LT1460KCS3-10 [Linear]

Family of Micropower Series References in SOT-23; 家人在SOT- 23微系列参考文献
LT1460KCS3-10
型号: LT1460KCS3-10
厂家: Linear    Linear
描述:

Family of Micropower Series References in SOT-23
家人在SOT- 23微系列参考文献

电源电路 参考电压源 光电二极管
文件: 总12页 (文件大小:201K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1460S3 (SOT-23)  
Family of Micropower  
Series References  
in SOT-23  
U
FEATURES  
DESCRIPTIO  
The LT®1460S3 is a family of SOT-23 micropower series  
references that combine high accuracy and low drift with low  
power dissipation and small package size. These series  
references use curvature compensation to obtain low tem-  
perature coefficient, and laser trimmed precision thin-film  
resistors to achieve high output accuracy. Furthermore,  
output shift due to PC board soldering stress has been  
dramatically reduced. These references will supply up to  
20mA, making them ideal for precision regulator applica-  
tions, yet they are almost totally immune to input voltage  
variations.  
3-Lead SOT-23 Package  
Low Drift: 20ppm/°C Max  
High Accuracy: 0.2% Max  
Low Supply Current  
20mA Output Current Guaranteed  
No Output Capacitor Required  
Reverse-Battery Protection  
Low PC Board Solder Stress: 0.02% Typ  
Voltage Options: 2.5V, 3V, 3.3V, 5V and 10V  
The LT1460 is Also Available in SO-8, 8-Lead MSOP,  
8-Lead PDIP and TO-92 Packages.  
Operating Temperature Range: 40°C to 85°C  
These series references provide supply current and power  
dissipationadvantagesovershuntreferencesthatmustidle  
the entire load current to operate. Additionally, the  
LT1460S3doesnotrequireanoutputcompensationcapaci-  
tor.ThisfeatureisimportantinapplicationswherePCboard  
space is a premium or fast settling is demanded. Reverse-  
batteryprotectionkeepsthesereferencesfromconducting  
reverse current.  
U
APPLICATIO S  
Handheld Instruments  
Precision Regulators  
A/D and D/A Converters  
Power Supplies  
Hard Disk Drives  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
Typical Distribution of SOT-23 LT1460HC  
VOUT After IR Reflow Solder  
32  
Basic Connection  
28  
LT1460HC LIMITS  
24  
20  
LT1460S3  
GND  
V
+ 0.9V V 20V  
V
OUT  
IN  
OUT  
OUT  
IN  
16  
12  
C1  
0.1µF  
1460S3 TA01  
8
4
0
0.2 0.1  
0.1  
0.3  
0.2  
0.3  
0
OUTPUT VOLTAGE ERROR (%)  
1460S3 TA02  
1
LT1460S3 (SOT-23)  
W W U W  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
Input Voltage ........................................................... 30V  
Reverse Voltage.................................................... 15V  
Output Short-Circuit Duration, TA = 25°C .............. 5 sec  
Specified Temperature Range..................... 0°C to 70°C  
Operating Temperature Range  
(Note 2) ............................................. 40°C to 85°C  
Storage Temperature Range (Note 3) ... 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
U
W U  
PACKAGE/ORDER INFORMATION  
ORDER PART  
NUMBER  
S3  
PART MARKING  
LT1460HCS3-2.5  
LT1460JCS3-2.5  
LT1460KCS3-2.5  
LT1460HCS3-3  
LT1460JCS3-3  
LT1460KCS3-3  
LT1460HCS3-3.3  
LT1460JCS3-3.3  
LT1460KCS3-3.3  
LT1460HCS3-5  
LT1460JCS3-5  
LT1460KCS3-5  
LT1460HCS3-10  
LT1460JCS3-10  
LT1460KCS3-10  
LTAC  
LTAD  
LTAE  
LTAN  
LTAP  
LTAQ  
LTAR  
LTAS  
LTAT  
LTAK  
LTAL  
LTAM  
LTAU  
LTAV  
LTAW  
TOP VIEW  
IN 1  
3 GND  
OUT 2  
S3 PACKAGE  
3-LEAD PLASTIC SOT-23  
TJMAX = 125°C, θJA = 325°C/ W  
Consult factory for Industrial and Military grade parts.  
U
AVAILABLE OPTIO S  
OUTPUT VOLTAGE  
SPECIFIED TEMPERATURE  
ACCURACY  
TEMPERATURE  
COEFFICIENT (ppm/°C)  
PART ORDER  
NUMBER  
(V)  
RANGE  
(%)  
2.5  
2.5  
2.5  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0.2  
0.4  
0.5  
20  
20  
50  
LT1460HCS3-2.5  
LT1460JCS3-2.5  
LT1460KCS3-2.5  
3
3
3
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0.2  
0.4  
0.5  
20  
20  
50  
LT1460HCS3-3  
LT1460JCS3-3  
LT1460KCS3-3  
3.3  
3.3  
3.3  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0.2  
0.4  
0.5  
20  
20  
50  
LT1460HCS3-3.3  
LT1460JCS3-3.3  
LT1460KCS3-3.3  
5
5
5
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0.2  
0.4  
0.5  
20  
20  
50  
LT1460HCS3-5  
LT1460JCS3-5  
LT1460KCS3-5  
10  
10  
10  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0.2  
0.4  
0.5  
20  
20  
50  
LT1460HCS3-10  
LT1460JCS3-10  
LT1460KCS3-10  
2
LT1460S3 (SOT-23)  
The denotes specifications which apply over the full specified  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 25°C. VIN = VOUT + 2.5V, IOUT = 0 unless otherwise specified.  
PARAMETER  
CONDITIONS  
LT1460HCS3  
LT1460JCS3  
LT1460KCS3  
MIN  
0.2  
0.4  
0.5  
TYP  
MAX  
0.2  
UNITS  
%
Output Voltage Tolerance (Note 4)  
0.4  
%
0.5  
%
Output Voltage Temperature Coefficient (Note 5)  
Line Regulation  
LT1460HCS3  
LT1460JCS3  
LT1460KCS3  
10  
10  
25  
20  
20  
50  
ppm/°C  
ppm/°C  
ppm/°C  
V
+ 0.9V V V + 2.5V  
OUT  
150  
800  
1000  
ppm/V  
ppm/V  
OUT  
OUT  
OUT  
OUT  
OUT  
IN  
V
+ 2.5V V 20V  
50  
100  
130  
ppm/V  
ppm/V  
IN  
Load Regulation Sourcing (Note 6)  
I
I
I
= 100µA  
= 10mA  
= 20mA  
1000  
50  
3000  
4000  
ppm/mA  
ppm/mA  
200  
300  
ppm/mA  
ppm/mA  
20  
70  
100  
ppm/mA  
ppm/mA  
Thermal Regulation (Note 7)  
Dropout Voltage (Note 8)  
P = 200mW  
2.5  
10  
ppm/mW  
V
V
V
– V , V  
0.2%, I  
= 0  
0.9  
IN  
IN  
OUT  
OUT  
OUT  
OUT  
– V , V  
0.2%, I  
= 10mA  
1.3  
1.4  
V
V
OUT  
OUT  
Output Current  
Short V  
to GND  
40  
mA  
OUT  
Reverse Leakage  
V
= 15V  
0.5  
10  
µA  
IN  
Output Voltage Noise (Note 9)  
0.1Hz f 10Hz  
10Hz f 1kHz  
4
4
ppm (P-P)  
ppm (RMS)  
Long-Term Stability of Output Voltage (Note 10)  
Hysteresis (Note 11)  
100  
ppm/kHr  
T = 0°C to 70°C  
T = –40°C to 85°C  
50  
250  
ppm  
ppm  
Supply Current  
LT1460S3-2.5  
115  
145  
145  
160  
215  
145  
175  
µA  
µA  
LT1460S3-3  
LT1460S3-3.3  
LT1460S3-5  
LT1460S3-10  
180  
220  
µA  
µA  
180  
220  
µA  
µA  
200  
240  
µA  
µA  
270  
350  
µA  
µA  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: The LT1460S3 is guaranteed functional over the operating  
temperature range of 40°C to 85°C.  
Note 4: ESD (Electrostatic Discharge) sensitive devices. Extensive use of  
ESD protection devices are used internal to the LT1460S3, however, high  
electrostatic discharge can damage or degrade the device. Use proper ESD  
handling precautions.  
Note 5: Temperature coefficient is measured by dividing the change in  
output voltage by the specified temperature range. Incremental slope is  
also measured at 25°C.  
Note 3: If the parts are stored outside of the specified temperature range,  
the output may shift due to hysteresis.  
3
LT1460S3 (SOT-23)  
ELECTRICAL CHARACTERISTICS  
Note 6: Load regulation is measured on a pulse basis from no load to the  
specified load current. Output changes due to die temperature change  
must be taken into account separately.  
Note 7: Thermal regulation is caused by die temperature gradients created  
by load current or input voltage changes. This effect must be added to  
normal line or load regulation. This parameter is not 100% tested.  
Note 10: Long-term stability typically has a logarithmic characteristic and  
therefore, changes after 1000 hours tend to be much smaller than before  
that time. Total drift in the second thousand hours is normally less than  
one third that of the first thousand hours with a continuing trend toward  
reduced drift with time. Long-term stability will also be affected by  
differential stresses between the IC and the board material created during  
board assembly.  
Note 8: Excludes load regulation errors.  
Note 11: Hysteresis in output voltage is created by package stress that  
differs depending on whether the IC was previously at a higher or lower  
temperature. Output voltage is always measured at 25°C, but the IC is  
cycled to 70°C or 0°C before successive measurements. Hysteresis is  
roughly proportional to the square of the temperature change. Hysteresis  
is not normally a problem for operational temperature excursions where  
the instrument might be stored at high or low temperature. See  
Applications Information.  
Note 9: Peak-to-peak noise is measured with a single pole highpass filter  
at 0.1Hz and 2-pole lowpass filter at 10Hz. The unit is enclosed in a still-air  
environment to eliminate thermocouple effects on the leads. The test time  
is 10 sec. RMS noise is measured with a single pole highpass filter at  
10Hz and a 2-pole lowpass filter at 1kHz. The resulting output is full wave  
rectified and then integrated for a fixed period, making the final reading an  
average as opposed to RMS. A correction factor of 1.1 is used to convert  
from average to RMS and a second correction of 0.88 is used to correct  
for the nonideal bandpass of the filters.  
U W  
Characteristic curves are similar for most  
TYPICAL PERFORMANCE CHARACTERISTICS  
LT1460S3s. Curves from the LT1460S3-2.5 and the LT1460-10 represent the extremes of the voltage options. Characteristic curves for  
other output voltages fall between these curves, and can be estimated based on their voltage output.  
2.5V Minimum Input-Output  
Voltage Differential  
2.5V Load Regulation, Sourcing  
2.5V Load Regulation, Sinking  
100  
10  
1
120  
100  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
125°C  
55°C  
80  
60  
25°C  
125°C  
55°C  
25°C  
25°C  
55°C  
40  
20  
0
125°C  
0.1  
0
0.5  
1.0  
1.5  
2.0  
2.5  
0
1
2
3
4
5
0.1  
1
10  
100  
INPUT-OUTPUT VOLTAGE (V)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
1460s3 G02  
1460S3 G03  
1460S3 G01  
4
LT1460S3 (SOT-23)  
U W  
Characteristic curves are similar for most  
LT1460S3s. Curves from the LT1460S3-2.5 and the LT1460-10 represent the extremes of the voltage options. Characteristic curves for  
other output voltages fall between these curves, and can be estimated based on their voltage output.  
TYPICAL PERFORMANCE CHARACTERISTICS  
2.5V Output Voltage  
Temperature Drift  
2.5V Supply Current  
vs Input Voltage  
2.5V Line Regulation  
2.502  
2.501  
2.500  
2.499  
2.498  
2.497  
2.496  
2.495  
2.494  
2.503  
2.502  
2.501  
2.500  
250  
200  
150  
100  
50  
THREE TYPICAL PARTS  
25°C  
125°C  
25°C  
55°C  
55°C  
125°C  
2.499  
2.498  
2.497  
0
50  
TEMPERATURE (°C)  
100 125  
5
10  
INPUT VOLTAGE (V)  
15  
–50 –25  
0
25  
75  
0
0
2
4
6
8
10 12 14 16 18 20  
20  
INPUT VOLTAGE (V)  
1460S3 G04  
1460S3 G05  
1460S3 G06  
2.5V Power Supply Rejection  
Ratio vs Frequency  
2.5V Output Impedance  
vs Frequency  
2.5V Transient Response  
80  
70  
60  
50  
40  
30  
20  
10  
0
1000  
100  
10  
C
= 0µF  
L
20  
10  
1
C
= 0.1µF  
L
C
= 1µF  
L
0.1  
1
1460S3 G09  
200µs/DIV  
CLOAD = 0µF  
0.1  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1460S3 G07  
1460S3 G08  
2.5V Output Voltage  
Noise Spectrum  
2.5V Output Noise 0.1Hz to 10Hz  
1000  
100  
TIME (2 SEC/DIV)  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
1460-2.5 G10  
1460S3 G11  
5
LT1460S3 (SOT-23)  
U W  
Characteristic curves are similar for most  
TYPICAL PERFORMANCE CHARACTERISTICS  
LT1460S3s. Curves from the LT1460S3-2.5 and the LT1460-10 represent the extremes of the voltage options. Characteristic curves for  
other output voltages fall between these curves, and can be estimated based on their voltage output.  
10V Minimum Input-Output  
Voltage Differential  
10V Load Regulation, Sourcing  
10V Load Regulation, Sinking  
100  
10  
1
35  
30  
25  
20  
15  
10  
5
250  
200  
150  
100  
50  
125°C  
125°C  
25°C  
25°C  
55°C  
–55°C  
55°C  
0
–5  
–10  
125°C  
25°C  
0.1  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
0.1  
1
10  
100  
0
1
2
3
4
5
INPUT-OUTPUT VOLTAGE (V)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
1460S3 G13  
1460S3 G12  
1460S3 G14  
10V Output Voltage  
Temperature Drift  
10V Supply Current  
vs Input Voltage  
10V Line Regulation  
10.006  
10.004  
10.002  
10.000  
9.998  
9.996  
9.994  
9.992  
9.990  
9.988  
9.986  
9.984  
9.982  
10.010  
10.005  
10.000  
9.995  
350  
300  
THREE TYPICAL PARTS  
25°C  
125°C  
250  
25°C  
55°C  
125°C  
55°C  
200  
150  
100  
50  
9.990  
9.985  
9.980  
0
50  
0
25  
50  
75 100 125  
25  
0
6
10 12 14 16 18 20  
6
8
10  
12  
14  
16  
18  
20  
2
4
8
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1460S3 G15  
1460S3 G16  
1560S3 G17  
10V Power Supply Rejection  
Ratio vs Frequency  
10V Output Impedance  
vs Frequency  
10V Transient Response  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1000  
100  
10  
20  
10  
C
= 0µF  
L
C
= 0.1µF  
L
1
C
= 1µF  
L
0.1  
1
1460S3 G20  
200µs/DIV  
CLOAD = 0µF  
0.1  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1460S3 G18  
1460S3 G19  
6
LT1460S3 (SOT-23)  
U W  
Characteristic curves are similar for most  
LT1460S3s. Curves from the LT1460S3-2.5 and the LT1460-10 represent the extremes of the voltage options. Characteristic curves for  
other output voltages fall between these curves, and can be estimated based on their voltage output.  
TYPICAL PERFORMANCE CHARACTERISTICS  
10V Output Voltage  
Noise Spectrum  
10V Output Noise 0.1Hz to 10Hz  
10  
1
0.1  
0.01  
0.1  
1
10  
100  
TIME (2 SEC/DIV)  
FREQUENCY (kHz)  
1460S3 G10  
1460S3 G22  
U
W U U  
APPLICATIONS INFORMATION  
capacitive load, these references are ideal for fast settling  
or applications where PC board space is a premium. The  
test circuit shown in Figure 1 is used to measure the  
response time and stability of various load currents and  
load capacitors. This circuit is set for the 2.5V option. For  
other voltage options, the input voltage must be scaled up  
and the output voltage generator offset voltage must be  
adjusted. The 1V step from 2.5V to 1.5V produces a  
current step of 10mA or 1mA for RL = 100or RL = 1k.  
Figure2showstheresponseofthereferencetothese1mA  
and 10mA load steps with no load capacitance, and Figure  
3 shows a 1mA and 10mA load step with a 0.1µF output  
capacitor. Figure 4 shows the response to a 1mA load step  
with CL = 1µF and 4.7µF.  
Longer Battery Life  
Series references have a large advantage over older shunt  
style references. Shunt references require a resistor from  
the power supply to operate. This resistor must be chosen  
to supply the maximum current that can ever be  
demanded by the circuit being regulated. When the circuit  
beingcontrolledisnotoperatingatthismaximumcurrent,  
the shunt reference must always sink this current, result-  
ing in high dissipation and short battery life.  
The LT1460S3 series references do not require a current  
setting resistor and can operate with any supply voltage  
from VOUT + 0.9V to 20V. When the circuitry being regu-  
lated does not demand current, the LT1460S3s reduce  
their dissipation and battery life is extended. If the refer-  
ences are not delivering load current, they dissipate only  
several mW, yet the same connection can deliver 20mA of  
load current when demanded.  
R
L
V
OUT  
V
= 2.5V  
LT1460S3-2.5  
IN  
V
GEN  
2.5V  
1.5V  
C
IN  
C
L
0.1µF  
Capacitive Loads  
1460S3 F01  
The LT1460S3 family of references are designed to be  
stable with a large range of capacitive loads. With no  
Figure 1. Response Time Test Circuit  
7
LT1460S3 (SOT-23)  
U
W U U  
APPLICATIONS INFORMATION  
Table1givesthemaximumoutputcapacitanceforvarious  
loadcurrentsandoutputvoltagestoavoidinstability.Load  
capacitorswithlowESR(effectiveseriesresistance)cause  
more ringing than capacitors with higher ESR such as  
polarized aluminum or tantalum capacitors.  
2.5V  
1.5V  
VGEN  
VOUT  
1mA  
Table 1. Maximum Output Capacitance  
VOLTAGE  
VOUT  
10mA  
OPTION  
2.5V  
3V  
I
= 100µA  
I
= 1mA  
I
= 10mA  
2µF  
I
= 20mA  
OUT  
OUT  
OUT  
OUT  
>10µF  
>10µF  
>10µF  
>10µF  
>10µF  
>10µF  
0.68µF  
1460S3 F02  
1µs/DIV  
>10µF  
>10µF  
>10µF  
1µF  
2µF  
0.68µF  
0.68µF  
0.68µF  
0.1µF  
Figure 2. CL = 0µF  
3.3V  
5V  
1µF  
1µF  
10V  
0.15µF  
VGEN  
2.5V  
1.5V  
Long-Term Drift  
Long-term drift cannot be extrapolated from acceler-  
ated high temperature testing. This erroneous tech-  
niquegivesdriftnumbersthatarewidelyoptimistic.The  
only way long-term drift can be determined is to mea-  
sure it over the time interval of interest. The LT1460S3  
long-term drift data was taken on over 100 parts that were  
soldered into PC boards similar to a “real world” applica-  
tion.Theboardswerethenplacedintoaconstanttempera-  
ture oven with TA = 30°C, their outputs were scanned  
regularly and measured with an 8.5 digit DVM. Figure 5  
shows typical long-term drift of the LT1460S3s.  
VOUT  
1mA  
10mA  
VOUT  
1460S3-5 F03  
100µs/DIV  
Figure 3. CL = 0.1µF  
VGEN  
2.5V  
1.5V  
150  
100  
VOUT  
1µF  
50  
0
VOUT  
4.7µF  
50  
–100  
–150  
1460S3 F04  
100µs/DIV  
Figure 4. IOUT = 1mA  
0
100 200 300 400 500 600 700 800 900 1000  
HOURS  
1460S3 F05  
Figure 5. Typical Long-Term Drift  
8
LT1460S3 (SOT-23)  
U
W U U  
APPLICATIONS INFORMATION  
Hysteresis  
Fast Turn-On  
HysteresisdatashowninFigure5andFigure6represents  
the worst-case data taken on parts from 0°C to 70°C and  
from 40°C to 85°C. The output is capable of dissipating  
relatively high power, i.e., for the LT1460S3-2.5, PD =  
17.5V • 20mA = 350mW. The thermal resistance of the  
SOT-23 package is 325°C/W and this dissipation causes  
a 114°C internal rise producing a junction temperature of  
TJ =25°C+114°C=139°C.Thiselevatedtemperaturewill  
cause the output to shift due to thermal hysteresis. For  
highest performance in precision applications, do not  
let the LT1460S3’s junction temperature exceed 85°C.  
It is recommended to add a 0.1µF or larger bypass  
capacitor to the input pin of the LT1460S3s. Although this  
can help stability with large load currents, another reason  
is for proper start-up. The LT1460S3 can start in 10µs, but  
it is important to limit the dv/dt of the input. Under light  
load conditions and with a very fast input, internal nodes  
overslew and this requires finite recovery time. Figure 8  
showstheresultofnobypasscapacitanceontheinputand  
no output load on the LT1460S3-5. In this case the supply  
dv/dt is 7.5V in 30ns which causes internal overslew, and  
the output does not bias to 5V until 40µs after turn-on.  
Although 40µs is a typical turn-on time, it can be much  
longer. Figure 9 shows the effect of a 0.1µF bypass  
capacitor which limits the input dv/dt to approximately  
7.5V in 20µs. The part always starts quickly.  
18  
WORST-CASE HYSTERESIS  
ON 40 UNITS  
16  
14  
12  
10  
8
70°C TO 25°C  
0°C TO 25°C  
7.5V  
6
VIN  
4
0V  
2
0
160 200 240  
–240 –200 –160 –120 80 –40  
0
40 80 120  
VOUT  
HYSTERESIS (ppm)  
1460S3 F06  
0V  
Figure 6. 0°C to 70°C Hysteresis  
1460S3 F08  
20µs/DIV  
Figure 8. CIN = 0µF  
9
8
7
6
5
4
3
2
1
0
WORST-CASE HYSTERESIS  
ON 34 UNITS  
85°C TO 25°C  
–40°C TO 25°C  
7.5V  
VIN  
0V  
VOUT  
400 500 600  
100 200 300  
–600 –500 –400 –300 –200 –100  
0
HYSTERESIS (ppm)  
1460S3 F07  
1460S3 F08  
20µs/DIV  
Figure 9. CIN = 0.1µF  
Figure 7. 40°C to 85°C Hysteresis  
9
LT1460S3 (SOT-23)  
U
W U U  
APPLICATIONS INFORMATION  
Output Accuracy  
Total worst-case output error is:  
0.2% + 0.04% + 0.14% = 0.380%  
Like all references, either series or shunt, the error budget  
of the LT1460S3s is made up of primarily three compo-  
nents: initial accuracy, temperature coefficient and load  
regulation.Lineregulationisneglectedbecauseittypically  
contributes only 150ppm/V. The LT1460S3s typically  
shift 0.02% when soldered into a PCB, so this is also  
neglected. The output errors are calculated as follows for  
a 100µA load and 0°C to 70°C temperature range:  
Table 2 gives the worst-case accuracy for LT1460HCS3,  
LT1460JCS3 and LT1460KCS3 from 0°C to 70°C, and  
shows that if the LT1460HCS3 is used as a reference  
instead of a regulator, it is capable of 8 bits of absolute  
accuracy over temperature without a system calibration.  
Table 2. Worst-Case Output Accuracy over Temperature  
I
LT1460HCS3  
0.340%  
LT1460JCS3  
0.540%  
LT1460KCS3  
0.850%  
0.890%  
1.15%  
OUT  
LT1460HCS3  
Initial Accuracy = 0.2%  
0µA  
100µA  
10mA  
20mA  
0.380%  
0.580%  
0.640%  
0.840%  
For IOUT = 100µA  
0.540%  
0.740%  
1.05%  
VOUT = (4000ppm/mA)(0.1mA) = 0.04%  
For Temperature 0°C to 70°C the maximum T = 70°C  
VOUT = (20ppm/°C)(70°C) = 0.14%  
10  
LT1460S3 (SOT-23)  
U
PACKAGE DESCRIPTION  
Dimensions in millimeters (inches) unless otherwise noted.  
S3 Package  
3-Lead Plastic SOT-23  
(LTC DWG # 05-08-1631)  
2.80 – 3.04  
(0.110 – 0.120)  
0.95  
0.037  
BSC  
0.45 – 0.60  
(0.017 – 0.024)  
1.92  
2.10 – 2.64  
0.075  
BSC  
(0.083 – 0.104)  
1.20 – 1.40  
(0.047 – 0.060)  
0.013 – 0.10  
(0.0005 – 0.004)  
0.89 – 1.12  
(0.035 – 0.044)  
0.55  
(0.022)  
REF  
0.37 – 0.51  
(0.015 – 0.020)  
0.09 – 0.18  
(0.004 – 0.007)  
SOT-23 0599  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DIMENSIONS ARE INCLUSIVE OF PLATING  
3. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
4. MOLD FLASH SHALL NOT EXCEED 0.254mm  
5. JEDEC REFERENCE IS TO-236 VARIATION AB  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LT1460S3 (SOT-23)  
U
TYPICAL APPLICATIONS  
Handling Higher Load Currents  
+
V
40mA  
+
47µF  
IN  
R1*  
LT1460S3  
10mA  
V
OUT  
OUT  
GND  
TYPICAL LOAD  
CURRENT = 50mA  
R
L
*SELECT R1 TO DELIVER 80% OF TYPICAL LOAD CURRENT.  
LT1460 WILL THEN SOURCE AS NECESSARY TO MAINTAIN  
PROPER OUTPUT. DO NOT REMOVE LOAD AS OUTPUT WILL  
BE DRIVEN UNREGULATED HIGH. LINE REGULATION IS  
DEGRADED IN THIS APPLICATION  
+
V
– V  
OUT  
R1 =  
40mA  
1460S3 TA05  
Boosted Output Current with No Current Limit  
Boosted Output Current with Current Limit  
+
+
V
(V  
+ 1.8V)  
OUT  
V
V  
+ 2.8V  
OUT  
+
+
D1*  
LED  
R1  
220Ω  
R1  
220Ω  
47µF  
47µF  
8.2Ω  
2N2905  
2N2905  
IN  
LT1460S3  
OUT  
IN  
LT1460S3  
OUT  
V
OUT  
V
OUT  
100mA  
100mA  
+
2µF  
SOLID  
TANT  
GND  
+
2µF  
GND  
SOLID  
TANT  
GLOWS IN CURRENT LIMIT,  
DO NOT OMIT  
*
1460S3 TA04  
1460S3 TA03  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1019  
Precision Bandgap Reference  
Precision 5V Reference  
0.05% Max, 5ppm/°C Max  
0.02%, 2ppm/°C Max  
LT1027  
LT1236  
Precision Low Noise Reference  
0.05% Max, 5ppm/°C Max, SO Package  
LT1461  
Micropower Precision Low Dropout  
0.04% Max, 3ppm/°C Max, 50mA Output Current  
0.05%, 25ppm/°C Max  
LT1634  
Micropower Precision Shunt Reference 1.25V, 2.5V Output  
Micropower Low Dropout Reference, Fixed or Adjustable  
LTC1798  
0.15% Max, 40ppm/°C, 6.5µA Max Supply Current  
1460s3f LT/TP 0999 4K • PRINTED IN USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408)432-1900  
12  
FAX: (408) 434-0507 TELEX: 499-3977 www.linear-tech.com  
LINEAR TECHNOLOGY CORPORATION 1997  

相关型号:

LT1460KCS3-10#PBF

LT1460 - Micropower Precision Series Reference Family; Package: SOT; Pins: 3; Temperature Range: 0°C to 70°C
Linear

LT1460KCS3-10#TR

LT1460 - Micropower Precision Series Reference Family; Package: SOT; Pins: 3; Temperature Range: 0°C to 70°C
Linear

LT1460KCS3-10#TRM

LT1460 - Micropower Precision Series Reference Family; Package: SOT; Pins: 3; Temperature Range: 0°C to 70°C
Linear

LT1460KCS3-10#TRMPBF

LT1460 - Micropower Precision Series Reference Family; Package: SOT; Pins: 3; Temperature Range: 0°C to 70°C
Linear
Linear

LT1460KCS3-10-TRMPBF

Micropower Precision Series Reference Family
Linear

LT1460KCS3-10-TRPBF

Micropower Precision Series Reference Family
Linear

LT1460KCS3-2.5

Family of Micropower Series References in SOT-23
Linear

LT1460KCS3-2.5#PBF

LT1460 - Micropower Precision Series Reference Family; Package: SOT; Pins: 3; Temperature Range: 0°C to 70°C
Linear

LT1460KCS3-2.5#TR

LT1460 - Micropower Precision Series Reference Family; Package: SOT; Pins: 3; Temperature Range: 0°C to 70°C
Linear

LT1460KCS3-2.5#TRM

LT1460 - Micropower Precision Series Reference Family; Package: SOT; Pins: 3; Temperature Range: 0°C to 70°C
Linear

LT1460KCS3-2.5#TRMPBF

LT1460 - Micropower Precision Series Reference Family; Package: SOT; Pins: 3; Temperature Range: 0°C to 70°C
Linear