LT1316CS8 [Linear]

Micropower DC/DC Converter with Programmable Peak Current Limit; 微功率DC / DC转换器,具有可编程峰值电流限制
LT1316CS8
型号: LT1316CS8
厂家: Linear    Linear
描述:

Micropower DC/DC Converter with Programmable Peak Current Limit
微功率DC / DC转换器,具有可编程峰值电流限制

转换器
文件: 总16页 (文件大小:347K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1316  
Micropower  
DC/DC Converter  
with Programmable  
Peak Current Limit  
U
DESCRIPTION  
FEATURES  
The LT®1316 is a micropower step-up DC/DC converter  
that operates from an input voltage as low as 1.5V. A  
programmable input current limiting function allows pre-  
cise control of peak switch current. Peak switch current  
can be set to any value between 30mA and 500mA by  
adjusting one resistor. This is particularly useful for  
DC/DCconvertersoperatingfromhighsourceimpedance  
inputs such as lithium coin cells or telephone lines.  
Precise Control of Peak Switch Current  
Quiescent Current:  
33µA in Active Mode  
3µA in Shutdown Mode  
Low-Battery Detector Active in Shutdown  
Low Switch VCESAT: 300mV at 500mA  
8-Lead MSOP and SO Packages  
Operates with VIN as Low as 1.5V  
Logic Level Shutdown Pin  
The fixed off-time, variable on-time regulation scheme  
results in quiescent current of only 33µA in active mode.  
Quiescent current decreases to 3µA in shutdown with the  
low-battery detector still active.  
U
APPLICATIONS  
Battery Backup  
The LT1316 is available in 8-lead MSOP and SO packages.  
LCD Bias  
Low Power 48V to 5V/3.3V Converters  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATION  
2-Cell to 5V Step-Up Converter  
Efficiency vs Load Current  
L1  
47µH  
D1  
5V  
50mA  
90  
80  
70  
60  
3.3V  
IN  
R1  
1M  
1%  
6
5
V
SW  
IN  
2.5V  
1.8V  
IN  
8
1
7
2
SHDN  
FB  
+
IN  
+
C2  
47µF  
C1  
47µF  
LT1316  
2 CELLS  
NC  
LBI  
LBO  
GND  
NC  
R2  
324k  
1%  
R
SET  
3
4
R5  
10k  
1%  
D1: MOTOROLA MBR0520L  
L1: SUMIDA CD43-470  
1316 TA01  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
1316 TA02  
1
LT1316  
W W U W  
U
W U  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE/ORDER INFORMATION  
VIN Voltage .............................................................. 12V  
SW Voltage ............................................... 0.4V to 30V  
FB Voltage ..................................................... VIN + 0.3V  
RSET Voltage ............................................................. 5V  
SHDN Voltage ............................................................ 6V  
LBI Voltage ................................................................VIN  
LBO Voltage............................................................. 12V  
Maximum Switch Current ................................... 750mA  
Maximum Junction Temperature ......................... 125°C  
Operating Temperature Range  
Commercial ............................................. 0°C to 70°C  
Extended Commercial (Note 1).......... 40°C to 85°C  
Industrial (Note 2) .............................. 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
ORDER PART  
TOP VIEW  
NUMBER  
LBO  
LBI  
1
2
3
4
8 FB  
7 SHDN  
R
GND  
6 V  
5 SW  
LT1316CMS8  
IN  
SET  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
MS8 PART MARKING  
LTCD  
TJMAX = 125°C, θJA = 160°C/W  
ORDER PART  
NUMBER  
TOP VIEW  
LBO  
LBI  
1
2
3
4
FB  
8
7
6
5
SHDN  
LT1316CS8  
LT1316IS8  
R
V
SET  
IN  
GND  
SW  
S8 PART MARKING  
S8 PACKAGE  
8-LEAD PLASTIC SO  
1316  
1316I  
TJMAX = 125°C, θJA = 120°C/W  
Consult factory for Military grade parts.  
ELECTRICAL CHARACTERISTICS  
Commercial grade 0°C to 70°C, Industrial grade 40°C to 85°C, VIN = 2V, VSHDN = VIN, TA = 25°C unless otherwise noted. (Notes 1, 2)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
1.65  
12  
UNITS  
Minimum Operating Voltage  
Maximum Operating Voltage  
Quiescent Current  
1.5  
V
V
V
= 2V, Not Switching  
33  
45  
50  
µA  
µA  
SHDN  
Quiescent Current in Shutdown  
V
V
= 0V, V = 2V  
3
7
5
10  
µA  
µA  
SHDN  
SHDN  
IN  
= 0V, V = 5V  
IN  
FB Pin Bias Current  
Line Regulation  
3
30  
0.15  
1.25  
20  
nA  
%/V  
V
V
= 1.8V to 12V  
0.04  
1.17  
3
IN  
LBI Input Threshold  
LBI Pin Bias Current  
LBI Input Hysteresis  
LBO Output Voltage Low  
LBO Output Leakage Current  
Falling Edge  
1.1  
1.4  
nA  
mV  
V
35  
65  
I
= 500µA  
0.2  
0.01  
0.4  
0.1  
SINK  
LBI = 1.7V, LBO = 5V  
µA  
SHDN Input Voltage High  
SHDN Input Voltage Low  
V
V
0.4  
SHDN Pin Bias Current  
V
V
= 5V  
= 0V  
2
–1  
5
–3  
µA  
µA  
SHDN  
SHDN  
2
LT1316  
ELECTRICAL CHARACTERISTICS  
Commercial grade 0°C to 70°C, Industrial grade 40°C to 85°C, VIN = 2V, VSHDN = VIN, TA = 25°C unless otherwise noted. (Notes 1, 2)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Switch OFF Time  
FB > 1V  
1.4  
1.1  
2.0  
2.6  
3.0  
µs  
µs  
FB < 1V  
3.4  
6.3  
µs  
Switch ON Time  
Current Limit Not Asserted  
1V < FB < 1.2V  
4.4  
3.4  
8.2  
9.5  
µs  
µs  
Maximum Duty Cycle  
Switch Saturation Voltage  
Switch Leakage  
Current Limit Not Asserted  
1V < FB < 1.2V  
74  
73  
76  
90  
90  
%
%
I
I
= 0.5A  
= 0.1A  
0.30  
0.06  
0.4  
0.15  
V
V
SW  
SW  
Switch Off, V = 5V  
0.1  
5
µA  
SW  
Commercial grade 0°C to 70°C, VIN = 2V, VSHDN = VIN, TA = 25°C unless otherwise noted.  
FB Comparator Trip Point  
1.21  
1.23  
1.25  
V
Peak Switch Current  
R
SET  
R
SET  
R
SET  
= 27.4k, T = 25°C  
90  
90  
70  
100  
100  
90  
110  
115  
110  
mA  
mA  
mA  
A
= 27.4k, T =0°C  
A
= 27.4k, T = 70°C  
A
R
R
= 10K  
250  
290  
25  
340  
mA  
mA  
SET  
SET  
= 121k  
Industrial grade 40°C to 85°C, VIN = 2V, VSHDN = VIN, TA = 25°C unless otherwise noted.  
FB Comparator Trip Point  
1.205  
1.23  
1.255  
V
Peak Switch Current  
R
SET  
R
SET  
= 27.4k,  
= 10k  
70  
200  
100  
290  
125  
370  
mA  
mA  
The denotes specifications which apply over the specified temperature  
over the 40°C to 85°C temperature range by design or correlation, but  
range.  
are not production tested.  
Note 1: C grade device specifications are guaranteed over the 0°C to 70°C  
temperature range. In addition, C grade device specifications are assured  
Note 2: I grade device specifications are guaranteed over the 40°C to  
85°C temperature range.  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Load Transient Response  
Burst ModeTM Operation  
VOUT  
100mV/DIV  
AC COUPLED  
VOUT  
100mV/DIV  
AC COUPLED  
VSW  
5V/DIV  
50mA  
ILOAD  
INDUCTOR  
CURRENT  
200mA/DIV  
0mA  
1316 G01  
1316 G02  
Burst Mode IS A TRADEMARK OF LINEAR TECHNOLOGY  
CORPORATION.  
3
LT1316  
TYPICAL PERFORMANCE CHARACTERISTICS  
W
U
Switch Saturation Voltage  
vs Switch Current  
LBI Pin Bias Current  
vs Temperature  
Off-Time vs Temperature  
500  
400  
300  
200  
100  
0
8
6
4
2
0
4
3
2
1
0
75°C  
100°C  
–40°C  
25°C  
–50 –25  
0
25  
50  
75  
100  
400  
0
100 200 300  
500 600 700 800  
–50 –25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SWITCH CURRENT (mA)  
1316 G04  
1316 G03  
1316 G05  
Maximum On-Time  
vs Temperature  
Quiescent Current vs Temperature  
Feedback Voltage vs Temperature  
1.240  
1.235  
1.230  
1.225  
1.220  
8
7
6
5
36  
34  
32  
30  
28  
26  
–50 –25  
0
25  
50  
75  
100  
–50 –25  
0
25  
50  
75  
100  
–50 –25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1316 G08  
1316 G06  
1316 G07  
FB Pin Bias Current  
vs Temperature  
Shutdown Pin Bias Current  
vs Shutdown Pin Voltage  
Peak Switch Current  
vs Temperature  
1000  
100  
10  
4
3
2
1
4
3
R
SET  
= 4.84k  
R
SET  
= 10k  
2
R
= 27.4k  
= 97.3k  
SET  
1
R
SET  
0
–1  
–50 –25  
0
25  
50  
75  
100  
0
1
2
3
4
5
6
–50 –25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
SHUTDOWN PIN VOLTAGE (V)  
TEMPERATURE (°C)  
1316 G11  
1316 G09  
1316 G10  
4
LT1316  
U
U
U
PIN FUNCTIONS  
SW (Pin 5): Collector of NPN Power Transistor. Keep  
LBO (Pin 1): Low-Battery Detector Output. Open collector  
cansinkupto500µA. Low-batterydetectorremainsactive  
in shutdown mode.  
traces at this pin as short as possible.  
VIN (Pin 6): Input Supply. Must be bypassed close to the  
pin.  
LBI (Pin 2): Low-Battery Detector Input. When voltage at  
this pin drops below 1.17V, LBO goes low.  
SHDN(Pin7):Shutdown. Groundthispintoplacethepart  
in shutdown mode (only the low-battery detector remains  
active). Tie to a voltage between 1.4V and 6V to enable the  
device. SHDN pin is logic level and need only meet the  
logic specification (1.4V for high, 0.4V for low).  
R
SET (Pin 3): A resistor between RSET and GND programs  
peak switch current. The resistor value should be between  
3k and 150k. Do not float or short to ground. This is a high  
impedance node. Keep traces at this pin as short as  
possible. Do not put capacitance at this pin.  
FB (Pin 8): Feedback Pin. Reference voltage is 1.23V.  
Connect resistive divider tap here. Minimize trace area at  
FB. Set VOUT according to: VOUT = 1.23V(1 + R1/R2).  
GND (Pin 4): Ground. Connect directly to ground plane.  
W
BLOCK DIAGRA  
D1  
L1  
V
V
OUT  
IN  
C1  
R1  
LB0  
1
V
IN  
SW  
6
5
2
LBI  
+
1.5V  
UNDERVOLTAGE  
LOCKOUT  
A3  
R3 = 10R4  
R4  
+
FB  
8
1.17V  
R2  
+
A1  
A2  
V
REF  
1.23V  
OSCILLATOR  
6.3µs ON  
2µs OFF  
0.5V  
+
DRIVER  
A4  
Q2  
×1  
Q1  
×200  
3
4
7
SHDN  
1316 F01  
R
GND  
SET  
R5  
Figure 1. LT1316 Block Diagram  
5
LT1316  
U
W U U  
APPLICATIONS INFORMATION  
During the portion of the switch cycle when Q1 is turned  
off, current is forced through D1 to C1 causing output  
voltage to rise. This switching action continues until  
output voltage rises enough to overcome A1’s hysteresis.  
Table 1 simplifies component selection for commonly  
used input and output voltages. The methods used in  
determiningthesevaluesarediscussedinmoredetaillater  
in this data sheet.  
Peak switch current is set by a resistor from the RSET pin  
to ground. Voltage at the RSET pin is forced to 0.5V by A4  
and is used to set up a constant current through R5. This  
currentalsoflowsthroughR3whichsetsthevoltageatthe  
positive input of comparator A2. When Q1 turns on, the  
SW pin goes low and current ramps up at the rate VIN/L.  
CurrentthroughQ2isequaltoQ1’scurrentdividedby200.  
When current through Q2 causes the voltage drop across  
R4 and R3 to be equal, A2 changes state and resets the  
oscillator, causing Q1 to turn off. Shutdown is accom-  
plished by grounding the SHDN pin.  
V
OUT can be set using the equation:  
V
OUT  
R1  
R2 + R1  
FB  
V
= 1.23  
OUT  
)
)
R2  
R2  
1316 EQF01  
Table 1. RSET Resistor and Inductor Values  
LOAD  
CURRENT RESISTOR INDUCTOR  
R
PEAK SWITCH  
CURRENT  
SET  
V
IN  
V
OUT  
2
5
10mA  
25mA  
50mA  
75mA  
100mA  
1mA  
36.8k  
18.2k  
10k  
100µH  
68µH  
80mA  
165mA  
320mA  
500mA  
490mA  
56mA  
The low-battery detector A3 has its own 1.17V reference  
andisalwayson.Theopencollectoroutputdevicecansink  
up to 500µA. Approximately 35mV of hysteresis is built  
into A3 to reduce “buzzing” as the battery voltage reaches  
the trip level.  
2
2
2
5
5
5
5
5
5
5
47µH  
6.81k  
6.81k  
75k  
33µH  
12  
28  
28  
28  
82µH  
100µH  
100µH  
100µH  
5mA  
22.1k  
10k  
140mA  
270mA  
Current Limit  
10mA  
During active mode when the part is switching, current in  
the inductor ramps up each switch cycle until reaching a  
preprogrammed current limit. This current limit value  
must be set by placing the appropriate resistor from the  
RSET pin to ground. This resistance value can be found by  
using Figure 3 to locate the desired DC current limit and  
Operation  
To understand operation of the LT1316, first examine  
Figure 1. Comparator A1 monitors FB voltage which is  
VOUT divided down by resistor divider network R1/R2.  
When voltage at the FB pin drops below the reference  
voltage (1.23V), A1’s output goes high and the oscillator  
is enabled. The oscillator has an off-time fixed at 2µs and  
an on-time limited to 6.3µs. Power transistor Q1 is cycled  
on and off by the oscillator forcing current through the  
inductor to alternately ramp up and down (see Figure 2).  
1000  
100  
10  
VOUT  
AC COUPLED  
200mV/DIV  
VSW  
5V/DIV  
INDUCTOR  
CURRENT  
100mA/DIV  
10  
100  
R
(k)  
SET  
1316 F03  
1316 F02  
Figure 3. DC Current Limit vs RSET Resistor  
Note: DC Current is the Peak Switch Current if the Power  
Transistor had Zero Turn-Off Delay  
10µs/DIV  
Figure 2. Switching Waveforms  
6
LT1316  
U
W U U  
APPLICATIONS INFORMATION  
then adding in the amount of overshoot that will occur due  
to turn-off delay of the power transistor. This turn-off  
delay is approximately 300ns.  
V
– V + V  
OUT IN D  
L =  
(t  
)
OFF  
(2)  
0.4(I  
)
PEAK  
where tOFF = 2µs and VD = 0.4V.  
Peak switch current = DC current limit from graph +  
VIN/L(turn-off delay)  
As a result of equations 1 and 2, ripple current during  
switching will be 40% of the peak current (see Figure 2).  
Using these equations at the specified IOUT, the part is  
delivering approximately 60% of its maximum output  
power. In other words, the part is operating on a 40%  
reserve. This is a safe margin to use and can be decreased  
if input voltage and output current are tightly controlled.  
Example:  
Set peak switch current to 100mA for: VIN = 2V,  
L = 33µH  
Overshoot = VIN/L(turn-off delay) = (2/33µH)(300ns)  
= 18.2mA  
For some applications, this recommended inductor size  
may be too large. Inductance can be reduced but available  
output power will decrease. Also, ripple current during  
switching will increase and may cause discontinuous  
operation. Discontinuous operation occurs when  
inductor current ramps down to zero at the end of each  
switch cycle (see Figure 4). Shown in Figure 5 is minimum  
inductance vs peak current for the part to remain in  
continuous mode.  
Refer to RSET graph and locate  
(100mA – 18.2mA) 82mA  
RSET 33k  
Calculating Duty Cycle  
For a boost converter running in continuous conduction  
mode,dutycycleisconstrainedbyVIN andVOUT according  
to the equation:  
V
– V + V  
IN D  
0mA  
INDUCTOR  
CURRENT  
100mA/DIV  
OUT  
DC =  
V
– V  
+ V  
OUT  
SAT D  
where VD = diode voltage drop 0.4V and VSAT = switch  
saturation voltage 0.2V.  
SW PIN  
5V/DIV  
If the duty cycle exceeds the LT1316’s minimum specified  
duty cycle of 0.73, the converter cannot operate in con-  
tinuous conduction mode and must be designed for  
discontinuous mode operation.  
1316 F04  
2µs/DIV  
Figure 4. Discontinuous Mode Operation  
1000  
Inductor Selection and Peak Current Limit for  
Continuous Conduction Mode  
5V TO 18V  
5V TO 12V  
Peak current and inductance determine available output  
power. Both must be chosen properly. If peak current or  
inductance is increased, output power increases. Once  
output power or current and duty cycle are known, peak  
current can be set by the following equation, assuming  
continuous mode operation:  
2V TO 5V  
100  
10  
10  
2(I  
1 – DC  
)
100  
1000  
OUT  
I
=
(1)  
PEAK CURRENT (mA)  
PEAK  
1316 F05  
Figure 5. Minimum Inductance vs Peak Current  
for Continuous Mode Operation  
Inductance can now be calculated using the peak current:  
7
LT1316  
U
W U U  
APPLICATIONS INFORMATION  
Discontinuous Mode Operation  
2(I  
1 – DC  
)
2(10mA)  
1 – 0.654  
OUT  
I
=
=
= 58mA  
2.  
PEAK  
A boost converter with a high VOUT:VIN ratio operates with  
a high duty cycle in continuous mode. For duty cycles  
exceeding the LT1316’s guaranteed minimum specifica-  
tion of 0.73, the circuit will need to be designed for  
discontinuous operation. Additionally, very low peak cur-  
rentlimitingbelow50mAmaynecessitateoperatinginthis  
modeunlesshighinductancevaluesareacceptable.When  
operating in discontinuous mode, a different equation  
governsavailableoutputpower. Foreachswitchcycle, the  
inductor current ramps down to zero, completely releas-  
ing the stored energy. Energy stored in the inductor at any  
time is equal to 1/2 LI2. Because this energy is released  
each cycle, the equation for maximum power out is:  
3. Find L  
V
– V + V  
IN D  
OUT  
0.4(I  
L =  
t
OFF  
)
)
)
PEAK  
5 – 2 + 0.4  
0.4(58mA)  
= 293µH  
=
2µs  
)
)
4. Find RSET resistor  
V
L
IN  
Overshoot =  
=
300ns  
)
)
2
P
= 1/2L(I  
)f  
OUT(MAX)  
PEAK  
2
= 1.8mA  
)
)
1
330µH  
I
(L)  
Where f =  
PEAK  
+ t  
)
)
OFF  
Find RSET from Figure 3 for 58mA – 1.8mA = 56.2mA  
V – V  
IN  
SAT  
R
SET 47k  
When designing for very low peak currents (<50mA), the  
inductor size needs to be large enough so that on-time is  
a least 1µs. On-time can be calculated by the equation:  
Design Example 2  
Requirements: VIN = 3.3V, VOUT = 28V and ILOAD = 5mA.  
1. Find duty cycle:  
I
• L  
PEAK  
On-Time =  
)
)
(V – V  
)
IN  
SAT  
V
– V + V  
IN D  
– V + V  
28 – 3.3 + 0.4  
OUT  
OUT  
DC =  
= 0.89  
=
)
)
)
V
)
28 – 0.2 + 0.4  
SAT D  
where VSAT = 0.2V.  
Because duty cycle exceeds LT1316 minimum specifi-  
cation of 73%, the circuit must be designed for discon-  
tinuous operation.  
Also, at these low current levels, current overshoot due to  
powertransistorturn-offdelay willbeasignificantportion  
of peak current. Increasing inductor size will keep this to  
a minimum.  
2. Find POUT(MAX)  
Multiply POUT by 1.4 to give a safe operating margin  
POUT(MAX) = POUT(1.4) = (5mA)(28V)(1.4) = 0.196W  
Design Example 1  
Requirements: VIN = 2V, VOUT = 5V and ILOAD = 10mA.  
1. Find duty cycle  
3. Set the on-time to the data sheet minimum of 3.4µs and  
find L  
V
V
– V + V  
IN D  
5 – 2 + 0.4  
OUT  
OUT  
2
2
DC =  
= 0.654  
=
(t )(V – V )  
SAT  
)
)
)
)
ON  
IN  
5 – 0.2 + 0.4  
– V + V  
L =  
=
SAT D  
2P  
(t + t  
)
OUT(MAX) ON OFF  
Because duty cycle is less than the LT1316 minimum  
specification (0.73), the circuit can be designed for  
continuous operation.  
2
2
(3.4µs )(3.3 – 0.2)  
2(0.196W)(3.4µs + 2µs)  
= 52µH  
8
LT1316  
U
W U U  
APPLICATIONS INFORMATION  
4. Find IPEAK for 3.4µs on-time  
For through-hole applications Sanyo OS-CON capacitors  
offer extremely low ESR in a small package size. If peak  
switch current is reduced using the RSET pin, capacitor  
requirements can be eased and smaller, higher ESR units  
can be used. Ordinary generic capacitors can generally be  
used when peak switch current is less than 100mA,  
although output voltage ripple may increase.  
t (V – V  
)
3.4µs(3.3 – 0.2)  
52µH  
ON IN  
SAT  
I
=
=
PEAK  
L
= 0.202A  
5. Find RSET resistor  
V
L
IN  
Diodes  
Overshoot =  
=
300ns  
)
)
)
Most of the application circuits on this data sheet specify  
the Motorola MBR0520L surface mount Schottky diode.  
This 0.5A, low drop diode suits the LT1316 well. In lower  
current applications, a 1N4148 can be used although  
efficiency will suffer due to the higher forward drop. This  
effect is particularly noticeable at low output voltages. For  
higher output voltage applications, such as LCD bias  
generators, the extra drop is a small percentage of the  
output voltage so the efficiency penalty is small. The low  
cost of the 1N4148 makes it attractive wherever it can be  
used. In through-hole applications the 1N5818 is the all  
around best choice.  
3.3  
52µH  
300ns = 19mA  
)
Find RSET from Figure 3 for 0.202A – 19mA = 0.183A  
RSET 13k  
These discontinuous mode equations are designed to  
minimize peak current at the expense of inductor size. If  
smaller inductors are desired peak current must be  
increased.  
Capacitor Selection  
Lowering Output Ripple Voltage  
LowESR(EquivalentSeriesResistance)capacitorsshould  
be used at the output of the LT1316 to minimize output  
ripple voltage. High quality input bypassing is also  
required. For surface mount applications AVX TPS series  
tantalum capacitors are recommended. These have been  
specifically designed for switch mode power supplies and  
have low ESR along with high surge current ratings.  
Toobtainloweroutputripplevoltage,asmallfeedforward  
capacitor of about 50pF to 100pF may be placed from  
VOUT to FB as detailed in Figure 6. Ripple voltages with  
and without the added capacitor are pictured in Figures  
7 and 8.  
L1  
47µH  
SHUTDOWN  
D1  
V
OUT  
R1  
1M  
1%  
+
C1  
100pF  
47µF  
V
SW  
IN  
SHDN  
FB  
+
R2  
324k  
1%  
2
LT1316  
47µF  
CELLS  
R
SET  
GND  
10k  
1316 F06  
Figure 6. 2-Cell to 5V Step-Up Converter  
with Reduced Output Ripple Voltage  
9
LT1316  
U
W U U  
APPLICATIONS INFORMATION  
VOUT  
100mV/DIV  
AC COUPLED  
VOUT  
100mV/DIV  
AC COUPLED  
IL  
IL  
100mA/DIV  
100mA/DIV  
1316 F07  
1316 F08  
100µs/DIV  
50µs/DIV  
Figure 7. Switching Waveforms for the Circuit  
Shown in Figure 7 Without C1. The Output Ripple  
Voltage is Approximately 140mVP-P  
Figure 8. By Adding C1, Output Ripple Voltage  
is Reduced to Less Than 80mVP-P  
Layout/Input Bypassing  
1µF ceramic capacitor acts to smooth voltage spikes at  
switchturn-onandturn-off.Ifthepowersourceisfaraway  
from the IC, inductance in the power source leads results  
in high impedance at high frequency. A local high capaci-  
tance bypass is then required to restore low impedance at  
the IC.  
The LT1316’s high speed switching mandates careful  
attentiontoPCboardlayout.Suggestedcomponentplace-  
mentisshowninFigure9. Theinputsupplymusthavelow  
impedance at AC and the input capacitor should be placed  
as indicated in the figure. The value of this capacitor  
depends on how close the input supply is to the IC. In  
situations where the input supply is more than a few  
inches away from the IC, a 47µF to 100µF solid tantalum  
bypass capacitor is required. If the input supply is close to  
the IC, a 1µF ceramic capacitor can be used instead. The  
LT1316 switches current in pulses up to 0.5A, so a low  
impedance supply must be available. If the power source  
(for example, a 2 AA cell battery) is within 1 or 2 inches of  
the IC, the battery itself provides bulk capacitance and the  
Low-Battery Detector  
TheLT1316containsanindependentlow-batterydetector  
that remains active when the device is shut down. This  
detector, actually a hysteretic comparator, has an open  
collector output that can sink up to 500µA. The compara-  
tor also operates below the switcher’s undervoltage lock-  
out threshold, operating until VIN reaches approximately  
1.4V.  
1
8
7
2
3
4
LT1316  
V
6
5
IN  
L
R
SET  
C
IN  
GND  
D
C
OUT  
+
1316 F09  
V
OUT  
Figure 9. Suggested PC Layout  
10  
LT1316  
U
TYPICAL APPLICATIONS N  
Nonisolated 48V to 5V Flyback Converter  
V
OUT  
D1  
1N5817  
5V  
T1  
10:1:1  
50mA  
2
L3  
1
3
L1  
4
+
C3  
47µF  
D2  
1N4148  
7
L2  
6
D3  
1N4148  
C2  
0.022µF  
R1  
1.3M  
V
A
Q1  
5
+
C4  
47µF  
R4  
2M  
6
V
SW  
IN  
7
1
2
C1  
SHDN  
LB0  
0.1µF  
R7  
T1  
=
DALE LPE-4841-A313 (605-665-9301)  
L: 2mH  
Q2  
MPSA92  
432k, 1%  
PRI  
8
R2  
1.30M  
1%  
LT1316  
FB  
R
: 4.3AT V = 2.5V  
DS(ON)  
GS  
R6, Q2,R7 MUST BE PLACED NEXT  
TO THE FB PIN  
Q3  
2N3904  
R6  
121k  
1%  
LBI  
I
= 190µA WHEN  
= 48V, I  
IN  
IN  
R
GND  
4
SET  
3
V
= 1mA  
LOAD  
R3  
604k  
1%  
R5  
69.8k  
1%  
1316 • TA03  
– 48V  
Efficiency vs Load Current  
90  
80  
36V  
IN  
70  
60  
50  
40  
48V  
IN  
72V  
IN  
1
10  
LOAD CURRENT (mA)  
100  
1316 TA04  
11  
LT1316  
TYPICAL APPLICATIONS N  
U
Positive-to-Negative Converter for LCD Bias  
D1  
MMBD914  
L1  
33µH  
SHUTDOWN  
V
IN  
C2  
C3  
R1  
0.01µF  
50V  
100pF  
50V  
6
5
SW  
3.3M  
V
IN  
2.2M  
8
7
CONTRAST  
ADJUST  
SHDN  
FB  
+
C1  
33µF  
10V  
R2  
210k  
LT1316  
2 CELLS  
+
C4  
1µF  
35V  
R
GND  
4
SET  
3
C6  
0.33µF  
50V  
C5  
2.2µF  
35V  
+
D2  
MMBD914  
R3  
15k  
V
–20V  
6mA  
OUT  
D3  
C4: SPRAGUE 293D105X9035B2T  
C5: SPRAGUE 293D225X0035B2T  
L1: SUMIDA CD43-330  
MBR0530L  
1316 TA06  
Battery-Powered Solenoid Driver  
L1  
47µH  
V
CAP  
BAT-85  
ZTX949  
V
IN  
47k  
1N4148  
6
5
SW  
470k  
6.8M  
5k  
V
IN  
1
7
2
LBO  
LBI  
+
C2  
+
C1  
1.3k  
470µF  
50V  
LT1316  
47µF  
2 CELLS  
SOLENOID  
16V  
8
SHDN  
FB  
R
GND  
SET  
50k  
324K  
V
4
2N3904  
3
ENERGIZE  
20k  
1316 TA08  
C1: AVX TPS 47µF, 16V  
C2: SANYO 50MV470GX  
L1: SUMIDA CD43-470  
CAP  
GOOD  
SHUTDOWN  
When Solenoid Is Energized (VENERGIZE High) Peak Input Current  
Remains Low and Controlled, Maximizing Battery Life  
VENERGIZE  
5V/DIV  
IL1  
200mA/DIV  
VCAP  
10V/DIV  
CAP GOOD  
5V/DIV  
1316 TA09  
500ms/DIV  
12  
LT1316  
U
TYPICAL APPLICATIONS N  
Super Cap Backup Supply  
R1  
10k  
READY  
1M  
D1  
0.5A  
L1  
47µH  
CONNECT TO  
MAIN SUPPLY  
5V  
6
5
SW  
6mA  
V
IN  
1
2
7
1.00M  
357k  
LBO  
LBI  
C
SUP  
+
C
+
+
OUT  
C
IN  
0.1F  
5.5V  
75Ω  
100pF  
LT1316  
SET  
1.00M  
324k  
33µF  
33µF  
10V  
8
10V  
SHDN  
FB  
R
SET  
3
GND  
4
R
33k  
RUN  
1316 TA10  
MBR0520LT3  
SUMIDA CD43-470  
D1:  
L1:  
C
, C : TAJB330M010R  
SUP  
IN OUT  
C
: PANASONIC EEC-S5R5V104  
50V to 6V Isolated Flyback Converter  
T1  
PRI  
10:1:1  
L
: 2mH  
1N5817  
+V  
IN  
+
25V TO  
50V  
3
2
V
C1  
100µF  
16V  
OUT  
+
6V/20mA  
75% EFFICIENCY  
4
1
7
1N4148  
510k  
2M  
0.022µF  
100V  
CERAMIC  
Q1  
5
6
1N4148  
6
V
SW  
IN  
7
1
2
0.1µF  
SHDN  
LB0  
50k  
1µF  
8
LT1316  
FB  
1.30M  
1%  
16V  
CERAMIC  
2N3904  
12.7k  
LBI  
R
GND  
4
SET  
3
604k  
1%  
C1 = SANYO OS-CON 100µF, 16V  
Q1 = ZETEX ZVN 4424A  
T1  
= DALE LPE-4841-A313 (605-665-9301)  
69.8k  
1%  
1316 TA11  
13  
LT1316  
TYPICAL APPLICATIONS N  
U
LCD Bias Generator with Output Disconnect in Shutdown  
V
BAT  
1.6V TO 3.5V  
150k  
OPTIONAL CONNECTION  
L1  
22µH  
MBR0540LT1  
V
OUT  
V
IN  
17.1V TO 19.8V  
4mA  
3.3V  
Q1  
100pF  
50V  
CERAMIC  
6
5
SW  
3.32M  
1%  
V
IN  
+
C1  
22µF  
6.3V  
8
FB  
LT1316  
7
SHDN  
SHUTDOWN  
0.33µF  
50V  
CERAMIC  
+
C2  
232k  
1%  
4.7M  
3.3µF  
R
GND  
4
SET  
35V  
3
11k  
1%  
1316 TA12  
V
OUT  
0V TO 3.3V  
ADJ  
C1: AVX TAJA226M006R  
C2: AVX TAJB335M035R  
L1: MURATA LQH3C220K04  
Q1: MMBT3906LT3  
(V  
ADJUST)  
Universal Serial Bus (USB) to 5V/100mA DC/DC Converter  
R
B
100Ω  
L1  
33µH  
D1  
V
V
IN  
OUT  
4V TO  
7V  
5V  
100mA  
Q1  
6
5
V
SW  
IN  
7
3
+
C2  
33µF  
10V  
+
C3  
SHDN  
R2  
1.00M  
+
100pF  
10µF  
C1  
10µF  
10V  
10V  
LT1316  
8
R
SET  
FB  
GND  
4
R1  
324k  
R3  
10k  
1316 TA13  
C1: 10µF 10V AVX TAJB106M010  
C2: 33µF 10V AVX TPSC336M010  
C3: 10µF ALUMINUM ELECTROLYTIC  
D1: MBR0520LT1  
L1: 33µH SUMIDA CD43 (OR COILCRAFT DO1608)  
Q1: MPS1907A  
14  
LT1316  
U
PACKAGE DESCRIPTION Dimensions in inches (millimeter) unless otherwise noted.  
MS8 Package  
8-Lead Plastic MSOP  
(LTC DWG # 05-08-1660)  
0.118 ± 0.004*  
(3.00 ± 0.102)  
8
7
6
5
0.118 ± 0.004**  
(3.00 ± 0.102)  
0.192 ± 0.004  
(4.88 ± 0.10)  
1
2
3
4
0.040 ± 0.006  
(1.02 ± 0.15)  
0.034 ± 0.004  
(0.86 ± 0.102)  
0.007  
(0.18)  
0° – 6° TYP  
SEATING  
PLANE  
0.012  
(0.30)  
REF  
0.021 ± 0.006  
(0.53 ± 0.015)  
0.006 ± 0.004  
(0.15 ± 0.102)  
0.0256  
(0.65)  
TYP  
*
DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH,  
PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
MSOP (MS8) 1197  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
7
5
8
6
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
1
3
4
2
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
SO8 0996  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection of circuits as described herein will not infringe on existing patent rights.  
15  
LT1316  
TYPICAL APPLICATIONS N  
U
Low Profile 2 Cell-to-28V Converter for LCD Bias  
L1  
22µH  
D1  
V
V
OUT  
IN  
28V  
5mA  
6
5
SW  
C4  
100pF  
50V  
C3  
V
0.33µF  
IN  
7
1
2
50V  
4.32M  
204k  
SHUTDOWN  
SHDN  
LBI  
+
C2  
1µF  
35V  
8
C1  
10µF  
LT1316  
FB  
2 CELLS  
LBO  
R
GND  
4
SET  
3
10k  
1316 TA05  
C1: MURATA GRM235Y5V106Z010  
C2: SPRAGUE 293D105X9035B2T  
C3: 0.33µF CERAMIC, 50V  
C4: 100pF CERAMIC, 50V  
D1: BAT-54  
L1: MURATA LQH3C220K04  
Bipolar LCD Bias Supply  
L1  
47µH  
1N914  
V
IN  
2N3904  
13V  
0.5mA  
3.3V TO  
4.2V  
C2  
1µF  
35V  
+
22k  
10k  
6
5
V
SW  
IN  
100pF  
1.00M  
7
8
SHDN LT1316  
FB  
+
C1  
22µF  
16V  
+
C3  
1µF  
35V  
88.7k  
+
C4  
R
GND  
4
SET  
3
3.3µF  
35V  
–15V  
1.5mA  
(BAT54 = TWO DIODES IN SOT23)  
47k  
BAT54  
× 2  
1316 TA14  
C1: AVX TAJB226M016R  
C2, C3: AVX TAJA105K035R  
C4: AVX TAJB335M035R  
L1: MURATA LQH3C470  
RELATED PARTS  
PART NUMBER  
LTC®1163  
LTC1174  
LT1302  
DESCRIPTION  
COMMENTS  
1.8V Minimum Input, Drives N-Channel MOSFETs  
Triple High Side Driver for 2-Cell Inputs  
Micropower Step-Down DC/DC Converter  
94% Efficiency, 130µA I , 9V to 5V at 300mA  
Q
High Output Current Micropower DC/DC Converter  
2-Cell Micropower DC/DC Converter  
5V/600mA from 2V, 2A Internal Switch, 200µA I  
Q
LT1304  
Low-Battery Detector Active in Shutdown, 5V at 200mA for 2 Cells  
LT1307  
Single Cell Micropower 600kHz PWM DC/DC Converter 3.3V at 75mA from 1 Cell  
Ultralow Power Single/Dual Comparators with Reference 2.8µA I , Adjustable Hysteresis  
LTC1440/1/2  
LTC1516  
LT1521  
Q
2-Cell to 5V Regulated Charge Pump  
12µA I , No Inductors, 5V at 50mA from 3V Input  
Q
Micropower Low Dropout Linear Regulator  
500mV Dropout, 300mA Current, 12µA I  
Q
1316f LT/TP 0298 4K • PRINTED IN USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408)432-1900  
16  
FAX: (408) 434-0507 TELEX: 499-3977 www.linear-tech.com  
LINEAR TECHNOLOGY CORPORATION 1997  

相关型号:

LT1316IS8

Micropower DC/DC Converter with Programmable Peak Current Limit
Linear

LT1317

Micropower, 600kHz PWM DC/DC Converters
Linear

LT1317B

Micropower, 600kHz PWM DC/DC Converters
Linear

LT1317BCMS8

Micropower, 600kHz PWM DC/DC Converters
Linear

LT1317BCMS8#PBF

LT1317 - Micropower, 600kHz PWM DC/DC Converters; Package: MSOP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1317BCS8

Micropower, 600kHz PWM DC/DC Converters
Linear

LT1317BCS8#PBF

LT1317 - Micropower, 600kHz PWM DC/DC Converters; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1317BCS8#TR

LT1317 - Micropower, 600kHz PWM DC/DC Converters; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1317BCS8#TRPBF

暂无描述
Linear

LT1317BIS8

Micropower, 600kHz PWM DC/DC Converters
Linear

LT1317BIS8#TRPBF

LT1317 - Micropower, 600kHz PWM DC/DC Converters; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1317B_15

Micropower, 600kHz PWM DC/DC Converters
Linear