SELECT  
A
B
EN A  
V
IN A  
+
75Ω  
R
G
1/2 LT1259  
1.6k  
75Ω  
CABLE  
R
F
1.6k  
V
OUT  
EN B  
75Ω  
V
IN B  
+
75Ω  
R
G
1/2 LT1259  
1.6k  
LT1259/60 • TA01  
R
1.6k  
F
LT1259/50 • TA02  
RL = 150Ω  
f = 30MHz  
1
LT1259/LT1260  
W W U W  
ABSOLUTE AXI U RATI GS  
Operating Temperature Range ............... 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
Junction Temperature (Note 4)............................ 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
Supply Voltage ..................................................... ±18V  
Input Current ..................................................... ±15mA  
Output Short-Circuit Duration (Note 1).........Continuous  
Specified Temperature Range (Note 2)....... 0°C to 70°C  
U W  
U
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
ORDER PART  
NUMBER  
ORDER PART  
TOP VIEW  
A
NUMBER  
1
2
3
4
5
6
7
8
EN R  
16  
15  
14  
13  
12  
11  
10  
9
–IN R  
+IN R  
GND  
R
G
B
1
2
3
4
5
6
7
EN A  
14  
13  
12  
11  
10  
9
–IN A  
+IN A  
GND  
OUT R  
OUT A  
+
V
LT1259CN  
LT1259CS  
LT1259IN  
LT1259IS  
LT1260CN  
LT1260CS  
LT1260IN  
LT1260IS  
+
V
EN G  
–IN G  
+IN G  
GND  
GND  
GND  
OUT G  
V
GND  
V
OUT B  
EN B  
+IN B  
–IN B  
B
OUT B  
EN B  
+IN B  
–IN B  
8
N PACKAGE  
14-LEAD PLASTIC DIP  
S PACKAGE  
N PACKAGE  
S PACKAGE  
14-LEAD PLASTIC SOIC  
16-LEAD PLASTIC DIP 16-LEAD PLASTIC SOIC  
TJMAX = 150°C, θJA = 70°C/W (N)  
JMAX = 150°C, θJA = 110°C/W (S)  
TJMAX = 150°C, θJA = 70°C/W (N)  
TJMAX = 150°C, θJA = 100°C/W (S)  
T
Consult factory for Military grade parts.  
ELECTRICAL CHARACTERISTICS  
0°C TA 70°C, each amplifier VCM = 0V, ±5V VS ≤ ±15V, EN pins = 0V, pulse tested, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
T = 25°C  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
2
12  
16  
mV  
mV  
OS  
+
A
Input Offset Voltage Drift  
Noninverting Input Current  
30  
µV/°C  
I
I
T = 25°C  
A
0.5  
3
6
µA  
µA  
IN  
Inverting Input Current  
T = 25°C  
A
20  
90  
120  
µA  
µA  
IN  
e
Input Noise Voltage Density  
f = 1kHz, R = 1k, R = 10, R = 0Ω  
3.6  
1.3  
45  
nV/Hz  
pA/Hz  
pA/Hz  
n
F
G
S
+i  
–i  
Noninverting Input Noise Current Density  
Inverting Input Noise Current Density  
Input Resistance  
f = 1kHz  
f = 1kHz  
n
n
R
V
V
= ±13V, V = ±15V  
2
2
17  
25  
MΩ  
MΩ  
IN  
IN  
IN  
S
= ±3V, V = ±5V  
S
C
Input Capacitance  
Enabled  
Disabled  
2
4
pF  
pF  
IN  
C
V
Output Capacitance  
Input Voltage Range  
Disabled  
4.4  
pF  
OUT  
IN  
V = ±15V, T = 25°C  
S
±13  
±12  
±3  
±13.5  
V
V
V
V
A
V = ±5V, T = 25°C  
S
±3.5  
A
±2  
2
LT1259/LT1260  
ELECTRICAL CHARACTERISTICS  
0°C TA 70°C, each amplifier VCM = 0V, ±5V VS ≤ ±15V, EN pins = 0V, pulse tested, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
V = ±15V, R = 1k  
MIN  
TYP  
MAX  
UNITS  
V
Maximum Output Voltage Swing  
±12.0  
±3.0  
±2.5  
±14.0  
±3.7  
V
V
V
OUT  
S
L
V = ±5V, R = 150, T = 25°C  
S
L
A
CMRR  
Common-Mode Rejection Ratio  
V = ±15V, V = ±13V, T = 25°C  
55  
55  
52  
52  
69  
63  
dB  
dB  
dB  
dB  
S
CM  
A
V = ±15V, V = ±12V  
S
CM  
V = ±5V, V = ±3V, T = 25°C  
S
S
CM  
CM  
A
V = ±5V, V = ±2V  
Inverting Input Current  
V = ±15V, V = ±13V, T = 25°C  
3.5  
4.5  
10  
10  
15  
15  
µA/V  
µA/V  
µA/V  
µA/V  
S
CM  
A
Common-Mode Rejection  
V = ±15V, V = ±12V  
S
CM  
V = ±5V, V = ±3V, T = 25°C  
S
S
CM  
CM  
A
V = ±5V, V = ±2V  
PSRR  
Power Supply Rejection Ratio  
V = ±2V to ±15V, EN Pins at V , T = 25°C  
S
60  
60  
80  
15  
dB  
dB  
S
A
V = ±3V to ±15V, EN Pins at V  
Noninverting Input Current  
Power Supply Rejection  
V = ±3V to ±15V, EN Pins at V , T = 25°C  
65  
75  
nA/V  
nA/V  
S
A
V = ±3V to ±15V, EN Pins at V  
S
Inverting Input Current  
Power Supply Rejection  
V = ±2V to ±15V, EN Pins at V , T = 25°C  
0.1  
5
5
µA/V  
µA/V  
S
A
V = ±3V to ±15V, EN Pins at V  
S
A
Large-Signal Voltage Gain  
V = ±15V, V  
= ±10V, R = 1k  
57  
57  
72  
69  
dB  
dB  
V
S
OUT  
L
V = ±5V, V  
= ±2V, R = 150Ω  
L
S
OUT  
R
Transresistance, V /I  
V = ±15V, V  
= ±10V, R = 1k  
120  
100  
300  
200  
kΩ  
kΩ  
OL  
OUT IN  
S
OUT  
L
V = ±5V, V  
= ±2V, R = 150Ω  
S
OUT  
L
I
I
Maximum Output Current  
R = 0, T = 25°C  
30  
60  
mA  
OUT  
S
L
A
Supply Current per Amplifier  
(Note 5)  
V = ±15V, V  
= 0V, T = 25°C  
5.0  
7.5  
7.9  
6.7  
mA  
mA  
mA  
S
OUT  
A
V = ±5V, V  
= 0V, T = 25°C  
4.5  
S
OUT  
A
Disable Supply Current per Amplifier  
Enable Pin Current  
V = ±15V, EN Pin Voltage = 14.5V, R = 150Ω  
S
3
1
16.7  
2.7  
µA  
µA  
S
L
V = ±15V, Sink 1µA From EN Pin  
V = ±15V, EN Pin Voltage = 0V, T = 25°C  
60  
200  
300  
µA  
µA  
S
A
SR  
Slew Rate (Note 6)  
T = 25°C  
900  
1600  
100  
40  
V/µs  
ns  
A
t
t
Turn-On Delay Time (Note 7)  
Turn-Off Delay Time (Note 7)  
Small-Signal Rise and Fall Time  
Propagation Delay  
A = 10, T = 25°C  
V
400  
150  
ON  
A
A = 10, T = 25°C  
V
ns  
OFF  
A
t , t  
r
V = ±12V, R = R = 1.5k, R = 150Ω  
S
4.2  
ns  
f
F
G
L
V = ±12V, R = R = 1.5k, R = 150Ω  
S
4.7  
ns  
F
G
L
Small-Signal Overshoot  
Settling Time  
V = ±12V, R = R = 1.5k, R = 150Ω  
5
%
S
F
G
L
t
0.1%, V  
= 10V, R = R = 1.5k, R = 1k  
75  
ns  
S
OUT  
F
G
L
Differential Gain (Note 8)  
Differential Phase (Note 8)  
V = ±12V, R = R = 1.5k, R = 150Ω  
0.016  
0.075  
%
S
F
G
L
V = ±12V, R = R = 1.5k, R = 150Ω  
DEG  
S
F
G
L
40°C TA 85°C, each amplifier VCM = 0V, ±5V VS ≤ ±15V, EN pins = 0V, pulse tested, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
18  
UNITS  
mV  
µA  
V
Input Offset Voltage  
Noninverting Input Current  
Inverting Input Current  
Input Resistance  
OS  
+
I
I
7
IN  
130  
µA  
IN  
R
IN  
V
= ±3V, V = ±5V  
1
MΩ  
dB  
IN  
S
A
Large-Signal Gain  
55  
V
I
Disable Supply Current per Amplifier  
Enable Pin Current  
V = ±15V, EN Pin Voltage = 14.5V, R = 150Ω  
S
19  
µA  
S
L
V = ±15V, EN Pin Voltage = 0V  
S
350  
µA  
3
LT1259/LT1260  
ELECTRICAL CHARACTERISTICS  
T
he denotes specifications which apply over the specified operating  
Note 5: The supply current of the LT1259/LT1260 has a negative  
temperature coefficient. See Typical Performance Characteristics.  
temperature range.  
Note 1: A heat sink may be required depending on the power supply  
voltage and how many amplifiers have their outputs short circuited.  
Note 6: Slew rate is measured at ±5V on a ±10V output signal while  
operating on ±15V supplies with RF = 1k, RG = 110and RL = 1k.  
Note 2: Commercial grade parts are designed to operate over the  
temperature range of 40°C to 85°C but are neither tested nor guaranteed  
beyond 0°C to 70°C. Industrial grade parts specified and tested over  
40°C to 85°C are available on special request. Consult factory.  
Note 7: Turn-on delay time is measured while operating on ±5V  
supplies with RF = 1k, RG = 110and RL = 150. The tON is measured  
from control input to appearance of 0.5V at the output, for VIN = 0.1V.  
Likewise, turn-off delay time is measured from control input to  
appearance of 0.5V on the output for VIN = 0.1V.  
Note 3: Ground pins are not internally connected. For best  
performance, connect to ground.  
Note 4: TJ is calculated from the ambient temperature TA and the  
power dissipation PD according to the following formulas:  
Note 8: Differential gain and phase are measured using a Tektronix  
TSG120YC/NTSC signal generator and a Tektronix 1780R Video  
Measurement Set. The resolution of this equipment is 0.1% and 0.1°.  
Six identical amplifier stages were cascaded giving an effective  
resolution of 0.016% and 0.016°.  
LT1259CN/LT1259IN: TJ = TA + (PD • 70°C/W)  
LT1259CS/LT1259IS: TJ = TA + (PD • 110°C/W)  
LT1260CNLT1260IN/: TJ = TA + (PD • 70°C/W)  
LT1260CS/LT1260IS: TJ = TA + (PD • 100°C/W)  
W U  
TYPICAL AC PERFOR A CE  
SMALL SIGNAL  
3dB BW (MHz)  
SMALL SIGNAL  
0.1dB BW (MHz)  
SMALL SIGNAL  
PEAKING (dB)  
V (V)  
S
A
V
R ()  
L
R ()  
F
R ()  
G
±12  
±5  
2
150  
150  
150  
150  
1.5k  
1.1k  
1.1k  
825  
1.5k  
1.1k  
121  
130  
93  
53  
40  
20  
16  
0.1  
0
2
±12  
±5  
10  
10  
69  
0.13  
0
90.9  
61  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
±12V Frequency Response, AV = 10  
±12V Frequency Response, AV = 2  
12  
11  
10  
9
0
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
0
V
=
12V  
S
L
F
–20  
–20  
R
= 150Ω  
PHASE  
R = 1.1k  
R
–40  
–40  
= 121Ω  
G
PHASE  
–60  
–60  
8
–80  
–80  
7
–100  
–120  
–140  
–160  
–180  
–200  
–100  
–120  
–140  
–160  
–180  
–200  
GAIN  
12V  
GAIN  
6
5
4
V
=
S
L
F
R
= 150Ω  
3
R = R = 1.5k  
G
2
1
10  
FREQUENCY (MHz)  
100  
1
10  
100  
FREQUENCY (MHz)  
LT1259/60 • TPC01  
LT1259/60 • TPC01  
4
LT1259/LT1260  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
±5V Frequency Response, AV = 2  
±5V Frequency Response, AV = 10  
12  
11  
10  
9
0
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
0
–20  
–20  
–40  
–40  
PHASE  
PHASE  
–60  
–60  
8
–80  
–80  
7
–100  
–120  
–140  
–160  
–180  
–200  
–100  
–120  
–140  
–160  
–180  
–200  
GAIN  
5V  
GAIN  
5V  
6
5
V
=
S
L
F
G
4
V
=
R
= 150Ω  
S
L
F
R
= 150Ω  
R = 825Ω  
= 90.9Ω  
3
R = R = 1.1k  
R
G
2
1
10  
FREQUENCY (MHz)  
100  
1
10  
100  
FREQUENCY (MHz)  
LT1259/60 • TPC03  
LT1259/60 • TPC04  
Total Harmonic Distortion  
vs Frequency  
2nd and 3rd Harmonic Distortion  
vs Frequency  
Maximum Undistorted Output  
vs Frequency  
0.1  
–20  
–30  
25  
20  
V
R
R
=
12V  
V
S
V
O
A
V
=
12V  
P-P  
V
S
=
= 1k  
= 2k  
15V  
S
L
F
= 400Ω  
= 2V  
R
R
L
F
= R = 1.5k  
= 10dB  
= 100Ω  
= 1.5k  
G
R
R
L
F
V
= 6V  
RMS  
O
–40  
–50  
–60  
–70  
15  
10  
5
A
V
= 10  
0.01  
A
V
= 1  
A = 2  
V
V
= 1V  
O
RMS  
2ND  
3RD  
0.001  
0
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
1
10  
FREQUENCY (MHz)  
100  
1
10  
FREQUENCY (MHz)  
100  
LT12359/60 • TPC06  
LT12359/60 • TPC07  
LT1259/60 • TPC05  
Power Supply Rejection  
vs Frequency  
Spot Noise Voltage and Current  
vs Frequency  
Output Impedance vs Frequency  
100  
10  
1
100  
10  
1
80  
70  
60  
50  
40  
30  
20  
10  
0
V
R
R
=
15V  
V = 15V  
S
S
L
F
= 1OOΩ  
–i  
n
= R = 1k  
G
R
= R = 2k  
G
F
NEGATIVE  
POSITIVE  
e
n
+i  
n
0.1  
10k  
100k  
1M  
10M  
100M  
10k  
100k  
1M  
10M  
100M  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
LTC1259/60 • TPC08  
LT1259/60 • TPC10  
LT1259/60 • TPC09  
5
LT1259/LT1260  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Output Impedance in Shutdown  
vs Frequency  
Maximum Capacitive Load  
vs Feedback Resistor  
Supply Current vs Supply Voltage  
100  
10  
1
1000  
100  
10  
7
6
5
V
A
=
15  
S
V
F
= 1  
–55°C  
R
= 1.5k  
V
=
5V  
V
=
15V  
S
S
25°C  
4
3
2
1
0
125°C  
A
= 2  
V
L
R
= 150Ω  
PEAKING 5dB  
0.1  
100k  
1M  
10M  
100M  
1
2
3
4
5
6
0
2
4
6
8
10  
18  
12 14 16  
FREQUENCY (Hz)  
FEEDBACK RESISTOR (k)  
SUPPLY VOLTAGE ( V)  
LT1259/60 • TPC11  
LT1259/60 • TPC12  
LT1259/60 • TPC13  
Input Common-Mode Limit  
vs Temperature  
Output Saturation Voltage  
vs Temperature  
Output Short-Circuit Current  
vs Junction Temperature  
+
+
V
V
80  
70  
60  
50  
40  
R
= ∞  
L
–0.5  
–1.0  
–1.5  
–2.0  
+
V
= 2V TO 18V  
2V V  
18V  
–0.5  
–1.0  
S
2.0  
1.5  
1.0  
0.5  
1.0  
0.5  
V
= –2V TO –18V  
V
V
–50  
0
25  
50  
75 100 125  
–25  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
50 75  
50 25  
0
25  
100 125 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
LT1259/60 • TPC16  
LT1259/60 • TPC14  
LT1259/60 • TPC15  
Settling Time to 10mV  
vs Output Step  
Small-Signal Rise Time  
10  
8
V
=
12V  
S
F
R
= 1.5k  
6
4
2
NONINVERTING  
INVERTING  
0
–2  
–4  
–6  
–8  
–10  
500 800  
600 700  
0
400  
100 200 300  
SETTLING TIME (ns)  
LT1259/60 G19  
R
F = RG = 1.6k  
VS = ±15V  
AV = 2  
LT1259/60 • TPC17  
RL = 150Ω  
6
LT1259/LT1260  
W
W
SI PLIFIED SCHE ATIC , each amplifier  
+
V
+IN  
–IN  
OUT  
EN  
V
LT1259/60 • SS  
W U U  
U
APPLICATIO S I FOR ATIO  
more stable at higher gains. Alternatively, a small resistor  
(10to20)canbeputinserieswiththeoutputtoisolate  
the capacitive load from the amplifier output. This has the  
advantage that the amplifier bandwidth is only reduced  
when the capacitive load is present. The disadvantage is  
that the gain is a function of the load resistance.  
Feedback Resistor Selection  
Thesmall-signalbandwidthoftheLT1259/LT1260areset  
bytheexternalfeedbackresistorsandtheinternaljunction  
capacitors. As a result, the bandwidth is a function of the  
supply voltage, the value of the feedback resistor, the  
closed-loopgainandtheloadresistor.TheLT1259/LT1260  
have been optimized for ±5V supply operation and have a  
3dBbandwidthof90MHz. Seeresistorselectionguidein  
Typical AC Performance table.  
Power Supplies  
The LT1259/LT1260 will operate from single or split  
supplies from ±2V (4V total) to ±15V (30V total). It is not  
necessary to use equal value split supplies, however the  
offsetvoltageandinvertinginputbiascurrentwillchange.  
The offset voltage changes about 500µV per volt of  
supply mismatch. The inverting bias current can change  
as much as 5µA per volt of supply mismatch though  
typically, the change is about 0.1µA per volt.  
Capacitance on the Inverting Input  
Current feedback amplifiers require resistive feedback  
from the output to the inverting input for stable operation.  
Take care to minimize the stray capacitance between the  
output and the inverting input. Capacitance on the invert-  
ing input to ground will cause peaking in the frequency  
response (and overshoot in the transient response). See  
the section on Demo Board Information.  
Slew Rate  
The slew rate of a current feedback amplifier is not  
independent of the amplifier gain configuration the way  
slewrateisinatraditionalopamp.Thisisbecauseboththe  
inputstageandtheoutputstagehaveslewratelimitations.  
In the inverting mode, and for higher gains in the nonin-  
verting mode, the signal amplitude between the input pins  
issmallandtheoverallslewrateisthatoftheoutputstage.  
For gains less than ten in the noninverting mode, the  
overall slew rate is limited by the input stage.  
Capacitive Loads  
The LT1259/LT1260 can drive capacitive loads directly  
when the proper value of feedback resistor is used. The  
graph of Maximum Capacitive Load vs Feedback Resistor  
should be used to select the appropriate value. The value  
shown is for 5dB peaking when driving a 150load at a  
gain of 2. This is a worst case condition. The amplifier is  
7
LT1259/LT1260  
W U U  
U
APPLICATIO S I FOR ATIO  
The input slew rate of the LT1259/LT1260 is approxi-  
mately 270V/µs and is set by internal currents and capaci-  
tances. The output slew rate is set by the value of the  
feedback resistors and internal capacitances. At a gain of  
10 with at 1k feedback resistor and ±15V supplies, the  
output slew rate is typically 1600V/µs. Larger feedback  
resistors will reduce the slew rate as will lower supply  
voltages, similar to the way the bandwidth is reduced.  
looks like a 4.4pF capacitor in parallel with a 75k resistor,  
excluding feedback resistor effects. These amplifiers are  
designedtooperatewithopendrainlogic:theENpinshave  
internalpullupsandtheamplifiersdrawzerocurrentwhen  
these pins are high. To activate an amplifier, its EN pin is  
pulled to ground (or at least 2V below the positive supply).  
The enable pin current is approximately 60µA when  
activated. Input referred switching transients with no  
input signal applied are only 35mV positive and 80mV  
negative with RL = 100.  
The graph of Maximum Undistorted Output vs Frequency  
relates the slew rate limitations to sinusoidal input for  
various gains.  
Output Switching Transient  
Large-Signal Transient Response, AV = 2  
EN  
OUTPUT  
LT1259/LT1260 • AI03  
RF = RG = 1.6k  
RL = 100Ω  
VS = ±5V  
VIN = 0V  
LT1259/LT1260 • AI01  
RL = 400Ω  
VS = ±15V  
RF = RG = 1.6k  
The enable/disable times are very fast when driven from  
standard 5V logic. The amplifier enables in about 100ns  
(50% point to 50% point) while operating on ±5V sup-  
plies. Likewise the disable time is approximately 40ns  
(50% point to 50% point) or 75ns to 90% of the final  
value. The output decay time is set by the output capaci-  
tance and load resistor.  
Large-Signal Transient Response, AV = 10  
Amplifier Enable Time, AV = 10  
OUTPUT  
LT1259/LT1260 • AI02  
EN  
VS = ±15V  
RF = 1k  
RG = 110Ω  
RL = 400Ω  
Enable/Disable  
The LT1259/LT1260 amplifiers have a unique high imped-  
ance, zero supply current mode which is controlled by  
independent EN pins. When disabled, an amplifier output  
LT1259/LT1260 • AI04  
RF = 1k  
RG = 110Ω  
RL = 150Ω  
VS = ±5V  
VIN = 0.1V  
8
LT1259/LT1260  
W U U  
APPLICATIO S I FOR ATIO  
U
Amplifier Disable Time, AV = 10  
Amplifier Enable/Disable Time, AV = 2  
EN  
EN  
OUTPUT  
OUTPUT  
LT1259/LT1260 • AI05  
LT1259/LT1260 • AI06  
R
L = 150Ω  
RF = 1k  
RG = 110Ω  
R
F = RG = 1.6k  
VS = ±5V  
IN = 0.1V  
VS = ±5V  
VIN = 2VPP at 2MHz  
V
RL = 100Ω  
input pins is small, so this clamp has no effect. In the  
disabled mode however, the differential swing can be the  
same as the input swing, and the clamp voltage will set the  
maximum allowable input voltage.  
Differential Input Signal Swing  
The differential input swing is limited to about ±6V by an  
ESD protection device connected between the inputs. In  
normal operation, the differential voltage between the  
U
TYPICAL APPLICATIO S  
2-Input Video MUX Cable Driver  
configuring each amplifier as a unity-gain follower. The  
switching time between channels is 100ns when both  
EN A and EN B are driven.  
The application on the first page shows a low cost, 2-  
input video MUX cable driver. The scope photo displays  
the cable output of a 30MHz square wave driving 150.  
In this circuit the active amplifier is loaded by RF and RG  
of the disabled amplifier, but in this case it only causes a  
1.2% gain error. The gain error can be eliminated by  
2-Input RGB MUX Cable Driver Demonstration Board  
A complete 2-input RGB MUX has been fabricated on PC  
Demo Board #039A. The board incorporates two LT1260s  
with outputs summed through 75back termination  
resistors as shown in the schematic. There are several  
things to note about Demo Board #039A:  
2-Input Video MUX Switching Response  
1. The feedback resistors of the disabled LT1260 load  
the enabled amplifier and cause a small (1% to 2%)  
EN A  
gain error depending on the values of R and R .  
F
G
EN B  
Configure the amplifiers as unity-gain followers to  
eliminate this error.  
2. The feedback node has minimum trace length connect-  
ing RF and RG to minimize stray capacitance.  
3. Ground plane is pulled away from RF and RG on both  
sides of the board to minimize stray capacitance.  
LT1259/LT1260 • TA03  
VS = ±5V  
IN A = VIN 2 = 2VPP at 2MHz  
R
R
F = RG = 1.6k  
L = 100Ω  
V
9
LT1259/LT1260  
U
TYPICAL APPLICATIO S  
RGB Demo Board All Hostile Crosstalk  
4. Capacitors C1 and C6 are optional and only needed to  
reduce overshoot when EN 1 or EN 2 are activated with  
a long inductive ground wire.  
0
V
= 12V  
S
L
F
R
R
R
= 100Ω  
= R = 1.6k  
–20  
–40  
G
5. The R, G and B amplifiers have slightly different  
frequency responses due to different output trace  
routing to RF (between pins 3 and 4). All amplifiers  
have slightly less bandwidth in PCB #039 than when  
measured alone as shown in the Typical AC Perfor-  
mance table.  
= 10Ω  
S
G
B
R
–60  
–80  
6. Part-to-part variation can change the peaking by  
–100  
±0.25dB.  
1
10  
FREQUENCY (MHz)  
100  
LT1259/60 • TA06  
RGB Demo Board Gain vs Frequency  
4
V
=
12V  
S
L
F
R
= 150Ω  
P-DIP PC Board #039  
R = R = 1.6k  
2
0
G
R
G
V+  
U1  
V–  
GND  
EN2  
R1  
EN1  
B
C1  
–2  
–4  
–6  
R1  
R13  
R14  
R2  
C2  
R3  
R4  
R
G1  
C3  
R15  
1
10  
FREQUENCY (MHz)  
100  
R5  
R6  
LT1259/60 • TA04  
C4  
C5  
G
B
B1  
R2  
C6  
RGB Demo Board Gain vs Frequency  
U2  
R7  
R8  
4
2
R16  
V
R
R
= 5V  
S
L
F
C7  
= 150Ω  
R9  
R10  
= R = 1.1k  
G
R17  
C8  
R18  
R, B  
G2 R11  
0
R12  
G
(408) 432-1900  
LT1260 RGB AMPLIFIER  
DEMONSTRATION BOARD  
–2  
–4  
–6  
B2  
LT1259/60 • TA07  
1
10  
FREQUENCY (MHz)  
100  
LT1259/60 • TA05  
10  
LT1259/LT1260  
U
PACKAGE DESCRIPTIO  
Dimensions in inches (millimeters) unless otherwise noted.  
N Package  
14-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
0.770*  
(19.558)  
MAX  
0.300 – 0.325  
(7.620 – 8.255)  
0.045 – 0.065  
0.130 ± 0.005  
(3.302 ± 0.127)  
(1.143 – 1.651)  
14  
13  
12  
11  
10  
9
8
7
0.015  
(0.380)  
MIN  
0.255 ± 0.015*  
(6.477 ± 0.381)  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
+0.025  
1
2
3
5
6
4
0.325  
0.005  
(0.125)  
MIN  
0.100 ± 0.010  
(2.540 ± 0.254)  
–0.015  
0.125  
(3.175)  
MIN  
0.018 ± 0.003  
+0.635  
8.255  
(0.457 ± 0.076)  
(
)
–0.381  
N14 0695  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
N Package  
16-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
0.770*  
(19.558)  
MAX  
0.300 – 0.325  
0.130 ± 0.005  
0.045 – 0.065  
(7.620 – 8.255)  
(3.302 ± 0.127)  
(1.143 – 1.651)  
14  
12  
10  
9
8
15  
13  
11  
16  
0.015  
(0.381)  
MIN  
0.255 ± 0.015*  
0.065 (6.477 ± 0.381)  
0.009 – 0.015  
(0.229 – 0.381)  
(1.651)  
TYP  
+0.025  
–0.015  
2
1
3
4
6
5
7
0.325  
0.005  
(0.127)  
MIN  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.125  
(3.175)  
MIN  
0.018 ± 0.003  
(0.457 ± 0.076)  
+0.635  
8.255  
N16 0695  
(
)
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
S Package  
14-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.337 – 0.344*  
(8.560 – 8.738)  
0.010 – 0.020  
(0.254 – 0.508)  
14  
13  
12  
11  
10  
9
8
0.053 – 0.069  
(1.346 – 1.752)  
× 45°  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0° – 8° TYP  
0.228 – 0.244  
(5.791 – 6.197)  
0.150 – 0.157**  
(3.810 – 3.988)  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
0.016 – 0.050  
0.406 – 1.270  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
S14 0695  
1
2
3
4
5
6
7
S Package  
16-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.386 – 0.394*  
(9.804 – 10.008)  
0.010 – 0.020  
16  
15  
14  
13  
12  
11  
10  
9
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
(0.254 – 0.508)  
0.008 – 0.010  
(0.203 – 0.254)  
0° – 8° TYP  
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
0.016 – 0.050  
0.406 – 1.270  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1
2
3
4
5
6
7
8
S16 0695  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LT1259/LT1260  
U
TYPICAL APPLICATIO  
Demonstration PC Board Schematic #039  
+
EN 1 EN 2  
V
V
GND  
C1*  
0.01µF  
R1  
R2  
1
2
3
4
5
6
7
8
16  
R13  
R
75Ω  
15  
14  
13  
12  
11  
10  
9
R1  
V
OUT  
V
OUT  
V
OUT  
RED  
+
LT1260  
R3  
R6  
C2  
+
R14  
75Ω  
0.1µF  
G
B
G1  
B1  
GREEN  
BLUE  
R4  
C3  
0.1µF  
+
R15  
75Ω  
R5  
C4  
4.7µF  
+
C6*  
0.01µF  
+
R7  
R8  
C5  
4.7µF  
1
2
16  
15  
14  
13  
12  
11  
10  
9
+
R16  
R
75Ω  
R2  
3
LT1260  
C7  
0.1µF  
R9  
4
R17  
75Ω  
G
B
5
G2  
B2  
+
R10  
6
C8  
0.1µF  
7
+
R18  
75Ω  
R12  
8
LT1259/60 • TA08  
R11  
*OPTIONAL  
RELATED PARTS  
PART NUMBER  
LT1203/LT1205  
LT1204  
DESCRIPTION  
COMMENTS  
150MHz Video Multiplexers  
2:1 and Dual 2:1 MUXes with 25ns Switch Time  
Cascadable Enable 64:1 Multiplexing  
4-Input Video MUX with Current Feedback Amplifier  
140MHz Current Feedback Amplifier  
Low Cost Video Amplifiers  
LT1227  
1100V/µs Slew Rate, Shutdown Mode  
LT1252/LT1253/LT1254  
Single, Dual and Quad Current Feedback Amplifiers  
125960fas, sn125960 LT/TP 1197 REV A 4K • PRINTED IN USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408)432-1900  
12  
FAX: (408) 434-0507 TELEX: 499-3977 www.linear-tech.com  
LINEAR TECHNOLOGY CORPORATION 1993  

相关型号:

LT1259CS#TRPBF

LT1259 - Low Cost Dual and Triple 130MHz Current Feedback Amplifiers with Shutdown; Package: SO; Pins: 14; Temperature Range: 0°C to 70°C
Linear

LT1259CS14

IC DUAL OP-AMP, 10000 uV OFFSET-MAX, 130 MHz BAND WIDTH, PDSO14, Operational Amplifier
Linear

LT1259IN

Low Cost Dual and Triple 130MHz Current Feedback Amplifiers with Shutdown
Linear

LT1259IN#PBF

LT1259 - Low Cost Dual and Triple 130MHz Current Feedback Amplifiers with Shutdown; Package: PDIP; Pins: 14; Temperature Range: -40°C to 85°C
Linear

LT1259IS

Low Cost Dual and Triple 130MHz Current Feedback Amplifiers with Shutdown
Linear

LT1259IS#PBF

LT1259 - Low Cost Dual and Triple 130MHz Current Feedback Amplifiers with Shutdown; Package: SO; Pins: 14; Temperature Range: -40°C to 85°C
Linear

LT1259IS#TRPBF

LT1259 - Low Cost Dual and Triple 130MHz Current Feedback Amplifiers with Shutdown; Package: SO; Pins: 14; Temperature Range: -40°C to 85°C
Linear

LT1260

Low Cost Dual and Triple 130MHz Current Feedback Amplifiers with Shutdown
Linear

LT1260CN

Low Cost Dual and Triple 130MHz Current Feedback Amplifiers with Shutdown
Linear

LT1260CN#PBF

LT1260 - Low Cost Dual and Triple 130MHz Current Feedback Amplifiers with Shutdown; Package: PDIP; Pins: 16; Temperature Range: 0°C to 70°C
Linear

LT1260CS

Low Cost Dual and Triple 130MHz Current Feedback Amplifiers with Shutdown
Linear

LT1260CS#PBF

LT1260 - Low Cost Dual and Triple 130MHz Current Feedback Amplifiers with Shutdown; Package: SO; Pins: 16; Temperature Range: 0°C to 70°C
Linear