LT1308BCS8#PBF [Linear]

LT1308A and B - Single Cell High Current Micropower 600kHz Boost DC/DC Converter; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C;
LT1308BCS8#PBF
型号: LT1308BCS8#PBF
厂家: Linear    Linear
描述:

LT1308A and B - Single Cell High Current Micropower 600kHz Boost DC/DC Converter; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C

开关 光电二极管
文件: 总20页 (文件大小:381K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1308A/LT1308B  
High Current, Micropower  
Single Cell, 600kHz  
DC/DC Converters  
DESCRIPTION  
The LT®1308A/LT1308B are micropower, xed frequency  
step-up DC/DC converters that operate over a 1V to 10V  
input voltage range. They are improved versions of the  
LT1308 and are recommended for use in new designs.  
The LT1308A features automatic shifting to power sav-  
ing Burst Mode operation at light loads and consumes  
just 140μA at no load. The LT1308B features continuous  
switching at light loads and operates at a quiescent cur-  
rent of 2.5mA. Both devices consume less than 1μA in  
shutdown.  
FEATURES  
n
5V at 1A from a Single Li-Ion Cell  
n
5V at 800mA in SEPIC Mode from Four NiCd Cells  
n
Fixed Frequency Operation: 600kHz  
n
Boost Converter Outputs up to 34V  
n
Starts into Heavy Loads  
n
Automatic Burst Mode™ Operation at  
Light Load (LT1308A)  
Continuous Switching at Light Loads (LT1308B)  
n
n
Low V  
Switch: 300mV at 2A  
CESAT  
n
n
n
Pin-for-Pin Upgrade Compatible with LT1308  
Lower Quiescent Current in Shutdown: 1μA (Max)  
Improved Accuracy Low-Battery Detector  
Reference: 200mV 2%  
Low-battery detector accuracy is significantly tighter than  
the LT1308. The 200mV reference is specified at 2%  
at room and 3% over temperature. The shutdown pin  
enables the device when it is tied to a 1V or higher source  
n
Available in 8-Lead SO and 14-Lead TSSOP Packages  
and does not need to be tied to V as on the LT1308. An  
IN  
internal V clamp results in improved transient response  
C
APPLICATIONS  
and the switch voltage rating has been increased to 36V,  
n
GSM/CDMA Phones  
Digital Cameras  
LCD Bias Supplies  
Answer-Back Pagers  
GPS Receivers  
Battery Backup Supplies  
Handheld Computers  
enabling higher output voltage applications.  
n
The LT1308A/LT1308B are available in the 8-lead SO and  
the 14-lead TSSOP packages.  
L, LT, LTC, LTM, Burst Mode, Linear Technology and the Linear logo are registered trademarks  
of Linear Technology Corporation. All other trademarks are the property of their respective  
owners.  
n
n
n
n
n
TYPICAL APPLICATION  
Converter Efficiency  
L1  
95  
D1  
4.7μH  
V
IN  
= 3.6V  
V
IN  
= 4.2V  
= 2.5V  
5V  
1A  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
SW  
IN  
+
C1  
47μF  
R1*  
LBO  
LBI  
V
IN  
309k  
LT1308B  
V
IN  
= 1.5V  
+
Li-Ion  
CELL  
C2  
220μF  
SHUTDOWN  
SHDN  
FB  
GND  
V
C
R2  
100k  
47k  
100pF  
C1: AVX TAJC476M010  
C2: AVX TPSD227M006  
D1: IR 10BQ015  
L1: MURATA LQH6C4R7  
*R1: 887k FOR V = 12V  
OUT  
1
10  
100  
1000  
1308A/B F01a  
LOAD CURRENT (mA)  
Figure 1. LT1308B Single Li-Ion Cell to 5V/1A DC/DC Converter  
1308A/B F01b  
1308abfb  
1
LT1308A/LT1308B  
(Note 1)  
ABSOLUTE MAXIMUM RATINGS  
V , SHDN, LBO Voltage........................................... 10V  
Operating Temperature Range  
IN  
SW Voltage .............................................. 0.4V to 36V  
Commercial............................................. 0°C to 70°C  
Extended Commerial (Note 2) ............ 40°C to 85°C  
Industrial ........................................... 40°C to 85°C  
Storage Temperature Range.................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec) ................. 300°C  
FB Voltage......................................................... V + 1V  
IN  
V Voltage ................................................................. 2V  
C
LBI Voltage ................................................. 0.1V to 1V  
Current into FB Pin............................................... 1mA  
PIN CONFIGURATION  
TOP VIEW  
LBO  
LBI  
V
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
C
FB  
SHDN  
GND  
TOP VIEW  
V
IN  
V
1
2
3
4
8
7
6
5
LBO  
LBI  
C
V
IN  
FB  
SHDN  
GND  
SW  
SW  
SW  
GND  
V
IN  
GND  
SW  
GND  
8
S8 PACKAGE  
8-LEAD PLASTIC SO  
F PACKAGE  
14-LEAD PLASTIC TSSOP  
(NOTE 6)  
T
= 125°C, θ = 190°C/W  
JA  
JMAX  
T
JMAX  
= 125°C, θ = 80°C/W  
JA  
OBSOLETE, FOR INFORMATION PURPOSES ONLY  
Contact Linear Technology for Potential Replacement  
ORDER INFORMATION  
LEAD FREE FINISH  
LT1308ACS8#PBF  
LT1308AIS8#PBF  
LT1308BCS8#PBF  
LT1308BIS8#PBF  
LT1308ACF#PBF  
LT1308BCF#PBF  
LEAD BASED FINISH  
LT1308ACS8  
TAPE AND REEL  
LT1308ACS8#TRPBF  
LT1308AIS8#TRPBF  
LT1308BCS8#TRPBF  
LT1308BIS8#TRPBF  
LT1308ACF#TRPBF  
LT1308BCF#TRPBF  
TAPE AND REEL  
LT1308ACS8#TR  
LT1308AIS8#TR  
PART MARKING  
1308A  
PACKAGE DESCRIPTION  
8-Lead Plastic SO  
TEMPERATURE RANGE  
0°C to 70°C  
1308AI  
8-Lead Plastic SO  
–40°C to 85°C  
0°C to 70°C  
1308B  
8-Lead Plastic SO  
1308BI  
8-Lead Plastic SO  
–40°C to 85°C  
0°C to 70°C  
LT1308ACF  
LT1308BCF  
PART MARKING  
1308A  
14-Lead Plastic TSSOP  
14-Lead Plastic TSSOP  
PACKAGE DESCRIPTION  
8-Lead Plastic SO  
0°C to 70°C  
TEMPERATURE RANGE  
0°C to 70°C  
LT1308AIS8  
1308AI  
8-Lead Plastic SO  
–40°C to 85°C  
0°C to 70°C  
LT1308BCS8  
LT1308BCS8#TR  
LT1308BIS8#TR  
1308B  
8-Lead Plastic SO  
LT1308BIS8  
1308BI  
8-Lead Plastic SO  
–40°C to 85°C  
0°C to 70°C  
LT1308ACF  
LT1308ACF#TR  
LT1308ACF  
LT1308BCF  
14-Lead Plastic TSSOP  
14-Lead Plastic TSSOP  
LT1308BCF  
LT1308BCF#TR  
0°C to 70°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
This product is only offered in trays. For more information go to: http://www.linear.com/packaging/  
1308abfb  
2
LT1308A/LT1308B  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. Commercial Grade 0°C to 70°C. VIN = 1.1V, VSHDN = VIN, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Q
Quiescent Current  
Not Switching, LT1308A  
Switching, LT1308B  
SHDN  
140  
2.5  
0.01  
240  
4
1
μA  
mA  
μA  
V
= 0V (LT1308A/LT1308B)  
l
l
l
V
Feedback Voltage  
1.20  
1.22  
27  
1.24  
80  
V
FB  
I
B
FB Pin Bias Current  
Reference Line Regulation  
(Note 3)  
nA  
1.1V ≤ V ≤ 2V  
0.03  
0.01  
0.4  
0.2  
%/V  
%/V  
IN  
2V ≤ V ≤ 10V  
IN  
Minimum Input Voltage  
Error Amp Transconductance  
Error Amp Voltage Gain  
Switching Frequency  
0.92  
60  
1
V
μmhos  
V/V  
g
I = 5μA  
m
A
100  
600  
90  
V
l
l
f
V
IN  
= 1.2V  
500  
82  
2
700  
4.5  
kHz  
OSC  
Maximum Duty Cycle  
Switch Current Limit  
%
Duty Cycle = 30% (Note 4)  
3
A
Switch V  
I
SW  
I
SW  
= 2A (25°C, 0°C), V = 1.5V  
290  
330  
350  
400  
mV  
mV  
CESAT  
IN  
= 2A (70°C), V = 1.5V  
IN  
Burst Mode Operation Switch Current Limit  
(LT1308A)  
V
IN  
= 2.5V, Circuit of Figure 1  
400  
mA  
l
l
l
Shutdown Pin Current  
V
SHDN  
V
SHDN  
V
SHDN  
= 1.1V  
= 6V  
= 0V  
2
5
35  
0.1  
μA  
μA  
μA  
20  
0.01  
LBI Threshold Voltage  
196  
194  
200  
200  
204  
206  
mV  
mV  
l
l
l
LBO Output Low  
I
= 50μA  
0.1  
0.01  
33  
0.25  
0.1  
V
μA  
SINK  
LBO Leakage Current  
V
V
= 250mV, V  
= 5V  
LBO  
LBI  
LBI  
LBI Input Bias Current (Note 5)  
Low-Battery Detector Gain  
Switch Leakage Current  
= 150mV  
100  
nA  
3000  
0.01  
V/V  
μA  
l
V
= 5V  
10  
SW  
The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
Industrial Grade –40°C to 85°C. VIN = 1.2V, VSHDN = VIN, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
I
Q
Quiescent Current  
Not Switching, LT1308A  
Switching, LT1308B  
SHDN  
140  
2.5  
0.01  
240  
4
1
μA  
mA  
μA  
V
= 0V (LT1308A/LT1308B)  
l
l
V
Feedback Voltage  
1.19  
1.22  
27  
1.25  
80  
V
FB  
I
FB Pin Bias Current  
Reference Line Regulation  
(Note 3)  
nA  
B
l
l
1.1V ≤ V ≤ 2V  
0.05  
0.01  
0.4  
0.2  
%/V  
%/V  
IN  
2V ≤ V ≤ 10V  
IN  
Minimum Input Voltage  
Error Amp Transconductance  
Error Amp Voltage Gain  
0.92  
60  
1
V
μmhos  
V/V  
g
I = 5μA  
m
A
100  
V
1308abfb  
3
LT1308A/LT1308B  
The l denotes the specifications which apply over the full operating temperature  
ELECTRICAL CHARACTERISTICS  
range, otherwise specifications are at TA = 25°C. Industrial Grade –40°C to 85°C. VIN = 1.2V, VSHDN = VIN, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
500  
82  
TYP  
600  
90  
MAX  
UNITS  
kHz  
%
l
l
f
Switching Frequency  
Maximum Duty Cycle  
Switch Current Limit  
750  
OSC  
Duty Cycle = 30% (Note 4)  
2
3
4.5  
A
Switch V  
I
I
= 2A (25°C, 40°C), V = 1.5V  
290  
330  
350  
400  
mV  
mV  
CESAT  
SW  
SW  
IN  
= 2A (85°C), V = 1.5V  
IN  
Burst Mode Operation Switch Current Limit  
(LT1308A)  
V
= 2.5V, Circuit of Figure 1  
400  
mA  
IN  
l
l
Shutdown Pin Current  
V
SHDN  
V
SHDN  
V
SHDN  
= 1.1V  
= 6V  
= 0V  
2
5
35  
0.1  
μA  
μA  
μA  
20  
0.01  
LBI Threshold Voltage  
196  
193  
200  
200  
204  
207  
mV  
mV  
l
l
l
LBO Output Low  
I
= 50μA  
0.1  
0.01  
33  
0.25  
0.1  
V
μA  
SINK  
LBO Leakage Current  
V
V
= 250mV, V  
= 5V  
LBO  
LBI  
LBI Input Bias Current (Note 5)  
Low-Battery Detector Gain  
Switch Leakage Current  
= 150mV  
100  
nA  
LBI  
3000  
0.01  
V/V  
μA  
l
V
= 5V  
10  
SW  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LT1308ACS8, LT1308ACF, LT1308BCS8 and LT1308BCF are  
designed, characterized and expected to meet the industrial temperature  
limits, but are not tested at –40°C and 85°C. I grade devices are  
guaranteed over the –40°C to 85°C operating temperature range.  
Note 4: Switch current limit guaranteed by design and/or correlation to  
static tests. Duty cycle affects current limit due to ramp generator (see  
Block Diagram).  
Note 5: Bias current flows out of LBI pin.  
Note 6: Connect the four GND pins (Pins 4–7) together at the device.  
Similarly, connect the three SW pins (Pins 8–10) together and the two V  
pins (Pins 11, 12) together at the device.  
IN  
Note 3: Bias current flows into FB pin.  
TYPICAL PERFORMANCE CHARACTERISTICS  
LT1308B  
3.3V Output Efficiency  
LT1308A  
3.3V Output Efficiency  
LT1308A  
5V Output Efficiency  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
= 4.2V  
= 2.5V  
IN  
V
= 2.5V  
IN  
V = 3.6V  
IN  
V
= 1.8V  
V
= 2.5V  
IN  
IN  
V
IN  
= 1.8V  
V
IN  
= 1.2V  
V
IN  
= 1.5V  
V
= 1.2V  
V
IN  
IN  
1
10  
100  
1000  
1
10  
100  
1000  
1
10  
100  
1000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
1308A/B G02  
1308A/B G01  
1308A/B G03  
1308abfb  
4
LT1308A/LT1308B  
TYPICAL PERFORMANCE CHARACTERISTICS  
LT1308B  
Switch Current Limit vs  
Duty Cycle  
Switch Saturation Voltage  
12V Output Efficiency  
vs Current  
4.0  
3.5  
3.0  
2.5  
2.0  
500  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
IN  
= 5V  
400  
V
IN  
= 3.3V  
85°C  
300  
25°C  
200  
–40°C  
100  
0
0.5  
1.0  
1.5  
0
2.0  
0
20  
40  
60  
80  
100  
1
10  
100  
1000  
LOAD CURRENT (mA)  
SWITCH CURRENT (A)  
DUTY CYCLE (%)  
1308A/B G04  
1308 G06  
1308 • G05  
FB, LBI Bias Current vs  
Temperature  
Low Battery Detector Reference  
vs Temperature  
SHDN Pin Bias Current vs Voltage  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
203  
202  
201  
200  
199  
198  
197  
196  
195  
–40°C  
LBI  
25°C  
85°C  
FB  
75  
0
2
4
6
8
10  
–50  
–25  
0
25  
50  
100  
75  
–50  
–25  
0
25  
50  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SHDN PIN VOLTAGE (V)  
1308 G07  
1308 • G08  
1308 • G09  
Oscillator Frequency vs  
Temperature  
LT1308A Quiescent Current vs  
Temperature  
Feedback Pin Voltage vs  
Temperature  
180  
170  
160  
150  
140  
130  
120  
110  
100  
1.25  
1.24  
1.23  
1.22  
1.21  
1.20  
1.19  
1.18  
800  
750  
700  
650  
600  
550  
500  
450  
400  
75  
–50  
–25  
0
25  
50  
100  
75  
75  
–50  
–25  
0
25  
50  
100  
–50  
–2.5  
0
25  
50  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1308 • G11  
1308 • G12  
1308 • G10  
1308abfb  
5
LT1308A/LT1308B  
PIN FUNCTIONS (SO/TSSOP)  
V (Pin 1/Pin 1): Compensation Pin for Error Amplifier.  
SW (Pin 5/Pins 8, 9, 10): Switch Pins. Connect induc-  
tor/diode here. Minimize trace area at these pins to keep  
EMI down. For the TSSOP package, connect all SW pins  
together at the package.  
C
ConnectaseriesRCfromthispintoground.Typicalvalues  
are 47kΩ and 100pF. Minimize trace area at V .  
C
FB (Pin 2/Pin 2): Feedback Pin. Reference voltage is  
1.22V. Connect resistive divider tap here. Minimize trace  
V (Pin 6/Pins 11, 12): Supply Pins. Must have local  
IN  
area at FB. Set V  
according to:  
bypass capacitor right at the pins, connected directly to  
OUT  
ground. For the TSSOP package, connect both V pins  
IN  
V
= 1.22V(1 + R1/R2).  
OUT  
together at the package.  
SHDN (Pin 3/Pin 3): Shutdown. Ground this pin to turn  
off switcher. To enable, tie to 1V or more. SHDN does  
LBI (Pin 7/Pin 13): Low-Battery Detector Input. 200mV  
reference. Voltage on LBI must stay between –100mV  
and 1V. Low-battery detector does not function with  
SHDN pin grounded. Float LBI pin if not used.  
not need to be at V to enable the device.  
IN  
GND (Pin 4/Pins 4, 5, 6, 7): Ground. Connect directly  
to local ground plane. Ground plane should enclose all  
components associated with the LT1308. PCB copper  
connected to these pins also functions as a heat sink. For  
the TSSOP package, connect all pins to ground copper  
to get the best heat transfer. This keeps chip heating to  
a minimum.  
LBO (Pin 8/Pin 14): Low-Battery Detector Output. Open  
collector,cansink50μA.A220kΩpull-upisrecommend-  
ed. LBO is high impedance when SHDN is grounded.  
1308abfb  
6
LT1308A/LT1308B  
BLOCK DIAGRAMS  
V
IN  
V
IN  
Q4  
2V  
BE  
6
V
IN  
R5  
40k  
R6  
40k  
SHDN  
SHUTDOWN  
3
+
V
C
g
1
m
V
OUT  
LBI  
7
+
+
R1  
LBO  
8
ERROR  
AMPLIFIER  
(EXTERNAL)  
*
FB  
2
ENABLE  
200mV  
Q1  
Q2  
FB  
×10  
BIAS  
A4  
A1  
COMPARATOR  
R2  
R3  
30k  
(EXTERNAL)  
SW  
5
+
DRIVER  
R4  
140k  
FF  
RAMP  
GENERATOR  
Q3  
R
Q
+
Σ
S
A2  
+
+
A = 3  
0.03Ω  
600kHz  
OSCILLATOR  
4
*HYSTERESIS IN LT1308A ONLY  
1308 BD2a  
GND  
Figure 2a. LT1308A/LT1308B Block Diagram (SO-8 Package)  
V
IN  
Q4  
2V  
BE  
V
V
11  
12  
IN  
V
IN  
R5  
40k  
R6  
40k  
SHDN  
IN  
SHUTDOWN  
3
+
V
C
g
1
m
V
OUT  
LBI  
13  
+
+
R1  
LBO  
14  
ERROR  
AMPLIFIER  
(EXTERNAL)  
*
FB  
2
ENABLE  
200mV  
Q1  
Q2  
FB  
×10  
BIAS  
A4  
A1  
COMPARATOR  
R2  
SW SW SW  
8 10  
R3  
30k  
(EXTERNAL)  
9
+
DRIVER  
R4  
140k  
FF  
RAMP  
GENERATOR  
Q3  
R
Q
+
Σ
S
A2  
+
+
A = 3  
0.03ꢀ  
5
600kHz  
OSCILLATOR  
4
6
7
*HYSTERESIS IN LT1308A ONLY  
1308 BD2b  
GND GND GND GND  
Figure 2b. LT1308A/LT1308B Block Diagram (TSSOP Package)  
1308abfb  
7
LT1308A/LT1308B  
APPLICATIONS INFORMATION  
OPERATION  
Low-battery detector A4’s open-collector output (LBO)  
pulls low when the LBI pin voltage drops below 200mV.  
There is no hysteresis in A4, allowing it to be used as an  
amplifierinsomeapplications.Theentiredeviceisdisabled  
whentheSHDNpinisbroughtlow.Toenabletheconverter,  
The LT1308A combines a current mode, fixed frequency  
PWM architecture with Burst Mode micropower opera-  
tion to maintain high efficiency at light loads. Operation  
can be best understood by referring to the block diagram  
in Figure 2. Q1 and Q2 form a bandgap reference core  
whose loop is closed around the output of the converter.  
SHDN must be at 1V or greater. It need not be tied to V  
IN  
as on the LT1308.  
When V is 1V, the feedback voltage of 1.22V, along with  
The LT1308B differs from the LT1308A in that there is no  
hysteresis in comparator A1. Also, the bias point on A1 is  
set lower than on the LT1308B so that switching can occur  
at inductor current less than 100mA. Because A1 has no  
hysteresis, there is no Burst Mode operation at light loads  
and the device continues switching at constant frequency.  
Thisresultsintheabsenceoflowfrequencyoutputvoltage  
ripple at the expense of efficiency.  
IN  
an 80mV drop across R5 and R6, forward biases Q1 and  
Q2’sbasecollectorjunctionsto300mV. Becausethisisnot  
enough to saturate either transistor, FB can be at a higher  
voltage than V . When there is no load, FB rises slightly  
IN  
above 1.22V, causing V (the error amplifier’s output) to  
C
decrease. When V reaches the bias voltage on hyster-  
C
etic comparator A1, A1’s output goes low, turning off  
all circuitry except the input stage, error amplifier and  
low-battery detector. Total current consumption in this  
state is 140μA. As output loading causes the FB voltage to  
decrease,A1’soutputgoeshigh,enablingtherestoftheIC.  
Switch current is limited to approximately 400mA initially  
after A1’s output goes high. If the load is light, the output  
voltage(andFBvoltage)willincreaseuntilA1’soutputgoes  
low, turning off the rest of the LT1308A. Low frequency  
ripple voltage appears at the output. The ripple frequency  
is dependent on load current and output capacitance.  
This Burst Mode operation keeps the output regulated  
and reduces average current into the IC, resulting in high  
efficiency even at load currents of 1mA or less.  
The difference between the two devices is clearly illus-  
trated in Figure 3. The top two traces in Figure 3 shows an  
LT1308A/LT1308Bcircuit,usingthecomponentsindicated  
in Figure 1, set to a 5V output. Input voltage is 3V. Load  
current is stepped from 50mA to 800mA for both circuits.  
Low frequency Burst Mode operation voltage ripple is  
observed on Trace A, while none is observed on Trace B.  
Atlightloads,theLT1308Bwillbegintoskipalternatecycles.  
The load point at which this occurs can be decreased by  
increasing the inductor value. However, output ripple will  
continue to be significantly less than the LT1308A output  
ripple. Further, theLT1308Bcanbeforcedintomicropower  
mode, where I falls from 3mA to 200μA by sinking 40μA  
Q
If the output load increases sufficiently, A1’s output  
remains high, resulting in continuous operation. When the  
LT1308A is running continuously, peak switch current is  
or more out of the V pin. This stops switching by causing  
C
A1’s output to go low.  
controlled by V to regulate the output voltage. The switch  
C
is turned on at the beginning of each switch cycle. When  
the summation of a signal representing switch current  
and a ramp generator (introduced to avoid subharmonic  
oscillations at duty factors greater than 50%) exceeds the  
TRACE A: LT1308A  
V
, 100mV/DIV  
OUT  
AC COUPLED  
TRACE B: LT1308B  
V
, 100mV/DIV  
OUT  
AC COUPLED  
V signal, comparator A2 changes state, resetting the flip-  
C
800mA  
I
LOAD  
flop and turning off the switch. Output voltage increases  
as switch current is increased. The output, attenuated  
by a resistor divider, appears at the FB pin, closing the  
overall loop. Frequency compensation is provided by an  
50mA  
1308 F03  
200μs/DIV  
(CIRCUIT OF FIGURE 1)  
V
IN  
= 3V  
external series RC network connected between the V pin  
Figure 3. LT1308A Exhibits Burst Mode Operation Output  
Voltage Ripple at 50mA Load, LT1308B Does Not  
C
and ground.  
1308abfb  
8
LT1308A/LT1308B  
APPLICATIONS INFORMATION  
WaveformsforaLT1308B5Vto12Vboostconverterusing  
a 10μF ceramic output capacitor are pictured in Figures 4  
and 5. In Figure 4, the converter is operating in continuous  
mode, delivering a load current of approximately 500mA.  
Thetoptraceistheoutput.Thevoltageincreasesasinduc-  
tor current is dumped into the output capacitor during the  
switchofftime,andthevoltagedecreaseswhentheswitch  
is on. Ripple voltage is in this case due to capacitance,  
as the ceramic capacitor has little ESR. The middle trace  
is the switch voltage. This voltage alternates between a  
LAYOUT HINTS  
The LT1308A/LT1308B switch current at high speed, man-  
dating careful attention to layout for proper performance.  
You will not get advertised performance with careless  
layout. Figure 6 shows recommended component place-  
mentforanSO-8packageboost(step-up)converter.Follow  
this closely in your PC layout. Note the direct path of the  
switching loops. Input capacitor C1 must be placed close  
(<5mm) to the IC package. As little as 10mm of wire or PC  
trace from C to V will cause problems such as inability  
IN  
IN  
V
and V  
plus the diode drop. The lower trace is  
CESAT  
OUT  
to regulate or oscillation.  
the switch current. At the beginning of the switch cycle,  
the current is 1.2A. At the end of the switch on time, the  
currenthasincreasedto2A,atwhichpointtheswitchturns  
offandtheinductorcurrentowsintotheoutputcapacitor  
through the diode. Figure 5 depicts converter waveforms  
at a light load. Here the converter operates in discontinu-  
ous mode. The inductor current reaches zero during the  
switch off time, resulting in some ringing at the switch  
node. The ring frequency is set by switch capacitance,  
diode capacitance and inductance. This ringing has little  
energy, and its sinusoidal shape suggests it is free from  
harmonics. Minimizing the copper area at the switch node  
will prevent this from causing interference problems.  
The negative terminal of output capacitor C2 should tie  
close to the ground pin(s) of the LT1308A/LT1308B. Doing  
this reduces dI/dt in the ground copper which keeps high  
frequency spikes to a minimum. The DC/DC converter  
groundshouldtietothePCboardgroundplaneatoneplace  
only, to avoid introducing dI/dt in the ground plane.  
LBI  
LBO  
GROUND PLANE  
C1  
+
V
IN  
R1  
1
2
3
4
8
V
OUT  
7
6
5
LT1308A  
LT1308B  
L1  
100mV/DIV  
R2  
SHUTDOWN  
V
SW  
10V/DIV  
MULTIPLE  
VIAs  
+
I
D1  
SW  
500mA/DIV  
C2  
GND  
1308 F04  
V
OUT  
500ns/DIV  
Figure 4. 5V to 12V Boost Converter Waveforms in  
Continuous Mode. 10μF Ceramic Capacitor Used at Output  
1308 F04  
Figure 6. Recommended Component Placement for SO-8  
Package Boost Converter. Note Direct High Current Paths  
V
OUT  
20mV/DIV  
Using Wide PC Traces. Minimize Trace Area at Pin 1 (VC) and  
Pin 2 (FB). Use Multiple Vias to Tie Pin 4 Copper to Ground  
Plane. Use Vias at One Location Only to Avoid Introducing  
Switching Currents into the Ground Plane  
V
SW  
10V/DIV  
I
SW  
500mA/DIV  
Figure 7 shows recommended component placement for  
a boost converter using the TSSOP package. Placement  
is similar to the SO-8 package layout.  
1308abfb  
1308 F05  
500ns/DIV  
Figure 5. Converter Waveforms in Discontinuous Mode  
9
LT1308A/LT1308B  
APPLICATIONS INFORMATION  
A SEPIC (Single-Ended Primary Inductance Converter)  
schematic is shown in Figure 8. This converter topology  
produces a regulated output over an input voltage range  
that spans (i.e., can be higher or lower than) the output.  
RecommendedcomponentplacementforanSO-8package  
SEPIC is shown in Figure 9.  
LBI  
LBO  
GROUND PLANE  
C1  
+
V
IN  
R1  
1
2
3
4
5
6
7
14  
C2  
13  
12  
11  
10  
9
4.7μF  
CERAMIC  
L1  
R2  
L1A  
CTX10-2  
D1  
SHUTDOWN  
V
IN  
3V TO  
10V  
LT1308A  
LT1308B  
V
IN  
SW  
+
L1B  
C1  
47μF  
MULTIPLE  
VIAs  
R1  
309k  
LT1308B  
V
OUT  
8
5V  
SHUTDOWN  
SHDN  
FB  
GND  
500mA  
V
C
R2  
100k  
+
+
D1  
C3  
220μF  
6.3V  
47k  
680pF  
C2  
GND  
V
OUT  
C1: AVX TAJC476M016  
C2: TAIYO YUDEN EMK325BJ475(X5R)  
C3: AVX TPSD227M006  
D1: IR 10BQ015  
L1: COILTRONICS CTX10-2  
1308A/B F08  
1308 F07  
Figure 7. Recommended Component  
Placement for TSSOP Boost Converter.  
Placement is Similar to Figure 4  
Figure 8. SEPIC (Single-Ended Primary  
Inductance Converter) Converts 3V to 10V  
Input to a 5V/500mA Regulated Output  
LBI  
LBO  
GROUND PLANE  
C1  
+
V
IN  
R1  
1
2
8
7
6
5
LT1308A  
LT1308B  
R2  
SHUTDOWN  
3
4
L1A  
C2  
L1B  
MULTIPLE  
VIAs  
C3  
+
GND  
D1  
V
OUT  
1308 F09  
Figure 9. Recommended Component Placement for SEPIC  
1308abfb  
10  
LT1308A/LT1308B  
APPLICATIONS INFORMATION  
SHDN PIN  
A cross plot of the low-battery detector is shown in  
Figure 12. The LBI pin is swept with an input which var-  
ies from 195mV to 205mV, and LBO (with a 100k pull-up  
resistor) is displayed.  
The LT1308A/LT1308B SHDN pin is improved over the  
LT1308. The pin does not require tying to V to enable  
IN  
the device, but needs only a logic level signal. The voltage  
on the SHDN pin can vary from 1V to 10V independent  
of V . Further, floating this pin has the same effect as  
IN  
grounding, which is to shut the device down, reducing  
current drain to 1μA or less.  
V
LBO  
1V/DIV  
LOW-BATTERY DETECTOR  
The low-battery detector on the LT1308A/LT1308B fea-  
tures improved accuracy and drive capability compared  
to the LT1308. The 200mV reference has an accuracy of  
2% and the open-collector output can sink 50μA. The  
LT1308A/LT1308B low-battery detector is a simple PNP  
input gain stage with an open-collector NPN output. The  
negativeinputofthegainstageistiedinternallytoa200mV  
reference.ThepositiveinputistheLBIpin.Arrangementas  
alow-batterydetectorisstraightforward. Figure10details  
hookup. R1 and R2 need only be low enough in value so  
that the bias current of the LBI pin doesn’t cause large  
errors. For R2, 100k is adequate. The 200mV reference  
can also be accessed as shown in Figure 11.  
195  
200  
(mV)  
205  
1308 F12  
V
LBI  
Figure 12. Low-Battery Detector  
Input/Output Characteristic  
START-UP  
TheLT1308A/LT1308Bcanstartupintoheavyloads,unlike  
manyCMOSDC/DCconvertersthatderiveoperatingvoltage  
from the output (a technique known as “bootstrapping”).  
Figure 13 details start-up waveforms of Figure 1’s circuit  
with a 20Ω load and V of 1.5V. Inductor current rises to  
IN  
3.5A as the output capacitor is charged. After the output  
reaches 5V, inductor current is about 1A. In Figure 14, the  
load is 5Ω and input voltage is 3V. Output voltage reaches  
5V in 500μs after the device is enabled. Figure 15 shows  
start-up behavior of Figure 5’s SEPIC circuit, driven from a  
9V input with a 10Ω load. The output reaches 5V in about  
1ms after the device is enabled.  
5V  
R1  
V
IN  
LT1308A  
LT1308B  
100k  
LBI  
+
LBO  
TO PROCESSOR  
R2  
100k  
200mV  
V
– 200mV  
2μA  
LB  
R1 =  
INTERNAL  
V
BAT  
REFERENCE  
GND  
V
OUT  
1308 F10  
2V/DIV  
I
L1  
1A/DIV  
Figure 10. Setting Low-Battery Detector Trip Point  
V
SHDN  
5V/DIV  
200k  
V
IN  
2N3906  
REF  
LBO  
LBI  
1308 F13  
1ms/DIV  
V
BAT  
LT1308A  
LT1308B  
V
200mV  
+
Figure 13. 5V Boost Converter of Figure 1.  
Start-Up from 1.5V Input into 20Ω Load  
GND  
10k  
10μF  
1308 F11  
Figure 11. Accessing 200mV Reference  
1308abfb  
11  
LT1308A/LT1308B  
APPLICATIONS INFORMATION  
whenoperatingfromabatterycomposedofalkalinecells.  
Theinrushcurrentmaycausesufficiencyinternalvoltage  
drop to trigger a low-battery indicator. A programmable  
soft-start can be implemented with 4 discrete compo-  
nents. A 5V to 12V boost converter using the LT1308B  
V
OUT  
1V/DIV  
I
L1  
2A/DIV  
V
SHDN  
is detailed in Figure 16. C4 differentiates V , causing  
OUT  
5V/DIV  
a current to flow into R3 as V  
increases. When this  
OUT  
1308 F14  
current exceeds 0.7V/33k, or 21μA, current flows into  
500μs/DIV  
the base of Q1. Q1’s collector then pulls current out the  
Figure 14. 5V Boost Converter of Figure 1.  
Start-Up from 3V Input into 5Ω Load  
V pin, creating a feedback loop where the slope of V  
C
OUT  
is limited as follows:  
V
OUT  
ΔVOUT  
Δt  
0.7V  
33k C4  
2V/DIV  
=
I
SW  
2A/DIV  
With C4 = 33nF, V /t is limited to 640mV/ms. Start-up  
OUT  
waveformsforFigure16’scircuitarepicturedinFigure17.  
Withoutthesoft-startcircuitimplemented,theinrushcur-  
rentreaches3A.Thecircuitreachesnaloutputvoltagein  
approximately 250μs. Adding the soft-start components  
reduces inductor current to less than 1A, as detailed in  
Figure 18, while the time required to reach final output  
voltage increases to about 15ms. C4 can be adjusted to  
achieve any output slew rate desired.  
V
SHDN  
5V/DIV  
1308 F15  
500μs/DIV  
Figure 15. 5V SEPIC Start-Up from 9V Input into 10Ω Load  
Soft-Start  
In some cases it may be undesirable for the LT1308A/  
LT1308B to operate at current limit during start-up, e.g.,  
L1  
4.7μH  
D1  
V
OUT  
V
IN  
12V  
5V  
500mA  
V
IN  
SW  
+
SHDN  
SHUTDOWN  
C1  
47μF  
LT1308B  
330pF  
11.3k  
100k  
10k  
C2  
10μF  
FB  
GND  
V
C
C4  
33nF  
R4  
33k  
R
C
Q1  
47k  
C
C
R3  
33k  
100pF  
SOFT-START  
COMPONENTS  
C1: AVX TAJ476M010  
1308 F16  
C2: TAIYO YUDEN TMK432BJ106MM  
D1: IR 10BQ015  
L1: MURATA LQH6C4R7  
Q1: 2N3904  
Figure 16. 5V to 12V Boost Converter with Soft-Start Components Q1, C4, R3 and R4  
1308abfb  
12  
LT1308A/LT1308B  
APPLICATIONS INFORMATION  
that copper loss is minimized. Acceptable inductance  
values range between 2μH and 20μH, with 4.7μH best for  
most applications. Lower value inductors are physically  
smaller than higher value inductors for the same current  
capability.  
12V  
V
OUT  
5V/DIV  
5V  
I
L1  
1A/DIV  
V
SHDN  
10V/DIV  
Table 1 lists some inductors we have found to perform  
well in LT1308A/LT1308B application circuits. This is not  
an exclusive list.  
1308 F17  
50μs/DIV  
Figure 17. Start-Up Waveforms of Figure 16s Circuit  
without Soft-Start Components  
Table 1  
VENDOR  
Murata  
PART NO.  
LQH6C4R7  
CDRH734R7  
CTX5-1  
VALUE  
4.7μH  
4.7μH  
5μH  
PHONE NO.  
770-436-1300  
847-956-0666  
561-241-7876  
847-639-6400  
12V  
V
OUT  
Sumida  
5V  
Coiltronics  
Coilcraft  
LPO2506IB-472  
4.7μH  
I
L1  
1A/DIV  
V
Capacitors  
SHDN  
10V/DIV  
Equivalent Series Resistance (ESR) is the main issue  
regarding selection of capacitors, especially the output  
capacitors.  
1308 F18  
5ms/DIV  
Figure 18. Start-Up Waveforms of Figure 16s Circuit  
with Soft-Start Components Added  
The output capacitors specified for use with the LT1308A/  
LT1308B circuits have low ESR and are specifically  
designed for power supply applications. Output voltage  
ripple of a boost converter is equal to ESR multiplied by  
switchcurrent.TheperformanceoftheAVXTPSD227M006  
220μF tantalum can be evaluated by referring to Figure 3.  
Whentheloadis800mA,thepeakswitchcurrentisapproxi-  
COMPONENT SELECTION  
Diodes  
We have found ON Semiconductor MBRS130 and Inter-  
national Rectifier 10BQ015 to perform well. For applica-  
tions where V  
exceeds 30V, use 40V diodes such as  
mately 2A. Output voltage ripple is about 60mV , so the  
OUT  
P-P  
MBRS140 or 10BQ040.  
ESR of the output capacitor is 60mV/2A or 0.03Ω. Ripple  
can be further reduced by paralleling ceramic units.  
Heightlimitedapplicationsmaybenefitfromtheuseofthe  
MBRM120. This component is only 1mm tall and offers  
performance similar to the MBRS130.  
Table 2 lists some capacitors we have found to perform  
well in the LT1308A/LT1308B application circuits. This is  
not an exclusive list.  
Inductors  
Table 2  
SuitableinductorsforusewiththeLT1308A/LT1308Bmust  
fulfill two requirements. First, the inductor must be able  
to handle current of 2A steady-state, as well as support  
transient and start-up current over 3A without inductance  
decreasing by more than 50% to 60%. Second, the DCR  
of the inductor should have low DCR, under 0.05Ω so  
VENDOR  
AVX  
SERIES  
TPS  
PART NO.  
VALUE  
PHONE NO.  
TPSD227M006 220μF, 6V 803-448-9411  
TPSD107M010 100μF, 10V 803-448-9411  
LMK432BJ226 22μF, 10V 408-573-4150  
TMK432BJ106 10μF, 25V 408-573-4150  
AVX  
TPS  
Taiyo Yuden  
Taiyo Yuden  
X5R  
X5R  
1308abfb  
13  
LT1308A/LT1308B  
APPLICATIONS INFORMATION  
Ceramic Capacitors  
Without C , load step response is pictured in Figure 22.  
PL  
Although the output settles faster than the tantalum case,  
thereisappreciableringing,againsuggestingphasemargin  
islow.Figure23depictsloadstepresponseusingthe10μF  
Multilayer ceramic capacitors have become popular, due  
to their small size, low cost, and near-zero ESR. Ceramic  
capacitors can be used successfully in LT1308A/LT1308B  
designs provided loop stability is considered. A tantalum  
capacitor has some ESR and this causes an "ESR zero" in  
the regulator loop. This zero is beneficial to loop stability.  
Ceramics do not have appreciable ESR, so the zero is lost  
when they are used. However, the LT1308A/LT1308B have  
ceramic output capacitor and C . Response is clean and  
PL  
no ringing is evident. Ceramic capacitors have the added  
benefit of lowering ripple at the switching frequency due  
to their very low ESR. By applying C in tandem with the  
PL  
series RC at the V pin, loop response can be tailored to  
C
optimize response using ceramic output capacitors.  
external compensation pin (V ) so component values can  
C
be adjusted to achieve stability. A phase lead capacitor can  
also be used to tune up load step response to optimum  
levels, as detailed in the following paragraphs.  
V
OUT  
500mV/DIV  
I
L1  
Figure 19 details a 5V to 12V boost converter using either  
a tantalum or ceramic capacitor for C2. The input capaci-  
tor has little effect on loop stability, as long as minimum  
capacitance requirements are met. The phase lead capaci-  
1A/DIV  
500mA  
50mA  
LOAD  
CURRENT  
1308 F20  
200μs/DIV  
tor C parallels feedback resistor R1. Figure 20 shows  
PL  
load step response of a 50mA to 500mA load step using a  
47μF tantalum capacitor at the output. Without the phase  
lead capacitor, there is some ringing, suggesting the  
Figure 20. Load Step Response of LT1308B 5V to 12V  
Boost Converter with 47μF Tantalum Output Capacitor  
phase margin is low. C is then added, and response to  
PL  
V
OUT  
the same load step is pictured in Figure 21. Some phase  
margin is restored, improving the response. Next, C2 is  
replaced by a 10μF, X5R dielectric, ceramic capacitor.  
500mV/DIV  
I
L1  
L1  
4.7μH  
1A/DIV  
D1  
V
OUT  
V
IN  
12V  
5V  
500mA  
50mA  
500mA  
LOAD  
CURRENT  
1308 F21  
200μs/DIV  
V
IN  
SW  
SHDN  
Figure 21. Load Step Response with 47μF Tantalum  
Output Capacitor and Phase Lead Capacitor CPL  
C
R1  
100k  
PL  
LT1308B  
R3  
10k  
330pF  
FB  
GND  
C2  
V
C
V
+
OUT  
C1  
47μF  
500mV/DIV  
R2  
11.3k  
47k  
100pF  
I
L1  
1A/DIV  
500mA  
50mA  
LOAD  
CURRENT  
C1: AVX TAJC476M010  
C2: AVX TPSD476M016 (47μF) OR  
TAIYO YUDEN TMK432BJ106MM (10μF)  
D1: IR 10BQ015  
L1: MURATA LQH6C4R7  
1308 F19  
1308 F22  
200μs/DIV  
Figure 22. Load Step Response with 10μF X5R  
Ceramic Output Capacitor  
Figure 19. 5V to 12V Boost Converter  
1308abfb  
14  
LT1308A/LT1308B  
APPLICATIONS INFORMATION  
V
V
OUT  
OUT  
V
V
= 4.2V  
500mV/DIV  
IN  
IN  
V
V
OUT  
= 3.6V  
I
L1  
1A/DIV  
V
= 3V  
OUT  
IN  
I
LOAD  
1A  
1mA  
500mA  
50mA  
LOAD  
CURRENT  
1308 F23  
1308 F25  
200μs/DIV  
200μs/DIV  
V
TRACES =  
OUT  
200mV/DIV  
Figure 23. Load Step Response with 10μF X5R  
Ceramic Output Capacitor and CPL  
Figure 25. LT1308A Li-Ion to 5V Boost Converter  
Transient Response to 1A Load Step  
GSM AND CDMA PHONES  
The LT1308A/LT1308B are suitable for converting a single  
Li-Ion cell to 5V for powering RF power stages in GSM or  
CDMA phones. Improvements in the LT1308A/LT1308B  
error amplifiers allow external compensation values to be  
reduced, resulting in faster transient response compared  
to the LT1308. The circuit of Figure 24 (same as Figure 1,  
printed again for convenience) provides a 5V, 1A output  
from a Li-Ion cell. Figure 25 details transient response at  
V
OUT  
V
= 4.2V  
IN  
IN  
V
V
OUT  
V
= 3.6V  
V
OUT  
= 3V  
IN  
I
LOAD  
1A  
10mA  
1308 F26  
100μs/DIV  
V
TRACES =  
OUT  
theLT1308AoperatingataV of4.2V, 3.6Vand3V. Ripple  
IN  
200mV/DIV  
voltage in Burst Mode operation can be seen at 10mA  
load. Figure 26 shows transient response of the LT1308B  
under the same conditions. Note the lack of Burst Mode  
ripple at 10mA load.  
Figure 26. LT1308B Li-Ion to 5V Boost  
Converter Transient Response to 1A Load Step  
L1  
4.7μH  
D1  
5V  
1A  
V
IN  
SW  
+
C1  
47μF  
R1  
LT1308B  
309k  
+
Li-Ion  
CELL  
C2  
220μF  
SHUTDOWN  
SHDN  
FB  
GND  
V
C
R2  
100k  
47k  
100pF  
C1: AVX TAJC476M010  
C2: AVX TPSD227M006  
D1: IR 10BQ015  
L1: MURATA LQH6N4R7  
1308A/B F24  
Figure 24. Li-Ion to 5V Boost Converter Delivers 1A  
1308abfb  
15  
LT1308A/LT1308B  
TYPICAL APPLICATIONS  
Triple Output TFTLCD Bias Supply  
D2  
V
OFF  
–9V  
C4  
10mA  
1μF  
D3  
V
ON  
27V  
C5  
1μF  
0.22μF  
0.22μF  
15mA  
D4  
C6  
1μF  
0.22μF  
L1  
4.7μH  
D1  
V
IN  
5V  
AV  
DD  
6
5
10V  
V
SW  
IN  
500mA  
3
1
SHDN  
76.8k  
10.7k  
C2, C3  
10μF  
×2  
C1  
LT1308B  
4.7μF  
2
FB  
V
C
GND  
4
220k  
100pF  
C1:TAIYO-YUDEN JMK212BJ475MG  
C2, C3:TAIYO-YUDEN LMK325BJ106MN  
1308 TA02  
C4, C5, C6:TAIYO-YUDEN EMK212BJ105MG  
D1: MBRM120  
D2,D3,D4: BAT54S  
L1: TOKO 817FY-4R7M  
TFTLCD Bias Supply Transient Response  
AV  
DD  
500mV/DIV  
V
ON  
500mV/DIV  
V
OFF  
500mV/DIV  
800mA  
I
LOAD  
200mA  
100μs/DIV  
1308abfb  
16  
LT1308A/LT1308B  
TYPICAL APPLICATIONS  
40nF EL Panel Driver  
T1  
1:12  
D2  
D3  
V
BAT  
3V TO 6V  
4
6
+
3
C1  
47μF  
1
D1  
3.3V  
REGULATED  
1μF  
2M  
100k  
V
SW  
IN  
4.3M  
Q1  
LBO  
FB  
47k  
LT1308A  
17k  
C2  
324k  
150k  
1μF  
200V  
LBI  
V
SHUTDOWN  
SHDN  
GND  
C
Q2  
400V  
EL PANEL  
≤40nF  
100pF  
47pF  
22nF  
49.9k  
3.3k  
10k  
1308 TA03  
Q1: MMBT3906  
Q2: ZETEX FCX458  
T1: MIDCOM 31105  
C1: AVX TAJC476M010  
C2: VITRAMON VJ225Y105KXCAT  
D1: BAT54  
D2, D3: BAV21  
High Voltage Supply 350V at 1.2mA  
SEPIC Converts 3V to 10V Input to a 5V/500mA Regulated Output  
10nF  
250V  
D3  
V
OUT  
C2  
350V  
4.7μF  
L1A  
1.2mA  
10nF  
250V  
CERAMIC  
D1  
T1  
1:12  
D2  
CTX10-2  
LT1308B  
V
IN  
D1  
V
3V TO  
10V  
IN  
2.7V TO 6V  
+
3
4
6
C1  
47μF  
V
SW  
IN  
10nF  
250V  
+
L1B  
C1  
1
47μF  
R1  
309k  
V
OUT  
D4  
5V  
SHUTDOWN  
SHDN  
FB  
GND  
500mA  
V
C
R2  
100k  
V
SW  
IN  
+
C3  
220μF  
6.3V  
47k  
680pF  
SHUTDOWN  
SHDN  
LT1308A  
10M  
C1: AVX TAJC476M016  
C2: TAIYO YUDEN EMK325BJ475(X5R)  
C3: AVX TPSD227M006  
D1: IR 10BQ015  
L1: COILTRONICS CTX10-2  
FB  
V
C
1308A/B TA05  
GND  
47k  
10nF  
100pF  
34.8k  
D1, D2, D3: BAV21 200mA, 250V  
D4: MBR0540  
1308 TA04  
T1: MIDCOM 31105R L = 1.5μH  
P
1308abfb  
17  
LT1308A/LT1308B  
PACKAGE DESCRIPTION  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
NOTE 3  
.045 .005  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 .005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 .005  
TYP  
1
2
3
4
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
F Package  
14-Lead Plastic TSSOP (4.4mm)  
(Reference LTC DWG # 05-08-1650)  
4.90 – 5.10*  
(.193 – .201)  
14 13 12 11 10  
9 8  
1.05 0.10  
4.50 0.10  
6.60 0.10  
6.40  
(.252)  
BSC  
0.45 0.05  
0.65 BSC  
5
7
6
1
2
3
4
RECOMMENDED SOLDER PAD LAYOUT  
1.10  
(.0433)  
MAX  
4.30 – 4.50**  
(.169 – .177)  
0.25  
REF  
0° – 8°  
0.65  
(.0256)  
BSC  
0.09 – 0.20  
(.0035 – .0079)  
0.50 – 0.75  
(.020 – .030)  
0.05 – 0.15  
(.002 – .006)  
F14 TSSOP 0204  
0.19 – 0.30  
(.0075 – .0118)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS  
MILLIMETERS  
2. DIMENSIONS ARE IN  
(INCHES)  
3. DRAWING NOT TO SCALE  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED .152mm (.006") PER SIDE  
**DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED .254mm (.010") PER SIDE  
1308abfb  
18  
LT1308A/LT1308B  
REVISION HISTORY (Revision history begins at Rev B)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
B
12/10 Obsoleted F Package  
2
1308abfb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
19  
LT1308A/LT1308B  
TYPICAL APPLICATION  
Li-Ion to 12V/300mA Step-Up DC/DC Converter  
L1  
4.7μH  
D1  
2.7V TO 4.2V  
12V  
300mA  
V
IN  
SW  
+
C1  
47μF  
R1  
887k  
LT1308B  
+
Li-Ion  
CELL  
C2  
100μF  
SHUTDOWN  
SHDN  
FB  
GND  
V
C
R2  
100k  
47k  
330pF  
C1: AVX TAJC476M010  
C2: AVX TPSD107M016  
D1: IR 10BQ015  
L1: MURATA LQH6C4R7  
1308A/B TA01  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1302  
High Output Current Micropower DC/DC Converter  
2-Cell Micropower DC/DC Converter  
5V/600mA from 2V, 2A Internal Switch, 200μA I  
Q
LT1304  
5V/200mA, Low-Battery Detector Active in Shutdown  
3.3V at 75mA from One Cell, MSOP Package  
LT1307/LT1307B  
LT1316  
Single Cell, Micropower, 600kHz PWM DC/DC Converters  
Burst Mode Operation DC/DC with Programmable Current Limit  
Micropower, 600kHz PWM DC/DC Converters  
Micropower Step-Down DC/DC Converter  
1.5V Minimum, Precise Control of Peak Current Limit  
LT1317/LT1317B  
LTC®1474  
LTC1516  
LTC1522  
LT1610  
100μA I , Operate with V as Low as 1.5V  
Q IN  
94% Efficiency, 10μA I , 9V to 5V at 250mA  
Q
2-Cell to 5V Regulated Charge Pump  
12μA I , No Inudctors, 5V at 50mA from 3V Input  
Q
Micropower, 5V Charge Pump DC/DC Converter  
Single-Cell Micropower DC/DC Converter  
Regulated 5V 4% Output, 20mA from 3V Input  
3V at 30mA from 1V, 1.7MHz Fixed Frequency  
5V at 150mA from 5V Input, Tiny SOT-23 package  
5V at 200mA from 4.4V Input, Tiny SOT-23 package  
LT1611  
Inverting 1.4MHz Switching Regulator in 5-Lead SOT-23  
1.4MHz Switching Regulator in 5-Lead SOT-23  
Micropower Step-Up DC/DC in 5-Lead SOT-23  
Micropower Inverting DC/DC Converter in SOT-23  
Doubler Charge Pump with Low Noise LDO  
600kHz, 1A Switch PWM DC/DC Converter  
1.1MHz, 1A Switch DC/DC Converter  
LT1613  
LT1615  
20μA I , 36V, 350mA Switch  
Q
LT1617  
V
IN  
= 1V to 15V; V  
to –34V  
OUT  
LTC1682  
LT1949  
Adjustable or Fixed 3.3V, 5V Outputs, 60μV  
Output Noise  
RMS  
1.1A, 0.5Ω, 30V Internal Switch, V as Low as 1.5V  
IN  
LT1949-1  
1.1MHz Version of LT1949  
1308abfb  
LT 1210 REV B • PRINTED IN USA  
20 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
© LINEAR TECHNOLOGY CORPORATION 1999  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT1308BCS8#TR

LT1308A and B - Single Cell High Current Micropower 600kHz Boost DC/DC Converter; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1308BCS8-PBF

High Current, Micropower Single Cell, 600kHz DC/DC Converters
Linear

LT1308BCS8-TR

High Current, Micropower Single Cell, 600kHz DC/DC Converters
Linear

LT1308BCS8-TRPBF

High Current, Micropower Single Cell, 600kHz DC/DC Converters
Linear

LT1308BIS8

High Current, Micropower Single Cell, 600kHz DC/DC Converters
Linear

LT1308BIS8#PBF

LT1308A and B - Single Cell High Current Micropower 600kHz Boost DC/DC Converter; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1308BIS8#TRPBF

LT1308A and B - Single Cell High Current Micropower 600kHz Boost DC/DC Converter; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1308BIS8-PBF

High Current, Micropower Single Cell, 600kHz DC/DC Converters
Linear

LT1308BIS8-TR

High Current, Micropower Single Cell, 600kHz DC/DC Converters
Linear

LT1308BIS8-TRPBF

High Current, Micropower Single Cell, 600kHz DC/DC Converters
Linear

LT1308B_15

High Current, Micropower Single Cell, 600kHz DC/DC Converters
Linear

LT1308CS8

Single Cell High Current Micropower 600kHz Boost DC/DC Converter
Linear