LT1468AIDD-PBF [Linear]

90MHz, 22V/μs 16-Bit Accurate Operational Amplifi er; 90MHz的, 22V /μs的16位精度运算功率放大器儿
LT1468AIDD-PBF
型号: LT1468AIDD-PBF
厂家: Linear    Linear
描述:

90MHz, 22V/μs 16-Bit Accurate Operational Amplifi er
90MHz的, 22V /μs的16位精度运算功率放大器儿

放大器 功率放大器
文件: 总16页 (文件大小:216K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1468  
90MHz, 22V/µs  
16-Bit Accurate  
Operational Amplifier  
DESCRIPTION  
FEATURES  
TheLT®1468isaprecisionhighspeedoperationalamplifier  
with 16-bit accuracy and 900ns settling to 150μV for 10V  
signals.ThisuniqueblendofprecisionandACperformance  
makes the LT1468 the optimum choice for high accuracy  
applications such as DAC current-to-voltage conversion  
and ADC buffers. The initial accuracy and drift character-  
istics of the input offset voltage and inverting input bias  
current are tailored for inverting applications.  
n
90MHz Gain Bandwidth, f = 100kHz  
n
22V/μs Slew Rate  
n
Settling Time: 900ns (A = –1, 150μV, 10V Step)  
V
n
Low Distortion, 96.5dB for 100kHz, 10V  
P-P  
n
Maximum Input Offset Voltage: 75μV  
n
Maximum Input Offset Voltage Drift: 2μV/°C  
n
Maximum (–) Input Bias Current: 10nA  
n
Minimum DC Gain: 1000V/mV  
n
Minimum Output Swing into 2k: 12.8V  
The 90MHz gain bandwidth ensures high open-loop gain  
at frequency for reducing distortion. In noninverting ap-  
plications such as an ADC buffer, the low distortion and  
DC accuracy allow full 16-bit AC and DC performance.  
n
Unity Gain Stable  
n
Input Noise Voltage: 5nV/√Hz  
n
Input Noise Current: 0.6pA/√Hz  
n
Total Input Noise Optimized for 1k < R < 20k  
S
n
The 22V/μs slew rate of the LT1468 improves large-signal  
performance in applications such as active filters and  
instrumentation amplifiers compared to other precision  
op amps.  
Specified at 5V and 15V  
APPLICATIONS  
n
16-Bit DAC Current-to-Voltage Converter  
The LT1468 is manufactured on a complementary bipolar  
process. Itisavailableinaspacesaving3mm×3mmlead-  
less package, as well as small outline and DIP packages.  
n
Precision Instrumentation  
n
ADC Buffer  
Low Distortion Active Filters  
High Accuracy Data Acquisition Systems  
Photodiode Amplifiers  
n
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All other  
trademarks are the property of their respective owners.  
n
n
TYPICAL APPLICATION  
Total Harmonic Distortion vs Frequency  
–80  
16-Bit DAC I-to-V Converter  
V
A
=
15V  
S
V
L
= 2  
R
= 2k  
OUT  
–90  
–100  
–110  
–120  
–130  
V
= 10V  
P-P  
20pF  
16  
6k  
DAC  
INPUTS  
+
2k  
V
LT1468  
OUT  
LTC®1597  
50pF  
OPTIONAL NOISE FILTER  
OFFSET: V + I (6kΩ) < 1LSB  
SETTLING TIME TO 150μV = 1.7μs  
SETTLING LIMITED BY 6k AND 20pF TO COMPENSATE DAC OUTPUT CAPACITANCE  
OS  
B
1468 TA01  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
1468 TA02  
1468fa  
1
LT1468  
(Note 1)  
ABSOLUTE MAXIMUM RATINGS  
+
Total Supply Voltage (V to V ).................................36V  
Maximum Input Current (Note 2)...........................10mA  
Output Short-Circuit Duration (Note 3) ............ Indefinite  
Operating Temperature Range ................. –40°C to 85°C  
Specified Temperature Range (Note 4) .... –40°C to 85°C  
Junction Temperature ........................................... 150°C  
Storage Temperature Range................... –65°C to 150°C  
Lead Temperature (Soldering, 10 sec) .................. 300°C  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
NULL  
–IN  
1
2
3
4
8
7
6
5
DNC*  
NULL  
–IN  
1
2
3
4
8
7
6
5
DNC*  
+
V
+
+
+
V
+IN  
OUT  
+IN  
OUT  
V
NULL  
V
NULL  
N8 PACKAGE  
8-LEAD PDIP  
S8 PACKAGE  
8-LEAD PLASTIC SO  
DD PACKAGE  
8-LEAD (3mm × 3mm) PLASTIC DFN  
*DO NOT CONNECT  
T
= 150°C, θ = 43°C/W  
T
= 150°C, θ = 130°C/W (N8)  
JMAX  
JA  
JMAX  
JA  
EXPOSED PAD IS INTERNALLY CONNECTED TO V  
T
= 150°C, θ = 190°C/W (S8)  
JMAX  
JA  
ORDER INFORMATION  
LEAD FREE FINISH  
LT1468CN8#PBF  
LT1468IN8#PBF  
LT1468CS8#PBF  
LT1468IS8#PBF  
LT1468ACDD#PBF  
LT1468AIDD#PBF  
LT1468CDD#PBF  
LT1468IDD#PBF  
LEAD BASED FINISH  
LT1468CN8  
TAPE AND REEL  
PART MARKING PACKAGE DESCRIPTION  
SPECIFIED TEMPERATURE RANGE  
NA  
LT1468CN8  
LT1468IN8  
1468  
8-Lead PDIP  
8-Lead PDIP  
0°C to 70°C  
NA  
–40°C to 85°C  
0°C to 70°C  
LT1468CS8#TRPBF  
LT1468IS8#TRPBF  
LT1468ACDD#TRPBF  
LT1468AIDD#TRPBF  
LT1468CDD#TRPBF  
LT1468IDD#TRPBF  
TAPE AND REEL  
NA  
8-Lead Plastic Small Outline  
1468I  
8-Lead Plastic Small Outline  
–40°C to 85°C  
0°C to 70°C  
LDJX  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
LDJX  
–40°C to 85°C  
0°C to 70°C  
LDJX  
LDJX  
–40°C to 85°C  
SPECIFIED TEMPERATURE RANGE  
0°C to 70°C  
PART MARKING PACKAGE DESCRIPTION  
LT1468CN8  
LT1468IN8  
1468  
8-Lead PDIP  
LT1468IN8  
NA  
8-Lead PDIP  
–40°C to 85°C  
0°C to 70°C  
LT1468CS8  
LT1468CS8#TR  
LT1468IS8#TR  
8-Lead Plastic Small Outline  
8-Lead Plastic Small Outline  
LT1468IS8  
1468I  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
1468fa  
2
LT1468  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCM = 0V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
V
MIN  
TYP  
MAX  
UNITS  
SUPPLY  
V
Input Offset Voltage  
N8, S8  
15V  
5V  
30  
50  
75  
175  
μV  
μV  
OS  
LT1468A, DD Package  
LT1468, DD Package  
15V  
5V  
30  
50  
75  
μV  
μV  
175  
15V  
5V  
100  
150  
200  
300  
μV  
μV  
I
I
I
Input Offset Current  
5V to 15V  
5V to 15V  
5V to 15V  
5V to 15V  
5V to 15V  
5V to 15V  
13  
3
50  
10  
40  
nA  
nA  
nA  
OS  
Inverting Input Bias Current  
Noninverting Input Bias Current  
Input Noise Voltage  
B
B
+
–10  
0.3  
5
0.1Hz to 10Hz  
f = 10kHz  
μV  
P-P  
e
Input Noise Voltage  
nV/√Hz  
pA/√Hz  
n
i
n
Input Noise Voltage  
f = 10kHz  
0.6  
R
IN  
Input Resistance  
V
=
12.5V  
15V  
15V  
100  
50  
240  
150  
Mꢀ  
kꢀ  
CM  
Differential  
C
Input Capacitance  
15V  
4
pF  
IN  
Input Voltage Range +  
15V  
5V  
12.5  
2.5  
13.5  
3.5  
V
V
Input Voltage Range –  
15V  
5V  
–14.3  
–4.3  
–12.5  
–2.5  
V
V
CMRR  
PSRR  
Common Mode Rejection Ratio  
V
V
=
=
12.5V  
2.5V  
15V  
5V  
96  
96  
110  
112  
dB  
dB  
CM  
CM  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V = 4.5V to 15V  
S
100  
112  
dB  
A
VOL  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
=
=
=
=
12.5V, R = 10k  
15V  
15V  
5V  
1000  
500  
1000  
500  
9000  
5000  
6000  
3000  
V/mV  
V/mV  
V/mV  
V/mV  
L
L
12.5V, R = 2k  
2.5V, R = 10k  
L
L
2.5V, R = 2k  
5V  
V
Output Swing  
Output Current  
R = 10k  
15V  
15V  
5V  
13.0  
12.8  
3.0  
13.6  
13.5  
3.6  
V
V
V
V
OUT  
L
R = 2k  
L
R = 10k  
L
R = 2k  
5V  
2.8  
3.5  
L
I
I
V
OUT  
V
OUT  
=
=
12.5V  
2.5V  
15V  
5V  
15  
15  
22  
22  
mA  
mA  
OUT  
Short-Circuit Current  
Slew Rate  
V
OUT  
= 0V, V  
=
IN  
0.2V  
15V  
25  
40  
mA  
SC  
SR  
A = –1, R = 2k (Note 5)  
V
15V  
5V  
15  
11  
22  
17  
V/μs  
V/μs  
L
Full-Power Bandwidth  
Gain Bandwidth  
10V Peak, (Note 6)  
3V Peak, (Note 6)  
15V  
5V  
350  
900  
kHz  
kHz  
GBW  
THD  
f = 100kHz, R = 2k  
15V  
5V  
60  
55  
90  
88  
MHz  
MHz  
L
Total Harmonic Distortion  
Rise Time, Fall Time  
Overshoot  
A = 2, V = 10V , f = 1kHz  
15V  
15V  
0.00007  
0.0015  
%
%
V
O
P-P  
A = 2, V = 10V , f = 100kHz  
V
O
P-P  
t, t  
A = 1, 10% to 90%, 0.1V  
V
15V  
5V  
11  
12  
ns  
ns  
r
f
A = 1, 0.1V  
V
15V  
5V  
30  
35  
%
%
Propagation Delay  
A = 1, 50% V to 50% V  
,
15V  
5V  
9
10  
ns  
ns  
V
IN  
OUT  
0.1V  
1468fa  
3
LT1468  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCM = 0V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
10V Step, 0.01%, A = –1  
V
MIN  
TYP  
MAX  
UNITS  
SUPPLY  
t
Settling Time  
15V  
15V  
5V  
760  
900  
770  
ns  
ns  
ns  
s
V
10V Step, 150μV, A = 1  
V
5V Step, 0.01%, A = –1  
V
R
Output Resistance  
Supply Current  
A = 1, f = 100kHz  
V
15V  
0.02  
O
I
15V  
5V  
3.9  
3.6  
5.2  
5.0  
mA  
mA  
S
The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
0°C ≤ TA ≤ 70°C, VCM = 0V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
V
MIN  
TYP  
MAX  
UNITS  
SUPPLY  
V
OS  
Input Offset Voltage  
N8, S8  
15V  
5V  
150  
250  
μV  
μV  
LT1468A, DD Package  
LT1468, DD Package  
(Note 7)  
15V  
5V  
150  
250  
μV  
μV  
15V  
5V  
300  
400  
μV  
μV  
Input V Drift  
0.7  
60  
40  
2.0  
65  
μV/°C  
nA  
5V to 15V  
5V to 15V  
5V to 15V  
5V to 15V  
5V to 15V  
5V to 15V  
OS  
I
I
Input Offset Current  
OS  
Input Offset Current Drift  
Inverting Input Bias Current  
Negative Input Current Drift  
Noninverting Input Bias Current  
Common Mode Rejection Ratio  
pA/°C  
nA  
15  
50  
B
pA/°C  
nA  
+
I
B
CMRR  
V
CM  
V
CM  
=
=
12.5V  
2.5V  
15V  
5V  
94  
94  
dB  
dB  
PSRR  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V = 4.5V to 15V  
98  
dB  
S
A
VOL  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
=
=
=
=
12.5V, R = 10k  
15V  
15V  
5V  
500  
250  
500  
250  
V/mV  
V/mV  
V/mV  
V/mV  
L
12.5V, R = 2k  
L
2.5V, R = 10k  
L
2.5V, R = 2k  
5V  
L
V
Output Swing  
Output Current  
R = 10k  
15V  
15V  
5V  
12.9  
12.7  
2.9  
V
V
V
V
OUT  
L
R = 2k  
L
R = 10k  
L
R = 2k  
5V  
2.7  
L
I
I
V
OUT  
V
OUT  
=
=
12.5V  
2.5V  
15V  
5V  
12.5  
12.5  
mA  
mA  
OUT  
SC  
Short-Circuit Current  
Slew Rate  
V
OUT  
= 0V, V  
=
IN  
0.2V  
15V  
17  
mA  
SR  
A = –1, R = 2k (Note 5)  
V
15V  
5V  
13  
9
V/μs  
V/μs  
L
GBW  
Gain Bandwidth  
Supply Current  
f = 100kHz, R = 2k  
15V  
5V  
55  
50  
MHz  
MHz  
L
I
15V  
5V  
6.5  
6.3  
mA  
mA  
S
1468fa  
4
LT1468  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. –40°C ≤ TA ≤ 85°C, VCM = 0V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
V
MIN  
TYP  
MAX  
UNITS  
SUPPLY  
V
Input Offset Voltage  
N8, S8  
15V  
5V  
230  
330  
μV  
μV  
OS  
LT1468A, DD Package  
LT1468, DD Package  
(Note 7)  
15V  
5V  
230  
330  
μV  
μV  
15V  
5V  
400  
500  
μV  
μV  
Input V Drift  
0.7  
120  
80  
2.5  
80  
μV/°C  
nA  
5V to 15V  
5V to 15V  
5V to 15V  
5V to 15V  
5V to 15V  
5V to 15V  
OS  
I
I
Input Offset Current  
OS  
Input Offset Current Drift  
Inverting Input Bias Current  
Negative Input Current Drift  
Noninverting Input Bias Current  
Common Mode Rejection Ratio  
pA/°C  
nA  
30  
60  
B
pA/°C  
nA  
+
I
B
CMRR  
V
CM  
V
CM  
=
=
12.5V  
2.5V  
15V  
5V  
92  
92  
dB  
dB  
PSRR  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V = 4.5V to 15V  
96  
dB  
S
A
VOL  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
=
=
=
=
12V, R = 10k  
15V  
15V  
5V  
300  
150  
300  
150  
V/mV  
V/mV  
V/mV  
V/mV  
L
10V, R = 2k  
L
2.5V, R = 10k  
L
2.5V, R = 2k  
5V  
L
V
Output Swing  
Output Current  
R = 10k  
15V  
15V  
5V  
12.8  
12.6  
2.8  
V
V
V
V
OUT  
L
R = 2k  
L
R = 10k  
L
R = 2k  
5V  
2.6  
L
I
I
V
V
=
=
12.5V  
2.5V  
15V  
5V  
7
7
mA  
mA  
OUT  
SC  
OUT  
OUT  
Short-Circuit Current  
Slew Rate  
V
OUT  
= 0V, V  
=
IN  
0.2V  
15V  
12  
mA  
SR  
A = –1, R = 2k (Note 5)  
V
15V  
5V  
9
6
V/μs  
V/μs  
L
GBW  
Gain Bandwidth  
Supply Current  
f = 100kHz, R = 2k  
15V  
5V  
45  
40  
MHz  
MHz  
L
I
S
15V  
5V  
7.0  
6.8  
mA  
mA  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 4: The LT1468C is guaranteed to meet specified performance from  
0°C to 70°C and is designed, characterized and expected to meet these  
extended temperature limits, but is not tested at 40°C and at 85°C. The  
LT1468I is guaranteed to meet the extended temperature limits.  
Note 2: The inputs are protected by back-to-back diodes and two 100ꢀ  
series resistors. If the differential input voltage exceeds 0.7V, the input  
current should be limited to 10mA. Input voltages outside the supplies will  
be clamped by ESD protection devices and input currents should also be  
limited to 10mA.  
Note 5: Slew rate is measured between 8V on the output with 12V input  
for 15V supplies and 2V on the output with 3V input for 5V supplies.  
Note 6: Full power bandwidth is calculated from the slew rate  
measurement: FPBW = SR/2πV  
P
Note 7: This parameter is not 100% tested.  
Note 3: A heat sink may be required to keep the junction temperature  
below absolute maximum when the output is shorted indefinitely.  
1468fa  
5
LT1468  
TYPICAL PERFORMANCE CHARACTERISTICS  
Supply Current vs Supply Voltage  
and Temperature  
Input Common Mode Range  
vs Supply Voltage  
Input Bias Current  
vs Input Common Mode Voltage  
+
7
6
80  
60  
V
T
= 25°C  
OS  
A
V
T
=
15V  
S
A
–0.5  
–1.0  
–1.5  
–2.0  
ΔV < 100μV  
= 25°C  
40  
125°C  
5
4
20  
I
B
0
+
25°C  
I
B
2.0  
1.5  
1.0  
0.5  
–20  
–40  
–60  
–80  
3
2
1
–55°C  
V
0
5
10  
15  
20  
–10  
–5  
5
–15  
10  
15  
0
3
9
12  
15  
18  
0
6
SUPPLY VOLTAGE ( V)  
SUPPLY VOLTAGE ( V)  
INPUT COMMON MODE VOLTAGE (V)  
1468 G01  
1468 G03  
1468 G02  
Input Bias Current  
vs Temperature  
Input Noise Spectral Density  
0.1Hz to 10Hz Voltage Noise  
1000  
100  
10  
30  
20  
V
= 15V  
S
V
= 15V  
= 25°C  
= 101  
V
= 15V  
S
A
S
T
A
V
R
= 100k FOR i  
S
n
i
n
10  
1
+
I
I
B
0
–10  
–20  
–30  
–40  
e
n
10  
1
0.1  
B
0.01  
1
10  
100  
1k  
10k  
100k  
TIME (1s/DIV)  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
FREQUENCY (Hz)  
1468 G06  
1468 G05  
1468 G04  
Open-Loop Gain  
vs Resistive Load  
Open-Loop Gain  
vs Temperature  
Warm-Up Drift vs Time  
5
0
140  
135  
130  
125  
120  
115  
110  
160  
150  
T
= 25°C  
R
L
= 2k  
A
V
S
= 15V  
N8 5V  
V
=
=
15V  
5V  
–5  
S
V
S
=
5V  
140  
130  
120  
110  
100  
S0-8 5V  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
V
S
N8 15V  
S0-8 15V  
90  
10  
100  
1k  
10k  
0
20  
40  
60  
80 100 120 140  
50  
100 125  
–50 –25  
0
25  
75  
LOAD RESISTANCE (Ω)  
TIME AFTER POWER UP (s)  
TEMPERATURE (°C)  
1468 G08  
1468 G07  
1468 G09  
1468fa  
6
LT1468  
TYPICAL PERFORMANCE CHARACTERISTICS  
Output Voltage Swing  
vs Supply Voltage  
Output Voltage Swing  
vs Load Current  
Output Short-Circuit Current  
vs Temperature  
+
+
V
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
V
R
L
= 2k  
V
= 15V  
S
V
V
=
IN  
15V  
0.2V  
85°C  
S
25°C  
=
–1  
–2  
–3  
–4  
4
R
L
= 10k  
–40°C  
SOURCE  
SINK  
2.5  
2.0  
1.5  
1.0  
40°C  
85°C  
3
2
R
L
= 2k  
25°C  
1
R
L
= 10k  
T
= 25°C  
A
V
0.5  
V
–20  
0
10 15  
–15 –10 –5  
5
20  
50  
TEMPERATURE (°C)  
125  
–50  
0
25  
75 100  
–25  
0
5
10  
15  
20  
OUTPUT CURRENT (mA)  
SUPPLY VOLTAGE ( V)  
1468 G11  
1468 G12  
1468 G10  
Settling Time to 0.01%  
Settling Time to 0.01%  
vs Output Step, VS = 5V  
Settling Time to 150μV  
vs Output Step  
vs Output Step, VS = 15V  
10  
8
10  
8
5
4
V
=
15V  
V
A
= 15V  
V
=
5V  
S
L
S
V
S
L
R
= 1k  
= –1  
R
= 1k  
A
V
= –1  
A = 1  
V
A
V
= 1  
A = –1  
V
R
= R = 2k  
F
F
G
6
6
3
C
= 8pF  
4
4
2
2
2
1
0
0
0
–2  
–4  
–6  
–8  
–10  
–2  
–4  
–6  
–8  
–10  
–1  
–2  
–3  
–4  
–5  
A
V
= –1  
A
V
= 1  
A
V
= 1  
A = –1  
V
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
300  
400  
500  
600  
700  
800  
SETTLING TIME (ns)  
SETTLING TIME (ns)  
SETTLING TIME (ns)  
1468 G13  
1468 G15  
1468 G14  
Gain Bandwidth and Phase  
Margin vs Supply Voltage  
Gain Bandwidth and Phase  
Margin vs Temperature  
Output Impedance vs Frequency  
104  
46  
44  
42  
40  
38  
36  
34  
32  
30  
28  
26  
100  
10  
98  
96  
94  
92  
90  
88  
86  
84  
82  
44  
42  
40  
38  
36  
34  
32  
30  
28  
V
T
=
15V  
T
= 25°C  
= –1  
S
A
A
V
F
F
L
102  
100  
98  
96  
94  
92  
90  
88  
86  
84  
= 25°C  
A
PHASE MARGIN  
R
= R = 5.1k  
G
V = 15V  
S
PHASE MARGIN  
C
= 5pF  
= 2k  
A
= 100  
V
R
V
S
= 5V  
1
A
= 10  
V
0.1  
V
= 15V  
= 5V  
S
GAIN BANDWIDTH  
GAIN BANDWIDTH  
A
V
= 1  
0.01  
0.001  
V
S
10  
SUPPLY VOLTAGE ( V)  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
0
5
15  
20  
50  
TEMPERATURE (°C)  
125  
–55  
0
25  
75 100  
–25  
1468 G19  
1468 G17  
1468 G18  
1468fa  
7
LT1468  
TYPICAL PERFORMANCE CHARACTERISTICS  
Power Supply Rejection Ratio  
Common Mode Rejection Ratio  
vs Frequency  
Gain and Phase vs Frequency  
vs Frequency  
120  
100  
80  
60  
40  
20  
0
70  
60  
50  
40  
30  
20  
10  
0
100  
80  
160  
140  
120  
100  
V
T
= 15V  
= 25°C  
V
T
=
15V  
S
A
S
A
= 25°C  
PHASE  
15V  
+PSRR  
–PSRR  
60  
40  
5V  
20  
80  
60  
GAIN  
0
15V  
T
= 25°C  
= –1  
A
V
F
F
L
–20  
–40  
–60  
40  
20  
0
A
5V  
R
= R = 5.1k  
G
C
= 5pF  
= 2k  
R
–10  
100  
10k  
100k 1M  
10M 100M  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
100  
1k  
10k  
1M  
10M 100M  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1468 G16  
1468 G21  
1468 G20  
Frequency Response  
vs Supply Voltage, AV = 1  
Frequency Response  
Frequency Response  
vs Capacitive Load, AV = 1  
vs Supply Voltage, AV = 1  
5
4
3
2
5
4
3
2
14  
12  
10  
8
V
T
= 15V  
= 25°C  
= 1  
T
= 25°C  
= 1  
= 2k  
S
A
V
A
V
L
A
R
= R = 2k  
G
F
A
R
5V  
NO R  
L
15V  
R
= R = 5.1k  
G
F
100pF  
50pF  
20pF  
5V  
5V  
15V  
1
0
1
0
6
4
15V  
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
2
0
10pF  
T
= 25°C  
= –1  
A
V
L
F
–2  
–4  
–6  
A
R
C
= 2k  
= 5pF  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1468 G22  
1468 G23  
1468 G24  
Frequency Response  
vs Capacitive Load, AV = –1  
Slew Rate vs Supply Voltage  
Slew Rate vs Temperature  
14  
12  
10  
8
30  
28  
26  
24  
22  
20  
18  
16  
14  
45  
T
= 25°C  
= –1  
= 2k  
V
T
= 15V  
= 25°C  
= –1  
A
V
L
V
A
= 15V  
= –1  
= 2k  
S
A
V
F
F
S
V
L
A
40  
35  
R
A
R
–SR  
R
C
NO R  
= R = 5.1k  
G
300pF  
= 5pF  
–SR  
+SR  
L
30  
25  
20  
15  
10  
6
4
+SR  
200pF  
2
0
100pF  
50pF  
–2  
–4  
–6  
5
10  
SUPPLY VOLTAGE ( V)  
100k  
1M  
10M  
100M  
0
5
15  
20  
–25  
0
50  
75 100 125  
–50  
25  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
1468 G25  
1468 G26  
1468 G27  
1468fa  
8
LT1468  
TYPICAL PERFORMANCE CHARACTERISTICS  
Total Harmonic Distortion + Noise  
vs Frequency  
Total Harmonic Distortion + Noise  
vs Amplitude  
Undistorted Output Swing  
vs Frequency, 15V  
0.010  
30  
25  
20  
15  
10  
5
–50  
–60  
V
= 15V  
S
A
L
T
= 25°C  
R
= 600Ω  
A
V
= 1  
V
= 20V  
O
P-P  
5V  
15V  
NOISE BW = 80kHz  
–70  
A
V
= –1  
A
= 10  
= 1  
V
–80  
0.001  
A
V
–90  
MEASUREMENT  
LIMIT  
T
= 25°C  
= 10  
A
V
L
A
–100  
R
= 600Ω  
V
=
15V  
S
L
f = 10kHz  
R
= 2k  
NOISE BW = 80kHz  
0
–110  
0.0001  
1
10  
100  
1000  
0.01  
0.1  
1
10  
20  
100  
1k  
FREQUENCY (Hz)  
10k 20k  
FREQUENCY (kHz)  
OUTPUT SIGNAL (V  
)
RMS  
1468 G28  
1468 G30  
1468 G29  
Undistorted Output Swing  
vs Frequency, 5V  
Small-Signal Transient, AV = 1  
Small-Signal Transient, AV = 1  
10  
9
V
=
5V  
S
R
= 2k  
L
8
A
V
= 1  
7
6
5
A
V
= –1  
4
3
2
1
0
1468 G32  
1468 G31  
V
S
= 15V  
V
S
= 15V  
1
10  
100  
1000  
FREQUENCY (kHz)  
1468 G33  
Total Noise vs Unmatched  
Source Resistance  
Large-Signal Transient, AV = 1  
Large-Signal Transient, AV = 1  
100  
10  
1
V
=
15V  
S
A
T
= 25°C  
f = 10kHz  
TOTAL  
NOISE  
RESISTOR  
NOISE ONLY  
R
S
+
1468 G34  
1468 G35  
V
S
= 15V  
V
= 15V  
S
0.1  
10  
100  
1k  
10k  
100k  
SOURCE RESISTANCE, R (Ω)  
S
1468 G36  
1468fa  
9
LT1468  
APPLICATIONS INFORMATION  
TheLT1468maybeinserteddirectlyintomanyoperational  
amplifier applications improving both DC and AC perfor-  
mance, provided that the nulling circuitry is removed.  
The suggested nulling circuit for the LT1468 is shown  
below.  
contacts to the inputs can exceed the inherent drift of  
the amplifier. Air currents over device leads should be  
minimized, package leads should be short, and the two  
input leads should be as close together as possible and  
maintained at the same temperature.  
Make no connection to Pin 8. This pin is used for factory  
trim of the inverting input current.  
Offset Nulling  
+
V
The parallel combination of the feedback resistor and gain  
settingresistorontheinvertinginputcancombinewiththe  
input capacitance to form a pole that can cause peaking  
or even oscillations. For feedback resistors greater than  
2k, a feedback capacitor of the value:  
3
0.1μF  
0.1μF  
2.2μF  
2.2μF  
+
7
4
6
LT1468  
5
2
1
100k  
C > (R )(C /R )  
F
G
IN  
F
1468 AI01  
V
should be used to cancel the input pole and optimize dy-  
namic performance. For applications where the DC noise  
Layout and Passive Components  
gainisone,andalargefeedbackresistorisused,C should  
F
The LT1468 requires attention to detail in board layout  
in order to maximize DC and AC performance. For best  
AC results (for example fast settling time) use a ground  
plane,shortleadlengths,andRF-qualitybypasscapacitors  
(0.01μF to 0.1μF) in parallel with low ESR bypass capaci-  
tors(Fto1Ftantalum). ForbestDCperformance, use  
“star” grounding techniques, equalize input trace lengths  
and minimize leakage (i.e., 1.5Gꢀ of leakage between an  
be greater than or equal to C . An example would be a  
IN  
DAC I-to-V converter as shown on the front page of this  
data sheet where the DAC can have many tens of pF of  
outputcapacitance.Anotherexamplewouldbeagainof–1  
with 5k resistors; a 5pF to 10pF capacitor should be added  
across the feedback resistor. The frequency response in a  
gainof1isshownintheTypicalPerformancecurveswith  
2k and 5.1k resistors with a 5pF feedback capacitor.  
input and a 15V supply will generate 10nA—equal to the  
maximum I specification.)  
B
Nulling Input Capacitance  
Board leakage can be minimized by encircling the input  
circuitry with a guard ring operated at a potential close  
to that of the inputs. For inverting configurations tie the  
ring to ground, in noninverting connections tie the ring  
to the inverting input (note the input capacitance will  
increase which may require a compensating capacitor as  
discussed below.)  
R
F
C
F
R
G
+
C
LT1468  
V
OUT  
IN  
V
IN  
1468 AI02  
Microvolt level error voltages can also be generated in  
the external circuitry. Thermocouple effects caused by  
temperature gradients across dissimilar metals at the  
1468fa  
10  
LT1468  
APPLICATIONS INFORMATION  
Input Considerations  
Total Input Noise  
Each input of the LT1468 is protected with a 100ꢀ series  
resistor and back-to-back diodes across the bases of the  
input devices. If the inputs can be pulled apart, the input  
current should be limited to less than 10mA with an ex-  
ternal series resistor. Each input also has two ESD clamp  
diodes—one to each supply. If an input is driven above  
the supply, limit the current with an external resistor to  
less than 10mA.  
ThecurveofTotalNoisevsUnmatchedSourceResistance  
in the Typical Performance Characteristics shows that  
with source resistance below 1k, the voltage noise of the  
amplifier dominates. In the 1k to 20k region the increase  
in noise is due to the source resistance. Above 20k the  
input current noise component is larger than the resistor  
noise.  
Capacitive Loading  
TheLT1468employsbiascurrentcancellationattheinputs.  
The inverting input current is trimmed at zero common  
mode voltage to minimize errors in inverting applications  
such as I-to-V converters. The noninverting input current  
is not trimmed and has a wider variation and therefore a  
larger maximum value. As the input offset current can be  
greaterthaneitherinputcurrent,theuseofbalancedsource  
resistance is NOT recommended as it actually degrades  
DC accuracy and also increases noise.  
The LT1468 drives capacitive loads of up to 100pF in unity  
gain and 300pF in a gain of –1. When there is a need to  
drivealargercapacitiveload,asmallseriesresistorshould  
be inserted between the output and the load. In addition,  
a capacitor should be added between the output and the  
inverting input as shown in Driving Capacitive Loads.  
Settling Time  
The LT1468 is a single stage amplifier with an optimal  
thermal layout that leads to outstanding settling  
performance. Measuring settling, even at the 12-bit level  
is very challenging, and at the 16-bit level requires a great  
deal of subtlety and expertise. Fortunately, there are two  
excellent Linear Technology reference sources for settling  
measurements, Application Notes 47 and 74. Appendix B  
of AN47 is a vital primer on 12-bit settling measurements,  
and AN74 extends the state of the art while concentrating  
on settling time with a 16-bit current output DAC input.  
The input bias currents vary with common mode voltage  
as shown in the Typical Performance Characteristics.  
The cancellation circuitry was not designed to track this  
common mode voltage because the settling time would  
have been adversely affected.  
The LT1468 inputs can be driven to the negative supply  
and to within 0.5V of the positive supply without phase  
reversal. As the input moves closer than 0.5V to the posi-  
tive supply, the output reverses phase.  
Input Stage Protection  
Driving Capacitive Loads  
R
F
C
F
R
R
C
≥ (1 + R /R )/(2πC 5MHz)  
F G L  
O
F
F
≥ 10R  
O
R1  
100Ω  
R2  
R
= (2R /R )C  
L
G
O
F
100Ω  
Q1  
Q2  
+
+IN  
–IN  
R
O
LT1468  
V
OUT  
1468 AI03  
C
V
IN  
L
1468 AI04  
1468fa  
11  
LT1468  
APPLICATIONS INFORMATION  
The 150μV settling curve in the Typical Performance  
CharacteristicsismeasuredusingtheDifferentialAmplifier  
method of AN74 followed by a clamped, nonsaturating  
gain of 100. The total gain of 500 allows a resolution of  
100μV/DIV with an oscilloscope setting of 0.05V/DIV  
Distortion  
The LT1468 has outstanding distortion performance as  
shownintheTypicalPerformancecurvesofTotalHarmonic  
Distortion + Noise vs Frequency and Amplitude. The high  
open-loopgainandinherentlybalancedarchitecturereduce  
errors to yield 16-bit accuracy to frequencies as high as  
100kHz. An example of this performance is the Typical  
Application titled 100kHz Low Distortion Bandpass Filter.  
This circuit is useful for cleaning up the output of a high  
performance signal generator such as the B & K type  
1051 or HP3326A.  
The settling of the DAC I-to-V converter on the front page  
was measured using the exact methods of AN74. The  
optimum nulling of the DAC output capacitance requires  
20pF across the 6k feedback resistor. The theoretical limit  
for 16-bit settling is 11.1 times this RC time constant or  
1.33μs. The actual settling time is 1.7μs at the output of  
the LT1468. The LT1468 is the fastest Linear Technology  
amplifier in this application.  
Another key application for LT1468 is buffering the input  
to a 16-bit A/D converter. In a gain of 1 or 2 this straight-  
forward circuit provides uncorrupted AC and DC levels  
to the converter, while buffering the A/D input sample-  
and-hold circuit from high source impedance which can  
reduce the maximum sampling rate. The front page graph  
shows better than 16-bit distortion for a gain of 2 with a  
The optional noise filter adds a slight delay of 100ns, but  
reduces the noise bandwidth to 1.6MHz which increases  
the output resolution for 16-bit accuracy.  
10V output.  
P-P  
SIMPLIFIED SCHEMATIC  
+
V
I1  
I2  
I5  
Q10  
Q11  
Q8  
Q9  
OUT  
+IN  
Q1  
Q2  
–IN Q5  
Q3  
Q6  
Q7  
Q4  
C
BIAS  
I3  
I4  
I6  
V
1468 SS  
1468fa  
12  
LT1468  
PACKAGE DESCRIPTION  
DD Package  
8-Lead Plastic DFN (3mm × 3mm)  
(LTC DWG # 05-08-1698)  
0.675 ±0.05  
3.5 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
PACKAGE  
OUTLINE  
0.25 ± 0.05  
0.50  
BSC  
2.38 ±0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.115  
0.38 ± 0.10  
TYP  
5
8
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(NOTE 6)  
(DD) DFN 1203  
4
1
0.25 ± 0.05  
0.75 ±0.05  
0.200 REF  
0.50 BSC  
2.38 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON TOP AND BOTTOM OF PACKAGE  
1468fa  
13  
LT1468  
PACKAGE DESCRIPTION  
N8 Package  
8-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
.400*  
(10.160)  
MAX  
8
7
6
5
4
.255 ± .015*  
(6.477 ± 0.381)  
1
2
3
.130 ± .005  
.300 – .325  
.045 – .065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
.065  
(1.651)  
TYP  
.008 – .015  
(0.203 – 0.381)  
.120  
(3.048)  
MIN  
.020  
(0.508)  
MIN  
+.035  
–.015  
.325  
.018 ± .003  
(0.457 ± 0.076)  
.100  
(2.54)  
BSC  
+0.889  
8.255  
(
)
N8 1002  
–0.381  
NOTE:  
1. DIMENSIONS ARE  
INCHES  
MILLIMETERS  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
1468fa  
14  
LT1468  
PACKAGE DESCRIPTION  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 ±.005  
.160 ±.005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 ±.005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
1468fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LT1468  
TYPICAL APPLICATIONS  
Instrumentation Amplifier  
16-Bit ADC Buffer  
10pF  
2k  
R5  
1.1k  
R4  
50k  
R2  
5k  
C2  
2pF  
C1  
10pF  
R1  
50k  
2k  
+
16 BITS  
200Ω  
LT1468  
LTC1605  
CAP  
1000pF  
V
R3  
5k  
IN  
1468 TA04  
33.2k  
LT1468  
+
+
LT1468  
V
OUT  
2.2μF  
1468 TA03  
V
IN  
+
GAIN = [R4/R3][1 + (1/2)(R2/R1 + R3/R4) + (R2 + R3)/R5] = 102  
TRIM R5 FOR GAIN  
TRIM R1 FOR COMMON MODE REJECTION  
BW = 480kHz  
100kHz Low Distortion Bandpass Filter  
100kHz Distortion  
1000pF  
22.1k  
SIGNAL LEVEL  
R
L
2ND HARMONIC 3RD HARMONIC  
1V  
2V  
1M  
1M  
1M  
2k  
–106dB  
–105dB  
–106dB  
–103dB  
–99dB  
–103dB  
–105dB  
–104dB  
–103dB  
–103dB  
–102dB  
RMS  
RMS  
1000pF  
11k  
3.5V  
RMS  
RMS  
RMS  
V
IN  
1V  
2V  
LT1468  
V
OUT  
2k  
121Ω  
R
L
+
3.5V  
2k  
–96.5dB  
RMS  
1468 TA05  
f
= 100kHz  
O
Q = 7  
= –1  
A
V
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
Precision Instrumentation Amplifier  
COMMENTS  
LT1167  
Single Resistor Gain Set, 0.04% Max Gain Error, 10ppm Max Gain  
Nonlinearity  
LTC1595/LTC1596 16-Bit Serial Multiplying I  
DACs  
1LSB Max INL/DNL, Low Glitch, DAC8043 16-Bit Upgrade  
1LSB Max INL/DNL, Low Glitch, On-Chip Bipolar Resistors  
2.5V Input, SINAD = 90dB, THD = –100dB  
Low Power, 10V Inputs, Parallel/Byte Interface  
Dual Version of LT1468  
OUT  
LTC1597  
LTC1604  
LTC1605  
LT1469  
16-Bit Parallel Multiplying I  
DAC  
OUT  
16-Bit, 333ksps Sampling ADC  
Single 5V, 16-Bit, 100ksps Sampling ADC  
Dual 90MHz 16-Bit Accurate Op Amp  
LT1800  
80MHz, 25V/ꢁs Low Power Rail-to-Rail Precision Op Amp V ≤ 5V, I = 1.6mA, V ≤ 350ꢁV  
S CC OS  
LT6220  
60MHz, 20V/ꢁs Low Power Rail-to-Rail Precision Op Amp V ≤ 5V, I = 0.9mA, V ≤ 350ꢁV  
S CC OS  
LT1722  
200MHz, 70V/ꢁs Low Noise Precision Op Amp  
Dual 50MHz, Low Noise, Precision CMOS Op Amp  
V ≤ 5V, e = 3.8nV/√Hz, –85dBc at 1MHz  
S n  
LTC6244HV  
V ≤ 5V, V ≤ 100ꢁV, I 75pA  
S OS B  
1468fa  
LT 0808 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 1998  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT1468AIDD-TRPBF

90MHz, 22V/μs 16-Bit Accurate Operational Amplifi er
Linear

LT1468CDD#PBF

LT1468 - 90MHz, 22V/us 16-Bit Accurate Operational Amplifier; Package: DFN; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1468CDD-2#PBF

LT1468-2 - 200MHz, 30V/&#181;s 16-Bit Accurate AV ≥ 2 Op Amp; Package: DFN; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1468CDD-2-PBF

200MHz, 30V/μs 16-Bit Accurate AV ≥ 2 Op Amp
Linear

LT1468CDD-2-TRPBF

200MHz, 30V/μs 16-Bit Accurate AV ≥ 2 Op Amp
Linear

LT1468CDD-2PBF

16-Bit DAC Current-to-Voltage Converter
Linear

LT1468CDD-2TRPBF

16-Bit DAC Current-to-Voltage Converter
Linear

LT1468CDD-PBF

90MHz, 22V/μs 16-Bit Accurate Operational Amplifi er
Linear

LT1468CDD-TRPBF

90MHz, 22V/μs 16-Bit Accurate Operational Amplifi er
Linear

LT1468CN8

90MHz, 22V/us 16-Bit Accurate Operational Amplifier
Linear

LT1468CN8#PBF

LT1468 - 90MHz, 22V/us 16-Bit Accurate Operational Amplifier; Package: PDIP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1468CN8-PBF

90MHz, 22V/μs 16-Bit Accurate Operational Amplifi er
Linear