LT1308ACS8 [Linear]

High Current, Micropower Single Cell, 600kHz DC/DC Converters; 大电流,微功率单电池, 600kHz的DC / DC转换器
LT1308ACS8
型号: LT1308ACS8
厂家: Linear    Linear
描述:

High Current, Micropower Single Cell, 600kHz DC/DC Converters
大电流,微功率单电池, 600kHz的DC / DC转换器

转换器 电池
文件: 总12页 (文件大小:188K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Fina l Ele c tric a l Sp e c ific a tio ns  
LT1308A/ LT1308B  
Hig h Curre nt, Mic ro p o we r  
Sing le Ce ll, 600kHz  
DC/ DC Co nve rte rs  
Aug ust 1999  
U
FEATURES  
DESCRIPTION  
The LT®1308A/LT1308B are micropower, fixed frequency  
step-up DC/DC converters that operate over a 1V to 10V  
input voltage range. They are improved versions of the  
LT1308andarerecommendedforuseinnewdesigns.The  
LT1308A features automatic shifting to power saving  
Burst Mode operation at light loads and consumes just  
140µA at no load. The LT1308B features continuous  
switchingatlightloads andoperates ataquiescentcurrent  
of 2.5mA. Both devices consume less than 1µA in  
shutdown.  
5V at 1A from a Single Li-Ion Cell  
5V at 800mA in SEPIC Mode from Four NiCd Cells  
Fixed Frequency Operation: 600kHz  
Boost Converter Outputs up to 34V  
Starts into Heavy Loads  
Automatic Burst ModeTM Operation at  
Light Load (LT1308A)  
Continuous Switching at Light Loads (LT1308B)  
Low VCESAT Switch: 300mV at 2A  
Pin-for-Pin Upgrade Compatible with LT1308  
Lower Quiescent Current in Shutdown: 1µA (Max)  
Improved Accuracy Low-Battery Detector  
Reference: 200mV ±2%  
Low-battery detector accuracy is significantly tighter than  
the LT1308. The 200mV reference is specified at ±2% at  
room and ±3% over temperature. The shutdown pin  
enables the device when it is tied to a 1V or higher source  
U
APPLICATIONS  
and does not need to be tied to V as on the LT1308. An  
IN  
internal V clamp results in improved transient response  
C
GSM/CDMA Phones  
Digital Cameras  
LCD Bias Supplies  
Answer-Back Pagers  
GPS Receivers  
Battery Backup Supplies  
Handheld Computers  
and the switch voltage rating has been increased to 36V,  
enabling higher output voltage applications.  
The LT1308A/LT1308B are available in the 8-lead SO and  
14-lead TSSOP packages.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Burst Mode is a trademark of Linear Technology Corporation.  
U
TYPICAL APPLICATION  
L1  
4.7µH  
Converter Efficiency  
D1  
5V  
1A  
95  
V
= 3.6V  
V = 4.2V  
IN  
IN  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
SW  
IN  
+
C1  
47µF  
R1*  
309k  
LBO  
LBI  
LT1308B  
+
Li-Ion  
CELL  
C2  
220µF  
V
IN  
= 2.5V  
SHUTDOWN  
SHDN  
V
C
FB  
GND  
V
IN  
= 1.5V  
R2  
100k  
47k  
100pF  
C1: AVX TAJC476M010  
C2: AVX TPSD227M006  
D1: IR 10BQ015  
L1: MURATA LQH6N4R7  
*R1: 169k FOR V  
= 3.3V  
= 12V  
OUT  
1308A/B F01  
887k FOR V  
OUT  
1
10  
100  
1000  
Figure 1. LT1308B Single Li-Ion Cell to 5V/1A DC/DC Converter  
LOAD CURRENT (mA)  
1308A/B F01a  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofits circuits as describedhereinwillnotinfringeonexistingpatentrights.  
1
LT1308A/ LT1308B  
W W W  
U
(Note 1)  
ABSOLUTE AXI U RATI GS  
V , SHDN, LBO Voltage ......................................... 10V Operating Temperature Range  
IN  
SW Voltage ............................................... 0.4V to 36V  
FB Voltage ....................................................... V + 1V  
V Voltage ................................................................ 2V  
C
Commercial ............................................ 0°C to 70°C  
Extended Commerial (Note 2) ........... 40°C to 85°C  
Industrial ........................................... 40°C to 85°C  
IN  
LBI Voltage ................................................. 0.1V to 1V Storage Temperature Range ................ 65°C to 150°C  
Current into FB Pin .............................................. ±1mA Lead Temperature (Soldering, 10 sec)................. 300°C  
W
U
/O  
PACKAGE RDER I FOR ATIO  
TOP VIEW  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
LBO  
LBI  
V
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
C
TOP VIEW  
FB  
SHDN  
GND  
GND  
GND  
GND  
V
1
2
3
4
8
7
6
5
LBO  
LBI  
LT1308ACF  
LT1308BCF  
C
LT1308ACS8  
LT1308AIS8  
LT1308BCS8  
LT1308BIS8  
V
IN  
FB  
SHDN  
GND  
V
IN  
V
IN  
SW  
SW  
SW  
SW  
8
S8 PACKAGE  
8-LEAD PLASTIC SO  
S8 PART MARKING  
F PACKAGE  
14-LEAD PLASTIC TSSOP  
1308B  
1308BI  
1308A  
1308AI  
TJMAX = 125°C, θJA = 80°C/W  
(Note 6)  
T
JMAX = 125°C, θJA = 80°C/W  
Consult factory for Military grade parts.  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are TA = 25°C.  
Commercial Grade 0°C to 70°C. V = 1.1V, VSHDN = V , unless otherwise noted.  
IN  
IN  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Q
Quiescent Current  
Not Switching, LT1308A  
Switching, LT1308B  
140  
2.5  
0.01  
240  
4
1
µA  
mA  
µA  
V
= 0V (LT1308A/LT1308B)  
SHDN  
V
Feedback Voltage  
1.20  
1.22  
27  
1.24  
80  
V
FB  
I
B
FB Pin Bias Current  
Reference Line Regulation  
(Note 3)  
1.1V V 2V  
nA  
0.03  
0.01  
0.4  
0.2  
%/V  
%/V  
IN  
2V V 10V  
IN  
Minimum Input Voltage  
0.92  
60  
1
V
µmhos  
V/V  
kHz  
g
m
Error Amp Transconductance  
Error Amp Voltage Gain  
Switching Frequency  
I = 5µA  
A
V
100  
600  
90  
f
V
IN  
= 1.2V  
500  
82  
2
700  
4.5  
OSC  
Maximum Duty Cycle  
Switch Current Limit  
%
Duty Cyle = 30% (Note 4)  
= 2A (25°C, 0°C), V = 1.5V  
3
A
Switch V  
I
SW  
290  
330  
350  
400  
mV  
mV  
CESAT  
IN  
I
SW  
= 2A (70°C), V = 1.5V  
IN  
Burst Mode Operation Switch Current Limit  
(LT1308A)  
V
IN  
= 2.5V, Circuit of Figure 1  
400  
mA  
2
LT1308A/ LT1308B  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are TA = 25°C.  
Commercial Grade 0°C to 70°C. V = 1.1V, VSHDN = V , unless otherwise noted.  
IN  
IN  
SYMBOL PARAMETER  
Shutdown Pin Current  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
SHDN  
= 1.1V  
= 6V  
2
20  
0.01  
5
35  
0.1  
µA  
µA  
µA  
SHDN  
V
SHDN  
= 0V  
LBI Threshold Voltage  
196  
194  
200  
200  
204  
206  
mV  
mV  
LBO Output Low  
I
= 50µA  
0.1  
0.01  
33  
0.25  
0.1  
V
µA  
SINK  
LBO Leakage Current  
V
= 250mV, V = 5V  
LBI  
LBO  
LBI Input Bias Current (Note 5)  
Low-Battery Detector Gain  
Switch Leakage Current  
V
= 150mV  
100  
nA  
LBI  
3000  
0.01  
V/V  
µA  
V
= 5V  
10  
SW  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are TA = 25°C.  
Industrial Grade 40°C to 85°C. V = 1.2V, VSHDN = V , unless otherwise noted.  
IN  
IN  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Q
Quiescent Current  
Not Switching, LT1308A  
Switching, LT1308B  
140  
2.5  
0.01  
240  
4
1
µA  
mA  
µA  
V
= 0V (LT1308A/LT1308B)  
SHDN  
V
Feedback Voltage  
1.19  
1.22  
27  
1.25  
80  
V
FB  
I
B
FB Pin Bias Current  
Reference Line Regulation  
(Note 3)  
1.1V V 2V  
nA  
0.05  
0.01  
0.4  
0.2  
%/V  
%/V  
IN  
2V V 10V  
IN  
Minimum Input Voltage  
0.92  
60  
1
V
µmhos  
V/V  
kHz  
g
m
Error Amp Transconductance  
Error Amp Voltage Gain  
Switching Frequency  
I = 5µA  
A
V
100  
600  
90  
f
500  
82  
2
750  
4.5  
OSC  
Maximum Duty Cycle  
Switch Current Limit  
%
Duty Cyle = 30% (Note 4)  
3
A
Switch V  
I
= 2A (25°C, 40°C), V = 1.5V  
290  
330  
350  
400  
mV  
mV  
CESAT  
SW  
IN  
I
SW  
= 2A (85°C), V = 1.5V  
IN  
Burst Mode Operation Switch Current Limit  
(LT1308A)  
V
IN  
= 2.5V, Circuit of Figure 1  
400  
mA  
Shutdown Pin Current  
V
= 1.1V  
= 6V  
= 0V  
2
20  
0.01  
5
35  
0.1  
µA  
µA  
µA  
SHDN  
V
SHDN  
V
SHDN  
LBI Threshold Voltage  
196  
193  
200  
200  
204  
207  
mV  
mV  
LBO Output Low  
I
= 50µA  
0.1  
0.01  
33  
0.25  
0.1  
V
µA  
SINK  
LBO Leakage Current  
V
= 250mV, V = 5V  
LBI  
LBO  
LBI Input Bias Current (Note 5)  
Low-Battery Detector Gain  
Switch Leakage Current  
V
= 150mV  
= 5V  
100  
nA  
LBI  
3000  
0.01  
V/V  
µA  
V
10  
SW  
3
LT1308A/ LT1308B  
ELECTRICAL CHARACTERISTICS  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
Note 4: Switch current limit guaranteed by design and/or correlation to  
static tests. Duty cycle affects current limit due to ramp generator (see  
Block Diagram).  
of a device may be impaired.  
Note 2: The LT1308ACS8 and LT1308BCS8 are designed, characterized  
and expected to meet the industrial temperature limits, but are not tested  
at –40°C and 85°C. I grade devices are guaranteed.  
Note 5: Bias current flows out of LBI pin.  
Note 6: Connect the four GND pins (Pins 4–7) together at the device.  
Note 3: Bias current flows into FB pin.  
Similarly, connect the three SW pins (Pins 8–10) together and the two V  
IN  
pins (Pins 11, 12) together at the device.  
U W  
TYPICAL PERFORMANCE CHARACTERISTICS  
LT1308B  
3.3V Output Efficiency  
LT1308A  
5V Output Efficiency  
LT1308A  
3.3V Output Efficiency  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
= 4.2V  
IN  
V
= 2.5V  
IN  
V
= 1.8V  
V
IN  
= 3.6V  
V
= 2.5V  
IN  
IN  
V
IN  
= 1.8V  
V
IN  
= 1.2V  
V = 1.5V  
IN  
V
= 1.2V  
IN  
V
= 2.5V  
IN  
1
10  
100  
1000  
1
10  
100  
1000  
1
10  
100  
1000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
1308A/B G01  
1308A/B G02  
1308A/B G03  
LT1308B  
12V Output Efficiency  
Switch Saturation Voltage  
vs Current  
LT1308A Transient Response  
Circuit of Figure 1  
90  
85  
80  
75  
70  
65  
60  
55  
50  
500  
400  
300  
200  
100  
0
V
IN  
= 5V  
VOUT  
100mV/DIV  
AC COUPLED  
V
= 3.3V  
IN  
85°C  
1A  
ILOAD  
25°C  
0A  
–40°C  
V
V
IN = 3.6V  
OUT = 5V  
COUT = 220µF  
100µs/DIV  
1308 G05  
1
10  
100  
1000  
0
0.5  
1.0  
1.5  
2.0  
LOAD CURRENT (mA)  
SWITCH CURRENT (A)  
1308A/B G04  
1308 G06  
4
LT1308A/ LT1308B  
U
U
U
PIN FUNCTIONS  
V (Pin 1): Compensation Pin for Error Amplifier. Con-  
C
SW (Pin 5): Switch Pin. Connect inductor/diode here.  
nect a series RC from this pin to ground. Typical values  
Minimize trace area at this pin to keep EMI down.  
are 47kand 100pF. Minimize trace area at V .  
C
V (Pin6):SupplyPin. Musthavelocalbypass capacitor  
IN  
FB (Pin 2): Feedback Pin. Reference voltage is 1.22V.  
Connect resistive divider tap here. Minimize trace area at  
FB. Set VOUT according to: VOUT = 1.22V(1 + R1/R2).  
right at the pin, connected directly to ground.  
LBI (Pin 7): Low-Battery Detector Input. 200mV refer-  
ence. VoltageonLBImuststaybetween100mVand1V.  
SHDN (Pin 3): Shutdown. Ground this pin to turn off Low-battery detector does not function with SHDN pin  
switcher. To enable, tie to 1V or more. SHDN does not  
grounded. If not used, float LBI pin.  
need to be at V to enable the device.  
IN  
LBO (Pin 8): Low-Battery Detector Output. Open collec-  
tor, can sink 50µA. A 1Mpull-up is recommended. LBO  
is high impedance when SHDN is grounded.  
GND (Pin 4): Ground. Connect directly to local ground  
plane. Ground plane should enclose all components  
associated with the LT1308. PCB copper connected to  
Pin 4 also functions as a heat sink. Maximize this area to  
keep chip heating to a minimum.  
W
BLOCK DIAGRAM  
V
IN  
V
IN  
Q4  
2V  
BE  
6
V
IN  
R5  
40k  
R6  
40k  
SHDN  
3
SHUTDOWN  
+
V
C
g
1
m
V
OUT  
LBI  
7
+
+
R1  
LBO  
8
ERROR  
AMPLIFIER  
(EXTERNAL)  
*
FB  
2
ENABLE  
200mV  
Q1  
Q2  
×10  
FB  
BIAS  
A4  
A1  
COMPARATOR  
R2  
R3  
30k  
(EXTERNAL)  
SW  
5
DRIVER  
R4  
140k  
FF  
RAMP  
GENERATOR  
Q3  
R
Q
+
+
Σ
S
A2  
+
+
A = 3  
0.03  
600kHz  
OSCILLATOR  
4
*HYSTERESIS IN LT1308A ONLY  
1308 BD  
GND  
Figure 2. LT1308A/LT1308B Block Diagram  
5
LT1308A/ LT1308B  
U
W U U  
APPLICATIONS INFORMATION  
OPERATION  
Low-battery detector A4s open-collector output (LBO)  
pulls low when the LBI pin voltage drops below 200mV.  
There is no hysteresis in A4, allowing it to be used as an  
amplifier in some applications. The entire device is dis-  
abled when the SHDN pin is brought low. To enable the  
converter, SHDN must be at 1V or greater. It need not be  
The LT1308A combines a current mode, fixed frequency  
PWM architecture with Burst Mode micropower operation  
to maintain high efficiency at light loads. Operation can be  
bestunderstoodbyreferringtotheblockdiagraminFigure  
2. Q1 and Q2 form a bandgap reference core whose loop  
tied to V as on the LT1308.  
IN  
is closed around the output of the converter. When V is  
IN  
1V, the feedback voltage of 1.22V, along with an 80mV  
drop across R5 and R6, forward biases Q1 and Q2s base  
collector junctions to 300mV. Because this is not enough  
to saturate either transistor, FB can be at a higher voltage  
The LT1308B differs from the LT1308A in that there is no  
hysteresis in comparator A1. Also, the bias point on A1 is  
set lower than on the LT1308B so that switching can occur  
at inductor current less than 100mA. Because A1 has no  
hysteresis, there is no Burst Mode operation at light loads  
and the device continues switching at constant frequency.  
This results intheabsenceoflowfrequencyoutputvoltage  
ripple at the expense of efficiency.  
than V . When there is no load, FB rises slightly above  
IN  
1.22V, causing VC (the error amplifiers output) to  
decrease. When V reaches the bias voltage on hysteretic  
C
comparator A1, A1s output goes low, turning off all  
circuitry except the input stage, error amplifier and low-  
battery detector. Total current consumption in this state is  
120µA. As output loading causes the FB voltage to  
decrease, A1s output goes high, enabling the rest of the  
IC. Switch current is limited to approximately 400mA  
initially after A1s output goes high. If the load is light, the  
output voltage (and FB voltage) will increase until A1s  
output goes low, turning off the rest of the LT1308A. Low  
frequency ripple voltage appears at the output. The ripple  
frequency is dependent on load current and output capaci-  
tance. This Burst Mode operation keeps the output regu-  
lated and reduces average current into the IC, resulting in  
high efficiency even at load currents of 1mA or less.  
The difference between the two devices is clearly illus-  
trated in Figure 3. The top two traces in Figure 3 shows an  
LT1308A/LT1308B circuit, using the components indi-  
cated in Figure 1, set to a 5V output. Input voltage is 3V.  
Load current is stepped from 50mA to 800mA for both  
circuits. Low frequency Burst Mode operation voltage  
ripple is observed on Trace A, while none is observed on  
Trace B.  
At light loads, the LT1308B will begin to skip alternate  
cycles. The load point at which this occurs can be de-  
creased by increasing the inductor value. However, output  
ripplewillcontinuetobesignificantlyless thantheLT1308A  
output ripple. Further, the LT1308B can be forced into  
micropower mode, where IQ falls from 3mA to 200µA by  
If the output load increases sufficiently, A1s output  
remains high, resulting in continuous operation. When the  
LT1308A is running continuously, peak switch current is  
sinking 40µA or more out of the V pin. This stops  
C
switching by causing A1s output to go low.  
controlled by V to regulate the output voltage. The switch  
C
is turned on at the beginning of each switch cycle. When  
the summation of a signal representing switch current and  
a ramp generator (introduced to avoid subharmonic oscil-  
TRACE A: LT1308A  
VOUT, 100mV/DIV  
AC COUPLED  
lations at duty factors greater than 50%) exceeds the V  
C
signal,comparatorA2changes state,resettingtheflip-flop  
and turning off the switch. Output voltage increases as  
switch current is increased. The output, attenuated by a  
resistor divider, appears at the FB pin, closing the overall  
loop. Frequency compensation is provided by an external  
TRACE B: LT1308B  
VOUT, 100mV/DIV  
AC COUPLED  
800mA  
ILOAD  
50mA  
V
IN = 3V  
200µs/DIV  
1308 F03  
(CIRCUIT OF FIGURE 1)  
series RC network connected between the V pin and  
ground.  
C
Figure 3. LT1308A Exhibits Burst Mode Operation Output  
Voltage Ripple at 50mA Load, LT1308B Does Not  
6
LT1308A/ LT1308B  
U
W U U  
APPLICATIONS INFORMATION  
Table 1  
VENDOR  
Murata  
LAYOUT HINTS  
PART NO.  
LQH6C4R7  
CDRH734R7  
CTX5-1  
VALUE  
4.7µH  
4.7µH  
5µH  
PHONE NO.  
770-436-1300  
847-956-0666  
561-241-7876  
TheLT1308A/LT1308Bswitchcurrentathighspeed, man-  
dating careful attention to layout for proper performance.  
You will not get advertised performance with careless  
layouts. Figure 4 shows recommended component place-  
ment for a boost (step-up) converter. Follow this closely in  
your PC layout. Note the direct path of the switching loops.  
Input capacitor C1 must be placed close (<5mm) to the IC  
Sumida  
Coiltronics  
Capacitors  
package. As little as 10mm of wire or PC trace from C to  
IN  
Equivalent Series Resistance (ESR) is the main issue  
regarding selection of capacitors, especially the output  
capacitors.  
V will cause problems such as inability to regulate or  
IN  
oscillation.  
The negative terminal of output capacitor C2 should tie  
close to Pin 4 of the LT1308A/LT1308B. Doing this  
reduces dI/dt in the ground copper which keeps high  
frequency spikes to a minimum. The DC/DC converter  
ground should tie to the PC board ground plane at one  
place only, to avoid introducing dI/dt in the ground plane.  
The output capacitors specified for use with the LT1308A/  
LT1308B circuits have low ESR and are specifically  
designed for power supply applications. Output voltage  
ripple of a boost converter is equal to ESR multiplied by  
switchcurrent.TheperformanceoftheAVXTPSD227M006  
220µF tantalum can be evaluated by referring to Figure 4.  
When the load is 800mA, the peak switch current is  
A SEPIC (Single-Ended Primary Inductance Converter)  
schematic is shown in Figure 5. This converter topology  
produces a regulated output over an input voltage range  
that spans (i.e., can be higher or lower than) the output.  
Recommended component placement for a SEPIC is  
shown in Figure 6.  
approximately 2A. Output voltage ripple is about 60mV  
P-  
P,sotheESRoftheoutputcapacitoris 60mV/2Aor0.03.  
Ripplecanbefurtherreducedbyparallelingceramicunits.  
Table 2 lists some capacitors we have found to perform  
well in the LT1308A/LT1308B application circuits. This is  
not an exclusive list.  
COMPONENT SELECTION  
Inductors  
Table 2  
VENDOR  
AVX  
SERIES  
TPS  
PART NO.  
VALUE  
PHONE NO.  
TPSD227M006 220µF, 6V 803-448-9411  
TPSD107M010 100µF, 10V 803-448-9411  
LMK432BJ226 22µF, 10V 408-573-4150  
TMK432BJ106 10µF, 25V 408-573-4150  
Suitable inductors for use with the LT1308A/LT1308B  
must fulfill two requirements. First, the inductor must be  
able to handle current of 2A steady-state, as well as  
support transient and start-up current over 3A without  
inductancedecreasingbymorethan50%to60%.Second,  
theDCRoftheinductorshouldhavelowDCR,under0.05Ω  
so that copper loss is minimized. Acceptable inductance  
values range between 2µH and 20µH, with 4.7µH best for  
most applications. Lower value inductors are physically  
smaller than higher value inductors for the same current  
capability.  
AVX  
TPS  
Taiyo Yuden  
Taiyo Yuden  
X5R  
X5R  
Diodes  
We have found Motorola MBRS130 and International  
Rectifier10BQ015toperformwell. Forapplications where  
VOUT exceeds 30V, use 40V diodes such as MBRS140 or  
10BQ040.  
Table1lists someinductors wehavefoundtoperformwell  
in LT1308A/LT1308B application circuits. This is not an  
exclusive list.  
7
LT1308A/ LT1308B  
U
W U U  
APPLICATIONS INFORMATION  
LBI  
LBO  
GROUND PLANE  
C2  
4.7µF  
CERAMIC  
L1A  
CTX10-2  
C1  
D1  
V
3V TO  
10V  
IN  
+
V
IN  
V
IN  
SW  
+
L1B  
C1  
R1  
47µF  
1
2
3
4
8
7
6
5
R1  
309k  
LT1308B  
V
OUT  
5V  
500mA  
SHUTDOWN  
SHDN  
FB  
GND  
LT1308A  
LT1308B  
L1  
R2  
V
C
SHUTDOWN  
R2  
100k  
+
C3  
220µF  
47k  
680pF  
6.3V  
MULTIPLE  
VIAs  
+
D1  
C2  
GND  
C1: AVX TAJC476M016  
C2: TAIYO YUDEN EMK325BJ475(X5R)  
C3: AVX TPSD227M006  
D1: IR 10BQ015  
L1: COILTRONICS CTX10-2  
1308A/B F05  
V
OUT  
Figure 5. SEPIC (Single-Ended Primary  
Inductance Converter) Converts 3V to 10V  
Input to a 5V/500mA Regulated Output  
1308 F04  
Figure 4. Recommended Component Placement for Boost  
Converter. Note Direct High Current Paths Using Wide PC  
Traces. Minimize Trace Area at Pin 1 (V ) and Pin 2 (FB).  
C
Use Multiple Vias to Tie Pin 4 Copper to Ground Plane. Use  
Vias at One Location Only to Avoid Introducing Switching  
Currents into the Ground Plane  
LBI  
LBO  
GROUND PLANE  
C1  
+
V
IN  
R1  
1
2
8
7
6
5
LT1308A  
LT1308B  
R2  
SHUTDOWN  
3
4
L1A  
C2  
L1B  
MULTIPLE  
VIAs  
C3  
+
GND  
D1  
V
OUT  
1308 F06  
Figure 6. Recommended Component Placement for SEPIC  
8
LT1308A/ LT1308B  
U
W U U  
APPLICATIONS INFORMATION  
SHDN PIN  
START-UP  
The LT1308A/LT1308B SHDN pin is improved over the  
The LT1308A/LT1308B can start up into heavy loads,  
unlike many CMOS DC/DC converters that derive operat-  
ing voltage from the output (a technique known as  
“bootstrapping”). Figure10 details start-upwaveforms of  
LT1308. The pin does not require tying to V to enable the  
IN  
device, but needs only a logic level signal. The voltage on  
the SHDN pin can vary from 1V to 10V independent of V .  
IN  
Further, floatingthis pinhas thesameeffectas grounding,  
which is to shut the device down, reducing current drain  
to 1µA or less.  
Figure1s circuitwitha20loadandV of1.5V. Inductor  
IN  
current rises to 3.5A as the output capacitor is charged.  
After the output reaches 5V, inductor current is about 1A.  
In Figure 11, the load is 5and input voltage is 3V. Output  
voltage reaches 5V 500µs after the device is enabled.  
Figure 12 shows start-up behavior of Figure 5’s SEPIC  
circuit, driven from a 9V input with a 10load. The output  
reaches 5V in about 1ms after the device is enabled.  
LOW-BATTERY DETECTOR  
The low-battery detector on the LT1308A/LT1308B fea-  
tures improved accuracy and drive capability compared to  
theLT1308.The200mVreferencehas anaccuracyof±2%  
andtheopen-collectoroutputcansink50µA.TheLT1308A/  
LT1308B low-battery detector is a simple PNP input gain  
stage with an open-collector NPN output. The negative  
GSM AND CDMA PHONES  
TheLT1308A/LT1308Baresuitableforconvertingasingle  
input of the gain stage is tied internally to a 200mV Li-Ion cell to 5V for powering RF power stages in GSM or  
reference. The positive input is the LBI pin. Arrangement  
as a low-battery detector is straightforward. Figure 7  
details hookup. R1 and R2 need only be low enough in  
value so that the bias current of the LBI pin doesnt cause  
large errors. For R2, 100k is adequate. The 200mV refer-  
ence can also be accessed as shown in Figure 8.  
CDMA phones. Improvements in the LT1308A/LT1308B  
error amplifiers allow external compensation values to be  
reduced, resulting in faster transient response compared  
to the LT1308. The circuit of Figure 13 (same as Figure 1,  
printed again for convenience) provides a 5V, 1A output  
from a Li-Ion cell. Figure 14 details transient response at  
the LT1308A operating at a V of 4.2V, 3.6V and 3V.  
IN  
A cross plot of the low-battery detector is shown in  
Figure 9. The LBI pin is swept with an input which varies  
from 195mV to 205mV, and LBO with a 100k pull-up  
resistor, is displayed.  
Ripple voltage in Burst Mode operation can be seen at  
10mA load. Figure 15 shows transient response of the  
LT1308B under the same conditions. Note the lack of  
Burst Mode ripple at 10mA load.  
5V  
R1  
V
IN  
LT1308A  
LT1308B  
100k  
LBI  
+
200k  
V
IN  
LBO  
TO PROCESSOR  
R2  
100k  
2N3906  
LBO  
LBI  
V
BAT  
LT1308A  
LT1308B  
V
REF  
200mV  
+
GND  
200mV  
10k  
10µF  
V
– 200mV  
LB  
R1 =  
INTERNAL  
REFERENCE  
V
BAT  
2µA  
1308 F08  
GND  
1308 F07  
Figure 8. Accessing 200mV Reference  
Figure 7. Setting Low-Battery Detector Trip Point  
9
LT1308A/ LT1308B  
U
W U U  
APPLICATIONS INFORMATION  
VOUT  
1V/DIV  
V
LBO  
1V/DIV  
IL1  
2A/DIV  
V
SHDN  
5V/DIV  
195  
200  
205  
500µs/DIV  
VLBI (mV)  
1308 F09  
1308 F11  
Figure 11. 5V Boost Converter of Figure 1.  
Start-Up from 3V Input into 5Load  
Figure 9. Low-Battery Detector  
Input/Output Characteristic  
VOUT  
2V/DIV  
V
OUT  
2V/DIV  
IL1  
1A/DIV  
ISW  
2A/DIV  
V
SHDN  
V
SHDN  
5V/DIV  
5V/DIV  
1ms/DIV  
500µs/DIV  
1308 F10  
1308 F12  
Figure 10. 5V Boost Converter of Figure 1.  
Start-Up from 1.5V Input into 20Load  
Figure 12. 5V SEPIC Start-Up from  
9V Input into 10Load  
L1  
4.7µH  
D1  
5V  
1A  
V
SW  
IN  
+
C1  
47µF  
R1  
LBO  
LBI  
309k  
LT1308B  
+
Li-Ion  
CELL  
C2  
220µF  
SHUTDOWN  
SHDN  
V
C
FB  
GND  
R2  
100k  
47k  
100pF  
C1: AVX TAJC476M010  
C2: AVX TPSD227M006  
D1: IR 10BQ015  
L1: MURATA LQH6N4R7  
1308A/B F13  
Figure 13. Li-Ion to 5V Boost Converter Delivers 1A  
10  
LT1308A/ LT1308B  
U
W U U  
APPLICATIONS INFORMATION  
VOUT  
VOUT  
VIN = 4.2V  
VIN = 4.2V  
VOUT  
VOUT  
VIN = 3.6V  
VIN = 3.6V  
VOUT  
VOUT  
VIN = 3V  
VIN = 3V  
ILOAD  
1A  
10mA  
ILOAD  
1A  
10mA  
VOUT TRACES =  
200µs/DIV  
V
OUT TRACES =  
100µs/DIV  
200mV/DIV  
1308 F14  
200mV/DIV  
1308 F15  
Figure 14. LT1308A Li-Ion to 5V Boost Converter  
Transient Response to 1A Load Step  
Figure 15. LT1308B Li-Ion to 5V Boost  
Converter Transient Response to 1A Load Step  
U
PACKAGE DESCRIPTION  
Dimensions in inches (millimeters) unless otherwise noted.  
F Package  
14-Lead Plastic TSSOP (4.4mm)  
(LTC DWG # 05-08-1650)  
4.90 – 5.10*  
(0.193 – 0.201)  
14 13 12 11 10  
9 8  
6.25 – 6.50  
(0.246 – 0.256)  
5
7
6
1
2
3
4
1.10  
(0.0433)  
MAX  
4.30 – 4.48**  
(0.169 – 0.176)  
0° – 8°  
0.65  
(0.0256)  
BSC  
0.50 – 0.70  
(0.020 – 0.028)  
0.09 – 0.18  
(0.0035 – 0.0071)  
0.05 – 0.15  
(0.002 – 0.006)  
0.18 – 0.30  
(0.0071 – 0.0118)  
F14 TSSOP 1299  
NOTE: DIMENSIONS ARE IN MILLIMETERS  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.152mm (0.006") PER SIDE  
**DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.254mm (0.010") PER SIDE  
11  
LT1308A/ LT1308B  
U
TYPICAL APPLICATION  
SEPIC Converts 3V to 10V Input to a 5V/500mA Regulated Output  
3.3V to 12V/300mA Step-Up DC/DC Converter  
C2  
4.7µF  
CERAMIC  
L1A  
L1  
4.7µH  
D1  
CTX10-2  
LT1308B  
V
3V TO  
10V  
D1  
IN  
12V  
300mA  
V
SW  
IN  
V
SW  
IN  
+
+
L1B  
C1  
47µF  
C1  
47µF  
R1  
LBO  
LBI  
R1  
309k  
887k  
LT1308B  
SHDN  
V
OUT  
5V  
500mA  
+
Li-Ion  
CELL  
C2  
100µF  
SHUTDOWN  
FB  
GND  
SHUTDOWN  
SHDN  
FB  
GND  
V
C
V
C
R2  
R2  
100k  
100k  
47k  
100pF  
L1: MURATA LQH6N4R7  
+
C3  
220µF  
6.3V  
47k  
680pF  
C1: AVX TAJC476M010  
C2: AVX TPSD107M016  
D1: IR 10BQ015  
C1: AVX TAJC476M016  
D1: IR 10BQ015  
L1: COILTRONICS CTX10-2  
1308A/B F05  
C2: TAIYO YUDEN EMK325BJ475(X5R)  
C3: AVX TPSD227M006  
1308A/B TA01  
U
PACKAGE DESCRIPTION  
Dimensions in inches (millimeters) unless otherwise noted.  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
0.010 – 0.020  
(0.254 – 0.508)  
7
5
8
6
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
0.016 – 0.050  
(0.406 – 1.270)  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
TYP  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1
2
3
4
SO8 1298  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1302  
High Output Current Micropower DC/DC Converter  
2-Cell Micropower DC/DC Converter  
5V/600mA from 2V, 2A Internal Switch, 200µA I  
Q
LT1304  
5V/200mA, Low-Battery Detector Active in Shutdown  
3.3V at 75mA from One Cell, MSOP Package  
LT1307/LT1307B Single Cell, Micropower, 600kHz PWM DC/DC Converters  
LT1316 Burst ModeOperation DC/DC with Programmable Current Limit  
LT1317/LT1317B Micropower, 600kHz PWM DC/DC Converters  
1.5V Minimum, Precise Control of Peak Current Limit  
100µA I , Operate with V as Low as 1.5V  
Q
IN  
LTC®1474  
LTC1516  
LTC1522  
LT1610  
LT1611  
LT1613  
LT1615  
LTC1682  
LT1949  
Micropower Step-Down DC/DC Converter  
2-Cell to 5V Regulated Charge Pump  
94% Efficiency, 10µA I , 9V to 5V at 250mA  
Q
12µA I , No Inudctors, 5V at 50mA from 3V Input  
Q
Micropower, 5V Charge Pump DC/DC Converter  
Single-Cell Micropower DC/DC Converter  
Inverting 1.4MHz Switching Regulator in 5-Lead SOT-23  
1.4MHz Switching Regulator in 5-Lead SOT-23  
Micropower Step-Up DC/DC in 5-Lead SOT-23  
Doubler Charge Pump with Low Noise LDO  
600kHz, 1A Switch PWM DC/DC Converter  
Regulated 5V ±4% Output, 20mA from 3V Input  
3V at 30mA from 1V, 1.7MHz Fixed Frequency  
5V at 150mA from 5V Input, Tiny SOT-23 package  
5V at 200mA from 4.4V Input, Tiny SOT-23 package  
20µA I , 36V, 350mA Switch  
Q
Adjustable or Fixed 3.3V, 5V Outputs, 60µV  
Output Noise  
RMS  
1.1A, 0.5, 30V Internal Switch, V as Low as 1.5V  
IN  
1308abis, sn1308ab LT/TP 0899 4K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  
LINEAR TECHNOLOGY CORPORATION 1999  

相关型号:

LT1308ACS8#TR

LT1308A and B - Single Cell High Current Micropower 600kHz Boost DC/DC Converter; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1308ACS8-PBF

High Current, Micropower Single Cell, 600kHz DC/DC Converters
Linear

LT1308ACS8-TR

High Current, Micropower Single Cell, 600kHz DC/DC Converters
Linear

LT1308ACS8-TRPBF

High Current, Micropower Single Cell, 600kHz DC/DC Converters
Linear

LT1308AIS8

High Current, Micropower Single Cell, 600kHz DC/DC Converters
Linear

LT1308AIS8#PBF

LT1308A and B - Single Cell High Current Micropower 600kHz Boost DC/DC Converter; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1308AIS8-PBF

High Current, Micropower Single Cell, 600kHz DC/DC Converters
Linear

LT1308AIS8-TR

High Current, Micropower Single Cell, 600kHz DC/DC Converters
Linear

LT1308AIS8-TRPBF

High Current, Micropower Single Cell, 600kHz DC/DC Converters
Linear

LT1308A_1

High Current, Micropower Single Cell, 600kHz DC/DC Converters
Linear

LT1308A_15

High Current, Micropower Single Cell, 600kHz DC/DC Converters
Linear

LT1308B

High Current, Micropower Single Cell, 600kHz DC/DC Converters
Linear