LT1301CN8#PBF [Linear]

暂无描述;
LT1301CN8#PBF
型号: LT1301CN8#PBF
厂家: Linear    Linear
描述:

暂无描述

转换器 闪存 开关 光电二极管
文件: 总12页 (文件大小:287K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1301  
Micropower High Efficiency  
5V/12V Step-Up DC/DC  
Converter for Flash Memory  
U
DESCRIPTION  
FEATURES  
12V at 120mA from 5V or 3.3V Supply  
TheLT1301isamicropowerstep-upDC/DCconverterthat  
utilizes Burst Mode™ operation. The device can deliver 5V  
or 12V from a two-cell battery input. It features program-  
mable 5V or 12V output via a logic-controlled input, no-  
loadquiescentcurrentof120µAandashutdownpinwhich  
reducessupplycurrentto10µA.Theon-chippowerswitch  
has a low 170mV saturation voltage at a switch current of  
1A, a four-fold reduction over prior designs. A 155kHz  
internal oscillator allows the use of extremely small sur-  
facemountinductorsandcapacitors.Operationisguaran-  
teedat1.8Vinput. Thisallowsmoreenergytobeextracted  
fromthebattery, increasingoperatinglife. TheILIM pincan  
be used for soft start or to program peak switch current  
with a single resistor allowing the use of even smaller  
inductors in lighter load applications. The LT1301 is  
available in an 8-lead SOIC package, minimizing board  
space requirements. For a selectable 3.3V/5V step-up  
converter, please see the LT1300. For higher output  
power, see the LT1302.  
Supply Voltage as Low as 1.8V  
Better High Current Efficiency Than CMOS  
Up to 89% Efficiency  
120µA Quiescent Current  
Shutdown to 10µA  
Programmable 5V or 12V Output  
Low VCESAT Switch: 170mV at 1A Typical  
ILIM Pin Programs Peak Switch Current  
Uses Inexpensive Surface Mount Inductors  
8-Lead DIP or SOIC Package  
U
APPLICATIONS  
Flash Memory VPP Generator  
Palmtop Computers  
Portable Instruments  
Bar-Code Scanners  
Personal Digital Assistants  
PCMCIA Cards  
Burst Mode is a trademark of Linear Technology Corporation.  
U
TYPICAL APPLICATIONS N  
L1  
Output Voltage  
Efficiency  
D1  
33µH  
5V  
OR  
3.3V  
12V  
OUTPUT  
90  
88  
86  
12V  
VOUT  
2V/DIV  
V
IN  
= 5V  
SW  
V
IN  
SELECT  
SENSE  
V
IN  
= 3.3V  
+
84  
82  
80  
78  
76  
74  
72  
0
C1  
LT1301  
47µF  
C2  
33µF  
20V  
+
0.1µF*  
SHDN  
PGND  
I
N/C  
SHUTDOWN  
LIM  
GND  
SHUTDOWN  
10V/DIV  
1ms/DIV  
LT1301 TAO1  
*REQUIRED FOR 5V OUTPUT  
V
IN = 5V, VOUT = 12V  
LT1301 F1  
LOAD = 100Ω  
L1 = COILCRAFT DO3316-333  
OR SUMIDA CD73-330KC  
D1 = 1N5817 OR MOTOROLA  
MBRS130LT3  
1
10  
LOAD CURRENT (mA)  
100  
300  
C1 = AVX TPSD476M016R0100  
OR SANYO OS-CON 165A47M  
C2 = AVX TPSD336M020R0100  
OR SANYO OS-CON 205A33M  
LT1301 TA2  
LT1300 F2  
Figure 1. 3.3V/5V to 12V Step-Up Converter  
1
LT1301  
W W  
U W  
U
W U  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE/ORDER INFORMATION  
VIN Voltage .............................................................. 10V  
SW1 Voltage ............................................................ 20V  
Sense Voltage .......................................................... 20V  
Shutdown Voltage ................................................... 10V  
Select Voltage .......................................................... 10V  
ORDER PART  
TOP VIEW  
NUMBER  
GND  
SEL  
1
2
3
4
PGND  
SW  
8
7
6
5
LT1301CN8  
LT1301CS8  
LT1301IS8  
SHDN  
SENSE  
V
IN  
I
LIM  
ILIM Voltage ............................................................ 0.5V  
Maximum Power Dissipation ............................. 500mW  
Operating Temperature Range  
N8 PACKAGE  
8-LEAD PLASTIC DIP  
S8 PACKAGE  
8-LEAD PLASTIC SOIC  
S8 PART MARKING  
LT1301C................................................... 0°C to 70°C  
LT1301I .................................................. 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
TJMAX = 100°C, θJA = 150°C/ W  
1301  
1301I  
ELECTRICAL CHARACTERISTICS TA = 25°C, VIN = 2V unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Quiescent Current  
V
V
= 0.5V, V = 5V, V = 5.5V  
SENSE  
= 1.8V  
120  
7
200  
15  
µA  
µA  
Q
SHDN  
SHDN  
SEL  
V
V
Input Voltage Range  
Output Sense Voltage  
1.8  
2.0  
V
V
V
V
IN  
V
V
= 5V  
= 0V  
11.52 12.00 12.48  
4.75  
OUT  
SEL  
SEL  
5.00  
5.25  
Output Referred  
Comparator Hysteresis  
V
V
= 5V (Note 1)  
= 0V (Note 1)  
50  
22  
100  
50  
mV  
mV  
SEL  
SEL  
Oscillator Frequency  
Oscillator TC  
Maximum Duty Cycle  
Switch On-Time  
Current Limit not Asserted.  
120  
75  
155  
0.2  
86  
185  
kHz  
%/°C  
%
DC  
95  
t
Current Limit not Asserted.  
5.6  
µs  
ON  
Output Line Regulation  
Switch Saturation Voltage  
Switch Leakage Current  
1.8V < V < 6V  
0.06  
130  
0.1  
0.15  
200  
10  
%/V  
mV  
µA  
IN  
V
I
= 700mA  
SW  
CESAT  
V
= 5V, Switch Off  
SW  
Peak Switch Current  
(Internal Trip Point)  
Shutdown Pin High  
Shutdown Pin Low  
Select Pin High  
I
I
Floating (See Typical Application)  
Grounded  
0.75  
1.8  
1.0  
0.4  
1.25  
A
A
V
V
V
V
µA  
µA  
µA  
LIM  
LIM  
V
V
V
V
SHDNH  
SHDNL  
SELH  
0.5  
1.5  
Select Pin Low  
Shutdown Pin Bias Current  
0.8  
20  
SELL  
I
V
V
V
= 5V  
= 2V  
= 0V  
8
3
0.1  
SHDN  
SHDN  
SHDN  
SHDN  
1
3
I
Select Pin Bias Current  
0V < V  
< 5V  
1
µA  
SEL  
SEL  
Note 1: Hysteresis specified is DC. Output ripple may be higher if  
output capacitance is insufficient or capacitor ESR is excessive.  
See operation section.  
The  
denotes specifications which apply over the 0°C to 70°C  
temperature range.  
2
LT1301  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Total Quiescent Current  
in Shutdown  
Shutdown Pin Bias Current  
5V Output Efficiency  
20  
18  
16  
14  
12  
10  
8
90  
88  
86  
84  
80  
70  
60  
50  
40  
30  
20  
10  
0
T = 25°C  
A
T
= 25°C  
A
V
= 3.3V  
IN  
V
= 2.5V  
IN  
82  
80  
78  
76  
74  
72  
70  
6
4
2
0
4
5
0
1
2
3
6
7
8
7
1
10  
100  
1000  
0
4
6
1
2
3
5
8
SHUTDOWN VOLTAGE (V)  
INPUT VOLTAGE (V)  
LOAD CURRENT (mA)  
LT1301 G1  
LT1301 G2  
LT1300 G3  
Load Transient Response of  
Figure 1 Circuit  
Saturation Voltage vs Switch Current  
No-Load Input Current  
250  
225  
500  
450  
400  
350  
T
A
= 25°C  
VOUT  
100mV/DIV  
AC COUPLED  
200  
175  
150  
125  
100  
75  
V
OUT  
= 12V  
120mA  
ILOAD  
300  
250  
0mA  
200µs/DIV  
LT1301 G6  
VIN = 5V  
200  
150  
100  
50  
V
= 5V  
3
OUT  
25  
0
4
6
2
7
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
SWITCH CURRENT (A)  
1
5
INPUT VOLTAGE (V)  
LT1301 G5  
LT1301 G4  
Load Transient Response of  
Figure 1 Circuit  
Select Pin Transient Response  
Select Pin Transient Response  
12V  
12V  
VOUT  
100mV/DIV  
AC COUPLED  
VOUT  
2V/DIV  
VOUT  
2V/DIV  
5V  
5V  
120mA  
ILOAD  
VSELECT  
10V/DIV  
VSELECT  
10V/DIV  
0mA  
200µs/DIV  
5ms/DIV  
COUT = 100µF, VIN = 5V  
100LOAD  
5ms/DIV  
LT1301 G9  
LT1301 G7  
LT1301 G8  
VIN = 3.3V  
COUT = 100µF, VIN = 3.3V  
100LOAD  
3
LT1301  
U
U
U
PIN FUNCTIONS  
GND (Pin 1): Signal Ground. Tie to PGND under the  
package.  
for approximately 400mA. A resistor between ILIM and  
ground sets peak current to some intermediate value .  
Sel (Pin 2): Output Select. When tied to VIN converter  
regulates at 12V. When grounded or floating converter  
regulates at 5V. May be driven under logic control.  
VIN (Pin 6): Supply Pin. Must be bypassed with a large  
valueelectrolytictoground. Keepbypasswithin0.2"ofthe  
device.  
SHDN (Pin 3): Shutdown. Pull high to shut down the  
SW (Pin 7): Switch Pin. Connect inductor and diode here.  
Keep layout short and direct to minimize radio frequency  
interference.  
LT1301. Ground for normal operation.  
Sense (Pin 4): “Output” Pin. Goes to internal resistive  
divider. If operating at 5V output, a 0.1µF ceramic capaci-  
tor is required from Sense to Ground.  
PGND (Pin 8): Power Ground. Tie to signal ground (pin 1)  
under the package. Bypass capacitor from VIN should be  
tied directly to PGND within 0.2" of the device.  
ILIM (Pin5):Floatfor1Aswitchcurrentlimit. Tietoground  
W
BLOCK DIAGRAM  
D1  
V
L1  
IN  
V
OUT  
+
+
C2  
C1  
V
IN  
SW  
SENSE  
4
2
7
18mV  
A2 CURRENT  
COMPARATOR  
R1  
3Ω  
+
R2  
730Ω  
500k  
A1  
OFF  
COMPARATOR  
+
1.25V  
REFERENCE  
ENABLE OSCILLATOR  
155kHZ  
Q1  
160×  
A3 DRIVER  
BIAS  
Q2  
1×  
97.5k  
69.2k  
Q3  
8.5k  
SHUTDOWN  
3
GND  
SELECT  
PGND  
8
I
LIM  
1
2
5
LT1301 F2  
Figure 2.  
4
LT1301  
5V  
TEST CIRCUITS  
2V  
100Ω  
V
IN  
I
L
f
SEL  
SW  
OUT  
100µF  
LT1301  
SHDN  
PGND  
SENSE  
GND  
LT1301 TC  
Oscillator Test Circuit  
U
OPERATION  
the voltage across 3resistor R1 which is directly related  
to the switch current. Q2’s collector current is set by the  
emitter-area ratio to 0.6% of Q1’s collector current. When  
R1’s voltage drop exceeds 18mV, corresponding to 1A  
switch current, A2’s output goes high, truncating the on-  
time portion of the oscillator cycle and increasing off-time  
to about 2µs as shown in Figure 3, trace A. This pro-  
grammedpeakcurrentcanbereducedbytyingtheILIM pin  
to ground, causing 15µA to flow through R2 into Q3’s  
collector. Q3’scurrentcausesa10.4mVdropinR2sothat  
only an additional 7.6mV is required across R1 to turn off  
the switch. This corresponds to a 400mA switch current  
as shown in Figure 3, trace B. The reduced peak switch  
current reduces I2R loses in Q1, L1, C1 and D1. Efficiency  
can be increased by doing this provided that the accom-  
panying reduction in full load current is acceptable. Lower  
peak currents also extend alkaline battery life due to the  
alkaline cell’s high internal impedance.  
OperationoftheLT1301isbestunderstoodbyreferringto  
the Block Diagram in Figure 2. When A1’s negative input,  
related to the Sense pin voltage by the appropriate resis-  
tor-divider ratio is higher that the 1.25V reference voltage,  
A1’s output is low. A2, A3 and the oscillator are turned off,  
drawing no current. Only the reference and A1 consume  
current, typically 120µA. When A1’s negative input drops  
below 1.25V, overcoming A1’s 6mV hysteresis, A1’s out-  
put goes high enabling the oscillator, current comparator  
A2, and driver A3. Quiescent current increases to 2mA as  
the device prepares for high current switching. Q1 then  
turns on in controlled saturation for (nominally) 5.3µs or  
until comparator A2 trips, whichever comes first. After a  
fixed off-time of (nominally) 1.2µs, Q1 turns on again. The  
LT1301’s switching causes current to alternately build up  
inL1anddumpintooutputcapacitorC2viaD1, increasing  
the output voltage. When the output is high enough to  
cause A1’s output to go to low, switching action ceases.  
C2 is left to supply current to the load until VOUT decreases  
enough to force A1’s output high, and the entire cycle  
repeats. Figure 4 details relevant waveforms. A1’s cycling  
causeslow-to-mid-frequencyripplevoltageontheoutput.  
Ripple can be reduced by making the output capacitor  
large. The 33µF unit specified results in ripple of 100mV to  
200mVonthe12Voutput. A100µFcapacitorwilldecrease  
ripple to 50mV. If operating at 5V ouput a 0.1µF ceramic  
capacitor is required at the Sense pin in addition to the  
electrolytic.  
TRACE A  
500mA/DIV  
ILIM PIN  
OPEN  
TRACE B  
500mA/DIV  
ILIM PIN  
GROUNDED  
20µs/DIV  
Figure 3. Switch Pin Current With ILIM Floating or Grounded  
Ifswitchcurrentreaches1A, causingA2totrip, switchon-  
timeisreducedandoff-timeincreasesslightly.Thisallows  
continuous mode operation during bursts. A2 monitors  
5
LT1301  
U
W U U  
APPLICATIONS INFORMATION  
VOUT  
100mV/DIV  
AC COUPLED  
VOUT  
5V/DIV  
VSW  
10V/DIV  
IIN  
500mA/DIV  
VSHDN  
10V/DIV  
IL  
500mA/DIV  
LT1300 F4  
20µs/DIV  
200µs/DIV  
LT1300 F5  
V
IN = 5V, VOUT = 12V  
VIN = 5V, VOUT = 12V, L = 33µH  
C
OUT = 33µF, ILOAD = 90mA  
Figure 5. Start-Up Response  
Figure 4. Burst Mode Operation in Action  
D1  
1N5817  
L1  
33µH  
Output Voltage Selection  
V
IN  
3.3V OR 5V  
The LT1301 can be selected to 5V or 12V under logic  
control or fixed at either by tying Select to ground or VIN  
respectively. It is permissible to tie Select to a voltage  
higher than VIN as long as it does not exceed 10V.  
Efficiency in 5V mode will be slightly less that in 12V mode  
due to the fact that the diode drop is a greater percentage  
of5Vthan12V. SincethebipolarswitchintheLT1301gets  
its base drive from VIN, no reduction in switch efficiency  
occurs when in 5V mode. When VIN exceeds the pro-  
grammed output voltage the output will follow the input.  
This is characteristic of the simple step-up or “boost”  
converter topology. A circuit example that provides a  
regulated output with an input voltage above or below the  
output (known as a buck-boost or SEPIC) is shown in the  
Typical Applications section.  
SW  
V
IN  
SELECT  
SENSE  
12V  
+
47µF  
LT1301  
+
C2  
33µF  
SHDN  
GND  
SHUTDOWN  
I
LIM  
PGND  
R1  
1M  
C3  
0.1µF  
LT1301 F6  
Figure 6.  
VOUT  
5VDIV  
IIN  
500mA/DIV  
Shutdown  
VSHDN  
10V/DIV  
The converter can be turned off by pulling SHDN (pin 3)  
high. Quiescent current drops to 10µA in this condition.  
Biascurrentof8µAto10µAflowsintothepin(at5V input).  
It is recommended that SHDN not be left floating. Tie the  
pintogroundifthefeatureisnotused.SHDNcanbedriven  
high even if VIN is floating.  
200µs/DIV  
LT1300 F5  
VIN = 5V, VOUT = 12V  
Figure 7. Startup Response Soft-Start Circuitry Added  
adding R1 and C3 as shown in Figure 6, the switch  
current in the LT1301 is initially limited to 400mA until  
the 15µA flowing out of the ILIM pin charges up C3. Input  
current is held to under 500mA while the output voltage  
ramps up to 12V as shown in Figure 7. R1 provides a  
discharge path for the capacitor without appreciably de-  
creasingpeakswitchcurrent. WhenusingtheILIM pinsoft-  
start mode a minimum load of a few hundred microam-  
peres is recommended to prevent C3 from discharging, as  
no current flows out of ILIM when the LT1301 is not  
ILIM Function  
The LT1301’s current limit (ILIM) pin can be used for soft  
start. Upon start-up, the LT1301 will draw maximum  
current from the supply (about 1A) from the supply to  
charge the output capacitor. Figure 5 shows VOUT and IIN  
waveforms as the device is turned on. The high current  
flow can create IR drops along supply and ground lines  
or cause the input supply to drop out momentarily. By  
6
LT1301  
U
W U U  
APPLICATIONS INFORMATION  
Table 1. Recommended Inductors  
EFFICIENCY (%)  
30mA 60mA 120mA  
COMPONENT  
HEIGHT (mm)  
PART NUMBER  
VENDOR  
L (µ  
H) DCR () V (V)  
I
PIN  
LIM  
PHONE NUMBER  
IN  
DO3316-333  
Coilcraft  
33  
0.088  
3.3  
Open  
Open  
Open  
Ground  
10k  
Ground  
Open  
Open  
Open  
Open  
84  
89  
82  
85  
86  
88  
78  
84  
88  
86  
89  
81  
85  
84  
88  
80  
85  
84  
83  
84  
89  
82  
87  
84  
88  
86  
89  
85  
88  
80  
84  
85  
90  
89  
87  
90  
86  
89  
81  
85  
5.5  
(708) 639–6400  
5
3.3  
3.3  
5
5
2
3.3  
5
3.3  
5
3.3  
5
3.3  
5
DO1608-223  
Coilcraft  
22  
.31  
3.5  
DO1608-103  
CTX20-1  
Coilcraft  
Coiltronics  
10  
20  
.11  
.175  
3.5  
4.2  
(407) 241-7876  
(716) 532-2234  
(404) 436-1300  
(708) 956-0666  
GA10-332  
Gowanda  
33  
22  
33  
33  
.077  
0.7  
Through-Hole  
Open  
LQH3G220K04M00 Murata-Erie  
Ground  
Ground  
Open  
Open  
Open  
Ground  
Open  
Ground  
2.0  
3.5  
3.0  
CD73-330KC  
Sumida  
Sumida  
0.131  
0.48  
CDRH62-330MC  
3.3  
5
Table 2. Recommended Capacitors  
switching. Zero load current causes the LT1301 to switch  
so infrequently that C3 can completely discharge reducing  
subsequent peak switch current to 400mA. If a load is  
suddenly applied, output voltage will sag until C3 can be  
recharged and peak switch current returns to 1A.  
VENDOR  
AVX  
SERIES  
TPS  
TYPE  
PHONE#  
Surface Mount  
Through-Hole  
Through-Hole  
(803)448–9411  
(619) 661–6835  
(201) 348-5200  
Sanyo  
Panasonic  
OS-CON  
HFQ  
If the full capacity of the LT1301 is not required peak  
current can be reduced by changing the value of R3 as  
shown in Figure 8. With R3 = 0 switch current is limited to  
approximately 400mA. Smaller, less expensive inductors  
with lower saturation ratings can then be used.  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
1.6V V 5V  
IN  
Inductor Selection  
For full output power, the inductor should have a satura-  
tion current rating of 1.25A for worst-case current limit,  
although it is acceptable to bias an inductor 20% or more  
into saturation. Smaller inductors can be used in conjunc-  
tion with the ILIM pin. Efficiency is significantly affected by  
inductor DCR. For best efficiency limit the DCR to 0.03Ω  
or less. Toroidal types are preferred in some cases due to  
their inherent flux containment and EMI/RFI superiority.  
Recommended inductors are listed in Table 1.  
100  
1k  
10k  
100k  
1M  
CURRENT LIMIT SET RESISTOR ()  
LT1301 F8  
Figure 8. Peak Switch Current vs. Current Limit Set Resistor  
7
LT1301  
U
W U U  
APPLICATIONS INFORMATION  
Capacitor Selection  
Diode Selection  
LowESRcapacitorsarerequiredforbothinputandoutput  
of the LT1301. ESR directly affects ripple voltage and  
efficiency.ForsurfacemountapplicationsAVXTPSseries  
tantalum capacitors are recommended. These have been  
speciallydesignedforSMPSandhavelowESRalongwith  
high surge current ratings. For through-hole applications  
Sanyo OS-CON capacitors offer extremely low ESR in a  
small size. Again, if peak switch current is reduced using  
the ILIM pin, capacitor requirements can be relaxed and  
smaller, higher ESR units can be used. Suggested capaci-  
tor sources are listed in Table 2.  
Best performance is obtained with a Schottky rectifier  
diode such as the 1N5817. Phillips Components makes  
this in surface mount as the PRLL5817. Motorola makes  
the MBRS130LT3 which is slightly better and also in  
surface mount. For lower output power a 1N4148 can be  
used although efficiency will suffer substantially.  
Layout Considerations  
The LT1301 is a high speed, high current device. The input  
capacitor must be no more than 0.2˝ from VIN (pin 6) and  
ground. Connect the PGND and GND (pins 8 and 1)  
together under the package. Place the inductor adjacent to  
SW (pin 7) and make the switch pin trace as short as  
possible. This keeps radiated noise to a minimum.  
U
TYPICAL APPLICATIONS N  
Four-Cell to 5V Converter  
C2  
100µF  
+
L1  
33µH  
1N5817  
5V OUTPUT  
SW  
V
IN  
200mA  
I
SENSE  
NC  
LIM  
80 to 83% EFFICIENT  
+
AT I  
> 10mA  
C1  
100µF  
LOAD  
LT1301  
4 CELLS  
0.1µF  
+
C3  
100µF  
L2  
33µH  
SHDN  
GND  
SELECT  
PGND  
SHUTDOWN  
LT1301 TAO3  
Step-Up Converter with Automatic Output Disconnect  
470Ω  
L1*  
2N4403  
1N5817  
10µH  
5V, 200mA  
NC  
+
SELECT  
SHDN  
V
IN  
2×  
100µF  
AA  
SHUTDOWN  
100µF  
SW  
CELL  
+
LT1301  
I
NC  
SENSE  
PGND  
LIM  
GND  
0.1µF  
*SUMIDA CD54-100LC  
COILCRAFT DO3316-223  
LT1301 TA4  
8
LT1301  
U
TYPICAL APPLICATIONS N  
LCD Contrast Supply  
CONTRAST  
–4V TO –29V 12mA  
MAXIMUM FROM 1.8V SUPPLY  
(77% EFFICIENT)  
20mA MAXIMUM FROM  
3V SUPPLY (83% EFFICIENT)  
V
OUT  
V
IN  
T1  
4
1.8V TO 6V  
7
3
1
22µF  
35V  
150K  
+
8
2
10  
9
1N5819  
V
IN  
SW  
SHUTDOWN  
SHDN  
NC SENSE  
+
LT1301  
100µF  
NC  
I
SELECT  
LIM  
PGND  
GND  
12K  
12K  
+
T1 = DALE LPE-5047-AO45 (605) 665-9301  
2.2µF  
PWM IN  
0% TO 100%  
CMOS DRIVE 0V TO 5V  
LT1300 TA5  
Low-Voltage CCFL Power Supply  
9
3
7
22pF  
3kV  
TI  
5
1
4
2
V
IN  
2V - 6V  
1Ω  
0.068µF  
120Ω  
1N5817  
L1  
CCFL  
ZTX849  
ZTX849  
WIMA  
MKP20  
V
SELECT  
47µH  
IN  
SW  
SENSE  
NC  
+
LT1301  
10µF  
0.1µF  
2N3904  
SHDN  
GND  
I
LIM  
PGND  
+
7.5K  
1%  
1N4148  
1µF  
SHUTDOWN  
0 - 5V IN  
DC  
LT1300 TA6  
INTENSITY ADJUST  
100µA TO 2mA BULB CURRENT  
T1 = COILTRONICS CTX110654-1  
L1 = COILCRAFT D03316-473  
9
LT1301  
U
TYPICAL APPLICATIONS N  
5V to 5V Converter  
L1  
33µH  
–V  
300mA  
5V  
OUT  
5V  
2
3
4
33µF  
+
1N965  
1N5817  
1
1N4148  
+
33µF  
V
SW  
SHDN  
IN  
SELECT  
NC  
NC  
SHUTDOWN  
LT1301  
OR  
LT1300  
4.99K  
1%  
0.1µF  
SENSE  
GND  
I
LIM  
PGND  
4.99K  
1%  
LT1301 TA7  
5V  
L1 = COILTRONICS CTX33-4  
10  
LT1301  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTION  
N8 Package  
8-Lead Plastic DIP  
0.400  
(10.160)  
MAX  
0.130 ± 0.005  
(3.302 ± 0.127)  
0.300 – 0.320  
(7.620 – 8.128)  
0.045 – 0.065  
(1.143 – 1.651)  
8
1
7
6
5
4
0.065  
(1.651)  
TYP  
0.250 ± 0.010  
(6.350 ± 0.254)  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
0.020  
(0.508)  
MIN  
(3.175)  
MIN  
+0.025  
–0.015  
0.045 ± 0.015  
(1.143 ± 0.381)  
2
3
0.325  
+0.635  
8.255  
(
)
–0.381  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
(0.457 ± 0.076)  
N8 0392  
S8 Package  
8-Lead Plastic S0IC  
0.189 – 0.197*  
(4.801 – 5.004)  
0.010 – 0.020  
(0.254 – 0.508)  
7
5
8
6
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
0.008 – 0.010  
(0.203 – 0.254)  
(0.101 – 0.254)  
0°– 8° TYP  
0.150 – 0.  
(3.810 – 3.  
0.228 – 0.244  
(5.791 – 6.197)  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006 INCH (0.15mm).  
1
2
3
4
SO8 0294  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LT1301  
U.S. Area Sales Offices  
SOUTHWEST REGION  
Linear Technology Corporation  
22141 Ventura Blvd.  
SOUTHEAST REGION  
Linear Technology Corporation  
17060 Dallas Parkway  
Suite 208  
Dallas, TX 75248  
Phone: (214) 733-3071  
FAX: (214) 380-5138  
NORTHEAST REGION  
Linear Technology Corporation  
One Oxford Valley  
2300 E. Lincoln Hwy.,Suite 306  
Langhorne, PA 19047  
Phone: (215) 757-8578  
FAX: (215) 757-5631  
Suite 206  
Woodland Hills, CA 91364  
Phone: (818) 703-0835  
FAX: (818) 703-0517  
NORTHWEST REGION  
Linear Technology Corporation  
782 Sycamore Dr.  
CENTRAL REGION  
Linear Technology Corporation  
Chesapeake Square  
Linear Technology Corporation  
266 Lowell St., Suite B-8  
Wilmington, MA 01887  
Milpitas, CA 95035  
Phone: (408) 428-2050  
FAX: (408) 432-6331  
229 Mitchell Court, Suite A-25  
Addison, IL 60101  
Phone: (708) 620-6910  
FAX: (708) 620-6977  
Phone: (508) 658-3881  
FAX: (508) 658-2701  
International Sales Offices  
KOREA  
FRANCE  
Linear Technology Korea Branch  
Namsong Building, #505  
Itaewon-Dong 260-199  
Yongsan-Ku, Seoul  
Korea  
TAIWAN  
Linear Technology S.A.R.L.  
Immeuble "Le Quartz"  
58 Chemin de la Justice  
92290 Chatenay Malabry  
France  
Linear Technology Corporation  
Rm. 801, No. 46, Sec. 2  
Chung Shan N. Rd.  
Taipei, Taiwan, R.O.C.  
Phone: 886-2-521-7575  
FAX: 886-2-562-2285  
Phone: 82-2-792-1617  
FAX: 82-2-792-1619  
Phone: 33-1-41079555  
FAX: 33-1-46314613  
SINGAPORE  
UNITED KINGDOM  
GERMANY  
Linear Technology Pte. Ltd.  
101 Boon Keng Road  
#02-15 Kallang Ind. Estates  
Singapore 1233  
Linear Technology (UK) Ltd.  
The Coliseum, Riverside Way  
Camberley, Surrey GU15 3YL  
United Kingdom  
Linear Techonolgy GmbH  
Untere Hauptstr. 9  
D-85386 Eching  
Germany  
Phone: 65-293-5322  
FAX: 65-292-0398  
Phone: 44-276-677676  
FAX: 44-276-64851  
Phone: 49-89-3197410  
FAX: 49-89-3194821  
JAPAN  
Linear Technology KK  
5F YZ Bldg.  
4-4-12 Iidabashi, Chiyoda-Ku  
Tokyo, 102 Japan  
Phone: 81-3-3237-7891  
FAX: 81-3-3237-8010  
World Headquarters  
Linear Technology Corporation  
1630 McCarthy Blvd.  
Milpitas, CA 95035-7487  
Phone: (408) 432-1900  
FAX: (408) 434-0507  
08/16/93  
LT/GP 0394 10K • PRINTED IN USA  
12 Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7487  
LINEAR TECHNOLOGY CORPORATION 1994  
(408) 432-1900 FAX: (408) 434-0507 TELEX: 499-3977  

相关型号:

LT1301CN8-12

IC 1 A SWITCHING REGULATOR, PDIP8, PLASTIC, DIP-8, Switching Regulator or Controller
Linear

LT1301CN8-5

IC 1 A SWITCHING REGULATOR, PDIP8, PLASTIC, DIP-8, Switching Regulator or Controller
Linear

LT1301CS8

Micropower High Efficiency 5V/12V Step-Up DC/DC Converter for Flash Memory
Linear

LT1301CS8#PBF

LT1301 - Micropower High Efficiency 5V/12V Step-Up DC/DC Converter for Flash Memory; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1301CS8#TR

LT1301 - Micropower High Efficiency 5V/12V Step-Up DC/DC Converter for Flash Memory; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1301CS8-12

IC 1 A SWITCHING REGULATOR, PDSO8, 0.150 INCH, PLASTIC, SO-8, Switching Regulator or Controller
Linear

LT1301I

Micropower High Efficiency 5V/12V Step-Up DC/DC Converter for Flash Memory
Linear

LT1301IN8

LT1301 - Micropower High Efficiency 5V/12V Step-Up DC/DC Converter for Flash Memory; Package: PDIP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1301IN8#PBF

LT1301 - Micropower High Efficiency 5V/12V Step-Up DC/DC Converter for Flash Memory; Package: PDIP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1301IS8

Micropower High Efficiency 5V/12V Step-Up DC/DC Converter for Flash Memory
Linear

LT1301IS8#PBF

LT1301 - Micropower High Efficiency 5V/12V Step-Up DC/DC Converter for Flash Memory; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1301IS8#TR

LT1301 - Micropower High Efficiency 5V/12V Step-Up DC/DC Converter for Flash Memory; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear