LT1306 [Linear]

Synchronous, Fixed Frequency Step-Up DC/DC Converter; 同步,固定频率升压型DC / DC转换器
LT1306
型号: LT1306
厂家: Linear    Linear
描述:

Synchronous, Fixed Frequency Step-Up DC/DC Converter
同步,固定频率升压型DC / DC转换器

转换器
文件: 总16页 (文件大小:217K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1306  
Synchronous, Fixed Frequency  
Step-Up DC/DC Converter  
U
FEATURES  
DESCRIPTIO  
Output Disconnected from Input During Shutdown  
The LT®1306 is a fully integrated, fixed frequency syn-  
chronous boost converter capable of generating 5V at 1A  
from a Li-Ion cell. The device contains both the main  
power switch and synchronous rectifier on chip and  
automatically disconnects the output from the input in  
shutdown, eliminating the need for external load discon-  
nect circuitry. Additionally, the output remains regulated  
when VIN exceeds VOUT, allowing difficult step-up/step-  
down converter functions to be easily realized using a  
single inductor.  
Output Voltage Remains Regulated  
When VIN > VOUT  
Controlled Input Current During Start-Up  
300kHz Current Mode PWM Operation  
Can Be Externally Synchronized  
Internal 2A Switches  
Operates with VIN as Low as 1.8V  
Automatic Burst Mode Operation at Light Loads  
Quiescent Current: 160µA  
Shutdown Current: 9µA Typ  
The internal 300kHz oscillator of the LT1306 can be easily  
synchronizedtoanexternalclockfrom425kHzto500kHz.  
This allows switching harmonics to be tightly controlled  
and eliminates any beat frequencies that may result from  
amultifrequencysystem.TheLT1306automaticallyshifts  
into power saving Burst ModeTM operation at light loads.  
At heavy loads the LT1306 operates in fixed frequency  
current mode. No-load quiescent current is 160µA and  
reduces to 9µA in shutdown mode.  
U
APPLICATIO S  
Satellite Phones  
Portable Instruments  
Personal Digital Assistants  
Palmtop Computers  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
The LT1306 is available in an SO-8 package.  
Burst Mode is a trademark of Linear Technology Corporation.  
U
TYPICAL APPLICATION  
D1  
Efficiency  
90  
C1  
1µF  
L1  
10µH  
1-CELL  
Li-Ion  
85  
80  
75  
70  
65  
60  
V
IN  
= 4.2V  
V
SW CAP  
OUT  
IN  
V
= 3.6V  
IN  
5V  
1A  
S/S  
R1  
V
IN  
= 2.6V  
LT1306  
+
768k  
C
IN1  
22µF  
C
IN2  
0.1µF  
FB  
+
V
GND  
C
C
C
O1  
O2  
220µF  
1µF  
V
= 5V  
O
R3  
R2  
249k  
C
C
C
: AVX TAJC226M010  
IN1  
L1 = 10µH  
C
P
118k  
C
Z
68nF  
: AVX TPSE227M010R0100  
O1  
(FIGURE 1)  
68pF  
, C : CERAMIC  
IN1 O2  
C1: AVX TAJA105K020  
D1: MMBD914LT1  
L1: CTX10-2  
1
10  
100  
1000  
LOAD CURRENT (mA)  
1306 F01  
1306 TA01  
Figure 1. Single Li-Ion Cell to 5V Converter  
1
LT1306  
W W U W  
U
W U  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE/ORDER INFORMATION  
(Note 1)  
VIN Voltage ............................................................. 10V  
S/S Voltage ............................................................... 7V  
FB Voltage .............................................................. 10V  
ORDER PART  
NUMBER  
TOP VIEW  
1
2
3
4
8
7
6
5
V
S/S  
C
LT1306ES8  
V
OUT Voltage.......................................................... 5.5V  
FB  
V
IN  
Junction Temperature.......................................... 125°C  
Operating Temperature Range (Note 2) .. – 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
V
CAP  
SW  
OUT  
GND  
S8 PART MARKING  
1306  
S8 PACKAGE  
8-LEAD PLASTIC SO  
TJMAX = 125°C, θJA = 90°C/ W  
Consult factory for Industrial and Military grade parts.  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 2.5V, VS/S = VIN, VC open unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
1.24  
0.002  
10  
MAX  
1.26  
0.1  
25  
UNITS  
V
Reference Voltage  
Measured at the FB Pin  
1.22  
Reference Line Regulation  
FB Input Bias Current  
1.8V V 7V  
%/V  
nA  
IN  
V
FB  
= V  
REF  
–1  
Error Amplifier Transconductance  
Error Amplifier Output Source Current  
Error Amplifier Output Sink Current  
Error Amplifier Output Clamp Voltage  
I = ±0.2µA  
80  
5
150  
7.5  
220  
11  
µΩ  
V
FB  
V
FB  
V
FB  
= 1V, V = 0.8V  
µA  
µA  
V
C
= 1.5V, V = 0.8V  
5
7.5  
11  
C
= 1V  
1.18  
1.55  
1.28  
1.38  
1.8  
15  
V
IN  
Undervoltage Lockout Threshold  
V
Idle Mode Output Leakage Current  
Output Source Current in Shutdown  
Switching Frequency  
V
V
= 1.5V, V = 5.5V, V = 1.7V  
6
µA  
µA  
FB  
OUT  
SW  
= 0V, V = V = 7V, V = 7.2V, V = 0V  
–3  
OUT  
IN  
SW  
CAP  
S/S  
1.8V V 7V, 0°C T 85°C  
260  
225  
310  
305  
415  
390  
kHz  
kHz  
IN  
A
1.8V V 7V, T = 40°C  
IN  
A
Maximum Duty Cycle  
V
FB  
V
FB  
= 1V, 0°C T 85°C  
80  
65  
90  
80  
%
%
A
= 1V, T = 40°C  
A
Switch Current Limit  
Duty Cycle = 0.1 (Note 3)  
Duty Cycle = 0.8 (Note 3)  
2.3  
2.0  
A
A
Burst Mode Operation Switch Current Limit  
250  
0.45  
0.49  
mA  
V
Switch V  
I
I
= 2A  
= 2A  
0.575  
0.675  
CESAT  
SW  
SW  
Rectifier V  
V
CESAT  
Stepdown Mode Rectifier Voltage  
V
OUT  
V
OUT  
= 0V, I = 1A  
0.3 + V  
1.3  
0.7 + V  
1.8  
V
V
SW  
IN  
IN  
= 2.2V, I = 1A  
SW  
Switch and Rectifier Leakage Current  
V
OUT  
= 0V, V = V = 7V, V = 7.2V, V = 0V  
0.1  
20  
µA  
IN  
SW  
CAP  
S/S  
2
LT1306  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 2.5V, VS/S = VIN, VC open unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
S/S Pin Current  
V
S/S  
V
S/S  
= V  
= 0V  
6
–3  
µA  
µA  
IN  
Shutdown Pin Input High Voltage  
Shutdown Pin Input Low Voltage  
1.2  
V
V
0.45  
50  
Shutdown Delay  
12  
20  
µs  
kHz  
mA  
µA  
µA  
µA  
V
Synchronization Frequency Range  
Operating Supply Current  
425  
500  
8
4.5  
160  
9
Quiescent Supply Current  
V
V
V
= V , V = 1.5V  
250  
16  
S/S  
IN FB  
Shutdown Supply Current  
CAP Pin Leakage Current  
= 0V  
S/S  
= V  
= 7V, V = 2.5V, I = 0  
10  
IN  
CAP  
S/S  
SW  
Output Boost-to-Stepdown Threshold  
Output Stepdown-to-Boost Threshold  
V
IN  
V
– 0.1  
V
IN  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
to the device may be impaired.  
temperature range are assured by design, characterization and correlation  
with statistical process controls.  
Note 2: The LT1306E is guaranteed to meet performance specifications  
from 0°C to 70°C. Specifications over the 40°C to 85°C operating  
Note 3: Switch current limit guaranteed by design/correlation to static  
tests.  
U W  
TYPICAL PERFORMANCE CHARACTERISTICS  
Maximum Load Current vs  
Input Voltage  
Reference Voltage vs  
Temperature  
S/S Pin Current vs S/S Pin Voltage  
1.5  
1.0  
0.5  
1.239  
1.238  
1.237  
1.236  
1.235  
1.234  
1.233  
1.232  
1.231  
5
4
T
= –40°C  
A
T
V
= 5V  
O
= 25°C  
A
V
= 3.3V  
O
3
2
T
= 85°C  
A
1
0
–1  
–2  
–3  
–4  
–5  
L = 10µH  
= 125°C  
T
T
= 25°C  
= 50°C  
A
A
T
J
0
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
(V)  
0
1
2
3
4
5
–20  
0
20  
40  
60  
100  
–40  
80  
V
V
S/S  
(V)  
TEMPERATURE (°C)  
IN  
1306 • G01  
1306 • G03  
1306 • G02  
3
LT1306  
U W  
TYPICAL PERFORMANCE CHARACTERISTICS  
Shutdown Supply Current vs  
Input Voltage  
Idle-Mode Supply Current vs  
Temperature  
S/S Pin Current vs Temperature  
40  
35  
30  
25  
20  
15  
10  
5
155  
150  
145  
140  
135  
5.0  
2.5  
0
V
= 2.5V  
T
= 25°C  
S/S  
A
T
= 85°C  
A
T
= –40°C  
A
V
= 0V  
0
S/S  
–2.5  
0
4
6
8
10  
12  
–40 –20  
0
20  
40  
60  
80 100  
2
– 40  
20  
40  
60  
80  
100  
–20  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1306 • G04  
1306 • G06  
1306 • G05  
Oscillator Frequency Line  
Regulation  
Frequency vs Temperature  
Maximum Duty Ratio  
315  
310  
305  
300  
295  
290  
285  
280  
275  
270  
265  
95  
90  
85  
80  
75  
70  
65  
60  
320  
315  
310  
305  
300  
V
= 2.5V  
IN  
40  
TEMPERATURE (°C)  
80  
100  
1
2
3
4
5
10  
–40 –20  
0
20  
60  
0
6
7
8
9
40  
TEMPERATURE (°C)  
100  
–40  
0
20  
60  
80  
–20  
V
(V)  
IN  
1306 • G09  
1306 • G07  
1306 • G08  
Switch Saturation Voltage  
vs Current  
Maximum Allowable Rise Time of  
Synchronizing Pulse  
Current Limit vs Duty Cycle  
600  
500  
400  
300  
200  
100  
0
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
3.0  
2.8  
T
A
= 25°C  
T
= 25°C  
A
2.6  
T
= 85°C  
A
T
= –40°C  
A
2.4  
2.2  
2.0  
0.5  
1.0  
2.0  
2.5  
1
1.5  
2.0  
2.5  
3.0  
3.5  
0
1.5  
0
10 20 30 40 50 60 70 80 90  
DUTY CYCLE (%)  
SYNCHRONIZING PULSE AMPLITUDE (V)  
SWITCH CURRENT (A)  
1306 • G10  
1306 • G12  
1306 • G11  
4
LT1306  
U W  
TYPICAL PERFORMANCE CHARACTERISTICS  
Continuous-Conduction Mode  
Switching Waveforms in Boost  
Operation  
Rectifier Saturation Voltage  
vs Current  
Stepdown-Mode Rectifier Voltage  
vs Current  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.90  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
1.55  
V
V
A
= 6V  
= 5V  
= 25°C  
IN  
OUT  
T
= 85°C  
A
T
VSW  
5V/DIV  
T
= –40°C  
A
IL  
T
= 25°C  
A
0.5A/DIV  
VO  
0.1V/DIV  
AC  
0.5  
1.0  
RECTIFIER CURRENT (A)  
2.0  
2.5  
0
1.5  
0.5  
1.0  
2.0  
0
1.5  
V
IN = 4.2V  
2µs/DIV  
VO = 5V  
RECTIFIER CURRENT (A)  
1306 • G13  
1306 • G14  
Transient Response of the  
Converter in Figure 1 with a  
50mA to 800mA Load Step  
Continuous-Conduction Mode  
Switching Waveforms in  
Stepdown Mode  
Start-Up to Shutdown Transient  
Response*  
VS/S  
5V/DIV  
LOAD  
CURRENT  
0.5A/DIV  
DC  
VSW  
5V/DIV  
VSW  
5V/DIV  
INDUCTOR  
CURRENT  
1A/DIV  
IL  
IL  
0.5V/DIV  
2A/DIV  
VO  
OUTPUT  
0.1V/DIV  
AC  
VO  
5V/DIV  
50mV/DIV  
AC  
2µs/DIV  
VIN = 2.5V  
VIN = 6V  
O = 5V  
VIN = 3.6V  
VO = 5V  
1ms/DIV  
1ms/DIV  
V
*Notice that the Input Start-Up Current is well Controlled and the  
Output Voltage Falls to Zero in Shutdown.  
5
LT1306  
U
U
U
PIN FUNCTIONS  
CAP (Pin 6): Power Supply to the Synchronous Rectifier  
Driver. The bootstrap capacitor and the blocking diode  
are tied to this pin. The CAP voltage switches between a  
lowlevelofVIN VD toahighleveldeterminedbytheVSW  
high level.  
VC (Pin 1): Compensation Pin for Error Amplifier. VC is  
the output of the transconductance error amplifier. Loop  
frequency compensation is done by connecting an RC  
network from the VC pin to ground.  
FB (Pin 2): Inverting Input of the Error Amplifier. Connect  
the resistor divider tap here. Set output voltage according  
to VOUT = 1.24V (1 + R1/R2).  
VIN (Pin 7): Supply or Battery Input Pin. Must be closely  
bypassed to ground plane.  
VOUT (Pin 3): Output of the Switching Regulator and Emit-  
ter of the Synchronous Rectifier. Connect appropriate  
output capacitor from here to ground. VOUT must be kept  
below 5.5V.  
S/S (Pin 8): Shutdown and Synchronization Pin. Shut-  
down is active low with a typical threshold of 0.9V. For  
normal operation, the S/S pin is tied to VIN. To externally  
synchronize the switching regulator, drive the S/S pin  
with a pulse train.  
GND (Pin 4): Ground. Connect to local ground plane.  
SW (Pin 5): Switch Pin. The collectors of the grounded  
powerswitchandthesynchronousrectifier.KeeptheSW  
trace as short as possible to minimize EMI.  
W
BLOCK DIAGRA  
V
IN  
V
C
7
+
1
I
> 0  
RECT  
UVLO  
A5  
DCM  
CONTROL  
CAP  
6
1.65V  
1.24V  
+
A1  
m
X3  
+
g
X5  
X4  
IDLE  
FB  
2
A3  
V
B
5
SW  
OUT  
X1  
+
3
Q2  
S
R
A4  
I
RECT  
RECTIFIER  
Q1  
Q
X2  
+
V
CE2  
X4  
+
+
RAMP  
COMPENSATION  
+
Σ
A2  
SENSE  
AMP  
R
S
300kHz OSC  
SYNC  
CLK  
S/S  
8
PWM CONTROL  
4
1306 F02  
GND  
SHDN  
REF/BIAS  
SHUTDOWN  
DELAY  
Figure 2. LT1306 Block Diagram  
6
LT1306  
U
OPERATIO  
The LT1306 is a fixed frequency current mode PWM  
regulator with integrated power transistor Q1 and syn-  
chronous rectifier Q2.  
and switch Q1’s on-time decrease. Hysteretic comparator  
A3 determines if VC is too low for the LT1306 to operate  
efficiently. As VC falls below the trip voltage VB, the output  
of A3 goes high. All circuits except the error amplifier,  
comparatorsA3andA5,andtherectifierdrivercontrol X5,  
are turned off. After the remaining energy stored in the  
inductor is delivered to the output through the synchro-  
nous rectifier Q2, the LT1306 stops switching. In this idle  
state, the LT1306 draws only 160µA from the input. With  
switching stopped and the load being powered by the  
output filter capacitor, the output voltage decreases. VC  
then starts to increase. Q1 does not start to switch until VC  
rises above the upper trip point of A3. The LT1306 again  
delivers power to the output as a current mode PWM  
converter except that the switch current limit is only about  
250mA due to the low value of VC. If the load is still light,  
the output voltage will rise and VC will fall, causing the  
converter to idle again. Power delivery therefore occurs in  
bursts. The on-off cycle frequency, or burst frequency,  
depends on the operating conditions, the inductance and  
the output filter capacitance. The output voltage ripple in  
Burst Mode operation is usually higher than either CCM or  
DCMoperation. BurstModeoperationincreaseslightload  
efficiency because it delivers more energy to the output  
during each clock cycle than is possible with DCM  
operation’s extremely low peak switch current. This al-  
lows fewer switching cycles per unit time to maintain a  
given output. Chip supply current therefore becomes a  
small fraction of the total input current.  
In the Block Diagram, Figure 2, the PWM control circuit  
is enclosed within the dashed line. It consists of the  
current sense amplifier (A2), the oscillator, the compen-  
sating ramp generator, the PWM comparator (A4), the  
logic (X1 and X2), the power transistor driver (X4) and  
the main power switch (Q1). Notice that the clock (CLK)  
“blanksQ1conduction.Theinternaloscillatorfrequency  
is 300kHz.  
Thepulsewidthoftheclockdeterminesthemaximumon  
dutyratioofQ1.IntheLT1306thisissetto88%.Q1turns  
on at the trailing edge of the clock pulse. To prevent  
subharmonic oscillation above 50% duty ratio, a com-  
pensatingramp(generatedfromtheoscillatorsawtooth)  
is added to the sensed Q1 current. Q1 is turned off when  
this sum exceeds the error amplifier A1 output, VC. Q1’s  
absolute current limit is reached when VC’s upward  
excursion is clamped internally at 1.28V.  
The error amplifier output, VC, determines the peak switch  
current required to regulate the output voltage. VC is a  
measure of the output power. At heavy loads, the average  
and the peak inductor currents are both high. VC moves to  
the upper end of its operating range and the LT1306 oper-  
ates in continuous conduction mode (CCM).  
As load decreases, the average inductor current de-  
creases.InCCM,thepeak-to-peakinductorcurrentripple  
to the first order depends only on the inductance, the  
inputandtheoutputvoltages.Whentheaverageinductor  
current falls below 1/2 of the peak-to-peak inductor  
current ripple, the converter enters discontinuous con-  
duction mode (DCM). The switching frequency remains  
constant except that the inductor current always returns  
to zero within each switching cycle.  
The synchronous rectifier is represented as NPN transis-  
tor, Q2, in the Block Diagram (Figure 2). A rectifier drive  
circuit, X5, supplies variable base drive to Q2 and controls  
the voltage across the rectifier. The supply voltage, VCAP  
,
for the driver is generated locally with the bootstrap cir-  
cuit, D1 and C1 (Figure 1). When Q1 is on, the bootstrap  
capacitor C1 is charged from the input to the voltage  
VIN – VD1(ON) – VCESAT1. The charging current flows from  
the input through D1, C1 and Q1 to ground. After Q1 is  
switched off, the node SW goes above VO by the rectifier  
drop VCESAT2. D1 becomes back-biased and the CAP volt-  
In both CCM and DCM, the output voltage is regulated  
with negative feedback. A1 amplifies the error voltage  
betweentheinternallygenerated1.24Vreference andthe  
attenuated output voltage. The RC network from the VC  
pin to ground provides the loop compensation.  
ageispusheduptoVO +VCESAT2 +VIN VD1(ON) VCESAT1  
.
C1 supplies the base drive to Q2. The consumed charge is  
replenished during the Q1 on interval.  
Further reduction in the load moves VC towards the lower  
end of its operating range. Both the peak inductor current  
7
LT1306  
U
OPERATIO  
In boost operation, X5 drives the rectifier Q2 into satura-  
tion. The voltage across the rectifier is VCESAT. As the  
inductor current decreases, Q2’s base drive also de-  
creases. X5 ceases supplying base current to Q2 when the  
inductor current falls to zero.  
A hysteretic comparator in driver X5 controls the mode  
of operation. DC transfer characteristics of the compara-  
tor are shown in Figure 3 and Figure 4.  
A logic low at the S/S pin (Pin 8) initiates shutdown. First,  
all circuit blocks in the LT1306 are switched off. The  
synchronous rectifier Q2 and its driver are kept on to  
allow stored inductive energy to flow to the output. As VO  
drops below VIN, the voltage across the rectifier Q2  
increases so that the inductor voltage reverses. Inductor  
current continues to fall to zero. Driver X5 then turns off  
and the rectifier, Q2, becomes an open circuit. The  
LT1306 dissipates only 9µA in shutdown.  
If VIN > VO, Q2 will no longer be driven into saturation.  
InsteadthevoltageacrossQ2isallowedtoincreasesothat  
the inductor voltage reverses polarity as Q1 switches.  
Since the inductor voltage is bipolar, volt-second balance  
can be maintained regardless of the input voltage. The  
LT1306 is therefore capable of operating as a step-down  
regulator with the basic boost topology. Input  
start-up current is also well controlled since the inductor  
currentcannotincreaseduringQ1’soff-timewithnegative  
inductor voltage.  
The LT1306 is guaranteed to start with a minimum VIN of  
1.8V. Comparator A5 senses the input voltage and gen-  
erates an undervoltage lockout (UVLO) signal if VIN falls  
below this minimum. In UVLO, VC is pulled low and Q1  
stops switching. The LT1306 draws 160µA from the  
input.  
The rectifier voltage drop depends on both the input and  
the output voltages. Efficiency in the step-down mode is  
less than that of a linear regulator. For sustained step-  
down operation, the maximum output current will be  
limited by the package thermal characteristics.  
MODE  
MODE  
BOOST  
BOOST  
STEPDOWN  
STEPDOWN  
1306 F03  
1306 F04  
0
V
IN  
– 0.1V  
V
IN  
V
O
V
V
+ 0.1V  
V
IN  
O
O
Figure 3. DC Transfer Characteristics of the Mode Control  
Comparator Plotted with VO as an Independent Variable.  
VIN is Considered Fixed.  
Figure 4. DC Transfer Characteristics of the Mode Control  
Comparator Plotted with VIN as an Independent Variable.  
VO is Considered Fixed.  
8
LT1306  
U
W U U  
APPLICATIONS INFORMATION  
The inductor should be able to handle the full load peak  
inductor current without saturation. The peak inductor  
current can be as high as 2A. This places a lower limit on  
the core size of the inductor. Powder iron cores have  
unacceptable core losses and are not suitable for high  
efficiency applications. Most ferrite core materials have  
manageable core losses and are recommended. Inductor  
DC winding resistance (DCR) also needs to be considered  
for efficiency. Usually there are trade-offs between core  
loss, DCR, saturation current, cost and size.  
Output Voltage Setting  
The output voltage of the LT1306 is set with a resistive  
divider, R1andR2(Figure1andFigure5), fromtheoutput  
to ground. The divider tap is tied to the FB pin. Current  
through R2 should be significantly higher than the FB pin  
input bias current (25nA). With R2 = 249k, the input bias  
current of the error amplifier is 0.5% of the current in R1.  
V
O
R1  
R2  
R1  
R2  
V
= 1.24V 1 +  
O
(
)
For EMI sensitive applications, one may want to use  
magneticallyshieldedortoroidalinductorstocontainfield  
radiation. Table 1 lists a number of inductors suitable for  
LT1306 applications.  
FB PIN  
V
O
– 1  
R1 = R2  
(
)
1.24  
1306 F05  
Table 1. Inductors Suitable for Use with the LT1306  
Figure 5. Feedback Resistive Divider  
PART  
NO.  
VALUE MAX DCR  
CORE  
TYPE  
HEIGHT  
(mm)  
VENDOR  
(µH)  
5.0  
10  
()  
BH Electronics 511-0033  
0.023  
0.09  
Toroid  
Open  
Open  
Open  
Open  
Toroid  
Toroid  
Open  
4.8  
3.0  
5.2  
5.2  
5.2  
6.0  
6.0  
5.0  
3.4  
Synchronization and Shutdown  
Coilcraft  
DO3308-103  
DO3316-472  
DO3316-103  
DO3316-153  
CTX5-2  
The S/S pin (Pin 8) can be used to synchronize the  
oscillator or disconnect the load from the input. The S/S  
pin is tied to the input (VIN > 1.8V) for normal operation.  
The oscillator in the LT1306 can be externally synchro-  
nized by driving the S/S pin with a pulse train (See the  
graph “Maximum Allowable Rise Time of Synchronizing  
Pulse” in the Typical Performance Characteristics). The  
synchronization is positive edge triggered. The recom-  
mended frequency of the external clock ranges from  
425kHz to 500kHz. If synchronization results in switching  
jitter, reducing the rising edge dv/dt of the external clock  
pulse usually cures the problem.  
4.7  
10  
0.018  
0.029  
0.046  
0.021  
0.032  
0.034  
0.072  
15  
Coiltronics  
5
CTX10-2  
10  
Murata  
Sumida  
LQN6C4R7  
CDRH73-100  
4.7  
10  
Magnetic  
Shielding  
CD43-4R7  
4.7  
0.109  
Open  
3.2  
Capacitors  
Shutdown will be activated if the S/S pin voltage stays  
below the shutdown threshold (0.45V) for more than  
50µs. This shutdown delay is reset whenever the S/S pin  
goes above the shutdown threshold.  
The output filter capacitor is usually chosen based on its  
equivalent series resistance (ESR) and the acceptable  
change in output voltage as a result of load transients. The  
output voltage ripple at the switching frequency can be  
estimated by considering the peak inductor current and  
the capacitor ESR.  
Inductor  
The value of the energy storage inductor L1 (Figure 1) is  
usually selected so that the peak-to-peak ripple current is  
less than 40% of the average inductor current. For 1- or  
2-cell alkaline or single Li-Ion to 5V applications, 10µH to  
20µH is recommended for the LT1306 running at 300kHz.  
A 5µH to 10µH inductor can be used if the LT1306 is  
externally synchronized at 500kHz.  
IO VO  
(
)(  
)
IPEAK IIN ≈  
V
IN  
ESR I  
V
O
(
)( )( )  
O
output ripple (ESR)(IPEAK) =  
V
IN  
9
LT1306  
U
W U U  
APPLICATIONS INFORMATION  
Since a boost converter produces high output current  
ripple, one also needs to consider the maximum ripple  
current rating of the output capacitor. Capacitor reliability  
will be affected if the ripple current exceeds the maximum  
allowable ratings. This maximum rating is usually  
specified as the RMS ripple current. In the LT1306 the  
RMS output capacitor ripple current is:  
switch and can cause the current limit comparator to trip  
erratically.ForboostapplicationswhereVIN isafewtenths  
ofavoltbelowVO, a1µFor2.2µFtantalumcapacitor(such  
as AVX TAJ series) can be used for C1. The ESR of the  
tantalumcapacitorlimitsthechargingcurrent. Alowvalue  
resistor (2to 5) can also be added in series with C1 for  
furtherlimitingthechargingcurrentalthoughthistendsto  
lower the converter efficiency slightly.  
V – V  
O
IN  
I
Frequency Compensation  
O
V
IN  
Current mode switching regulators have two feedback  
loops. The inner current feedback loop controls the  
inductor current in response to the outer loop. The outer  
or overall feedback loop tightly regulates the output  
voltage. The high frequency gain asymptote of the inner  
current loop rolls off at 20dB/decade and crosses the  
unitygainaxisatafrequencyωc between1/6to2/3ofthe  
switching frequency. The current loop is stable and is  
widebandcomparedtotheoverallvoltagefeedbackloop.  
The low frequency current loop gain is not high (usually  
between unity and 10) but it increases the low frequency  
impedance of the inductor as seen by the output filter  
capacitor. (In a boost regulator, the inductor is con-  
nected to the output during the switch off-time.) Current  
mode control introduces an effective series resistance  
(>>DCR) to the inductor that damps the LC tank re-  
sponse.Thecomplexhigh-QpolesoftheLCfilterarenow  
separated, resulting in a dominant pole determined by  
the filter capacitance and the load resistance and a  
second high frequency pole.  
For 2-cell to 5V applications, 220µF low ESR solid tanta-  
lum capacitors (AVX TPS series or Sprague 593D series)  
work well. To reduce output voltage ripple due to heavy  
load transients or Burst Mode operation, higher capaci-  
tance may be used. For through-hole applications, Sanyo  
OS-CON capacitors are also good choices.  
In a boost regulator, the input capacitor ripple current is  
much lower. Maximum ripple current rating and input  
voltageripplesarenotusuallyofconcern.A22µFtantalum  
capacitor soldered near the input pin is generally an  
adequate bypass.  
Bootstrap Supply  
Diode D1 and capacitor C1 generate a pulsating supply  
voltage,VCAP,whichishigherthantheoutput.Therectifier  
drive circuit runs off this supply. During rectifier on-time,  
the rectifier base current drains C1. Q2 base current and  
the maximum allowable VCAP ripple voltage determine the  
size of C1. A 1µF capacitor is sufficient to keep VCAP ripple  
below0.3V.Fora2-cellinput(VIN >1.8V)overanextended  
temperature range, a BAT54 Schottky diode may be used  
forD1.TheuseofaSchottkydiodeincreasesthebootstrap  
voltageandtheoperatingheadroomfortherectifierdriver,  
X5. Diodes like a 1N4148 or 1N914 work well for 2-cell  
inputs over the 0°C to 70°C commercial temperature  
range.  
For a boost regulator the control to output transfer func-  
tion can be shown to have a dominant pole at the load  
corner frequency  
1
ωP =  
RL  
2
C
( )  
O
The charge drawn from C1 during the rectifier on-time has  
to be replenished during the switch on-interval. As duty  
cycle decreases, the amplitude of the C1 charging current  
can increase dramatically especially when delivering high  
power to the load. This charging current flows through the  
and a moving right-half plane (RHP) zero with a minimum  
value of  
2
R 1D  
(
)
L
MAX  
ωZ =  
L
10  
LT1306  
U
W U U  
APPLICATIONS INFORMATION  
where  
The low frequency zero 1/R3CZ of the compensation  
network is placed at ωP/2.  
Output Voltage  
RL = MaximumLoad =  
2
CZ =  
MaximumDCLoadCurrent  
R3ωP  
DMAX = MaximumConverter Duty Cycle  
The capacitor CP ensures adequate gain margin beyond  
the RHP zero. The high frequency pole 1/R3CP of the  
amplifier frequency response is placed beyond ωZ.  
VO VIN(MIN) + 0.5  
=
VO + 0.1  
There is also a second pole at the current loop crossover  
frequency ωC (Figure 6). ωZ is much lower in frequency  
thanωC.Theloopiscompensatedbyadjustingthemidband  
gainwithresistorR3(Figure7)sothattheoverallloopgain  
crosses 0dB before the minimum frequency RHP zero  
(i.e., corresponding to the highest duty ratio). The value of  
R3 can be estimated with the fromula:  
1
CP =  
3ωZR3  
Higher output filter capacitance rolls off the gain response  
from a lower corner frequency so higher midband gain is  
required in the compensation network to make the overall  
loop gain cross 0dB just below ωZ.  
390VO(1DMAX)CORL  
Layout Consideration  
R3 =  
L
To minimize EMI and high frequency resonances, it is  
essential to keep the SW and the CAP trace leads as short  
as possible. The input and the output bypass capacitors  
CIN and COUT should be placed close to the IC package and  
soldered to the ground plane. A ground plane under the  
switching regulator is highly recommended. Figure 8  
shows a suggested component placement and PC board  
layout.  
Duetothelowtransconductanceoftheerroramplifier, the  
gain setting resistor R3 is AC-coupled with capacitor CZ.  
ThispreventsR3frominducinganoffsettotheinputofthe  
error amplifier. It also creates a pole at DC and a low  
frequency zero.  
The amplitude response of the error amplifier with the  
compensation network shown is:  
1+ S R3 CZ  
ˆ
(
)
VC  
R2  
R1+R2  
= gm  
ˆ
VO  
S CZ 1+ S R3 CP  
(
)
]
[
CZ >> CP  
11  
LT1306  
U
W U U  
APPLICATIONS INFORMATION  
GAIN  
(dB)  
(g )(R3)(R2)  
R1 + R2  
m
MIDBAND GAIN =  
ˆ
V
C
ˆ
V
2
O
R (1 – D  
L
)
MAX  
RHP ZERO =  
L
AMPLITUDE RESPONSE  
OF THE ERROR AMPLIFIER  
AMOUNT OF  
MIDBAND GAIN  
NEEDED  
CURRENT LOOP  
CROSSOVER  
FREQUENCY  
ω
ω
C
ω
Z
ω
P
0
1
1
(R3)(C )  
Z
R
(C )  
L
O
(
)
2
OVERALL LOOP GAIN  
AFTER COMPENSTION  
LOOP GAIN  
CROSSOVER  
1
ω
FREQUENCY ≈  
Z
3
AMPLITUDE RESPONSE OF  
CONTROL-TO-OUTPUT  
TRANSFER FUNCTION BEFORE  
COMPENSATION  
ˆ
V
O
ˆ
V
C
1306 F06  
ˆ
ˆ
VC  
VO  
Figure 6. Gain Asymptotes of the Control-to-Output  
and Error Amplifier  
Transfer Function  
ˆ
ˆ
VC  
VO  
SW  
L
V
IN  
Q2  
V
O
PWM CONTROL  
LOGIC  
Q1  
g
R1  
RECTIFIER  
I
O
FB  
m
+
1.24V  
R2  
R
C
O
L
LT1306  
GND  
V
C
R3  
C
P
C
Z
1306 F07  
Figure 7. Current Mode Boost Converter Overall-Loop Compensation  
12  
LT1306  
U
W U U  
APPLICATIONS INFORMATION  
GROUND PLANE  
C
Z
R3  
S/S  
V
IN  
C
P
V
C
R2  
LT1306  
1
8
7
6
5
D1  
R1  
2
3
4
C
C
IN2  
IN1  
C1  
+
V
OUT  
C
C
O2  
O1  
VIAS  
L1  
GND  
1306 F08  
Figure 8. Recommended Component Placement for LT1306.  
Notice That the Input and the Output Capacitors Are Grounded  
at the Same Point. A Ground Plane Under the DC/DC Converter  
Is Highly Recommended. Use Multiple Vias to Tie Pin 4 Copper  
to the Ground Plane  
13  
LT1306  
U
TYPICAL APPLICATIO S  
2-Cell NiMH to 3.3V Output  
D1  
C1  
1µF  
L1  
4.7µH  
+
2V  
TO 3V  
V
SW  
CAP  
OUT  
IN  
2V/500kHz  
3.3V  
1A  
S/S  
R1  
412k  
LT1306  
+
C
C
IN2  
22µF  
IN1  
FB  
0.1µF  
+
V
C
GND  
CERAMIC  
C
O
220µF  
R3  
95k  
R2  
C
P
249k  
C
C
: AVX TAJC226M010  
IN1  
O1  
39pF  
: AVX TPSE227M010R0100  
C
Z
C1: AVX TAJA105K020  
D1: CMDSH-3  
L1: LQN6C4R7  
5.6nF  
1306 F09  
Efficiency  
90  
85  
80  
75  
70  
65  
60  
V
= 3.3V  
O
L1 = 4.7µH  
V
= 3V  
IN  
V
= 2.5V  
IN  
V
IN  
= 1.8V  
1
10  
100  
1000 2000  
LOAD CURRENT (mA)  
1306 F09a  
14  
LT1306  
U
PACKAGE DESCRIPTION  
Dimensions in inches (millimeters) unless otherwise noted.  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
7
5
8
6
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
1
3
4
2
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.016 – 0.050  
(0.406 – 1.270)  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
TYP  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
SO8 1298  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection ofits circuits as described herein willnotinfringe on existing patentrights.  
15  
LT1306  
TYPICAL APPLICATIO S  
U
4-Cell NiMH to 5V Output  
Efficiency  
D1  
90  
85  
80  
75  
70  
65  
60  
V
= 5V  
O
V
V
= 4.8V  
= 3.6V  
IN  
L1 = 10µH  
C1  
L1  
1µF  
10µH  
+
3.6V  
TO 6.5V  
IN  
V
SW  
CAP  
OUT  
IN  
5V  
1A  
S/S  
R1  
LT1306  
V
= 6V  
IN  
+
768k  
C
IN1  
22µF  
C
IN2  
FB  
0.1µF  
C
+
V
C
GND  
O2  
CERAMIC  
C
O1  
1µF  
220µF  
CERAMIC  
R3  
75k  
R2  
249k  
C
P
C
C
: AVX TAJC226M010  
IN1  
22pF  
1
10  
100  
1000 2000  
: AVX TPSE227M010R0100  
O1  
C
Z
LOAD CURRENT (mA)  
C1: AVX TAJA105K020  
D1: MMBD914LT1  
L1: CTX10-3  
15nF  
1306 F10a  
1306 F09  
Transient Response with Step Input (4V to 6V)  
VIN  
5V/DIV  
VSW  
5V/DIV  
IL  
500mA/DIV  
VO  
0.1V/DIV  
AC  
0.5ms/DIV  
RELATED PARTS  
PART NUMBER  
LT1302  
DESCRIPTION  
COMMENTS  
5V/600mA from 2V, 2A Internal Switch, 200µA I  
High Output Current Micropower DC/DC Converter  
2-Cell Micropower DC/DC Converter  
Q
LT1304  
5V/200mA, Low-Battery Detector Active in Shutdown  
3.3V at 75mA from One Cell, MSOP Package  
5V at 1A from Single Li-Ion Cell  
LT1307/LT1307B  
LT1308A/LT1308B  
LT1316  
Single Cell, Micropower, 600kHz PWM DC/DC Converters  
High Output Current Micropower DC/DC Converter  
Burst ModeOperation DC/DC with Programmable Current Limit  
Micropower, 600kHz PWM DC/DC Converters  
Single-Cell Micropower DC/DC Converter  
1.5V Minimum, Precise Control of Peak Current Limit  
LT1317/LT1317B  
LT1610  
100µA I , Operate with V as Low as 1.5V  
Q IN  
3V at 30mA from 1V, 1.7MHz Fixed Frequency  
LT1613  
1.4MHz Switching Regulator in 5-Lead SOT-23  
Micropower Step-Up DC/DC in 5-Lead SOT-23  
High Efficiency N-channel Switching Regulator Controller  
5V at 200mA from 4.4V Input, Tiny SOT-23 package  
LT1615  
20µA I , 36V/350mA Internal Switch, V as Low as 1.2V  
Q IN  
LTC1624  
V
= 1.19V to 30V in Stepdown; V = 3.5V to 36V  
OUT IN  
SO-8 Package  
LT1949  
600kHz, 1A Switch PWM DC/DC Converter  
1.1A, 0.5/30V Internal Switch, V as Low as 1.5V  
IN  
1306f LT/TP 0400 4K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  
LINEAR TECHNOLOGY CORPORATION 1999  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY