LT1485 [Linear]

Differential Bus Transceiver; 差动总线收发器
LT1485
型号: LT1485
厂家: Linear    Linear
描述:

Differential Bus Transceiver
差动总线收发器

总线收发器
文件: 总12页 (文件大小:258K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1485  
Differential Bus Transceiver  
U
DESCRIPTIO  
EATURE  
ESD Protection over  
Low Power: ICC = 1.8mA Typ  
28ns Typical Driver Propagation Delays with  
4ns Skew  
Designed for RS485 or RS422 Applications  
Single 5V Supply  
7V to 12V Bus Common-Mode Range Permits ±7V  
Ground Difference Between Devices on the Bus  
Thermal Shutdown Protection  
Power-Up/Down Glitch-Free Driver Outputs  
Driver Maintains High Impedance in Three-State or  
with the Power Off  
Combined Impedance of a Driver Output and  
Receiver Allows up to 32 Transceivers on the Bus  
60mV Typical Input Hysteresis  
S
F
±
10kV  
The LTC®1485 is a low power differential bus/line trans-  
ceiverdesignedformultipointdatatransmissionstandard  
RS485 applications with extended common-mode range  
(12V to 7V). It also meets the requirements of RS422.  
The CMOS with Schottky design offers significant power  
savings over its bipolar counterpart without sacrificing  
ruggedness against overload or ESD damage.  
The driver and receiver feature three-state outputs, with  
the driver outputs maintaining high impedance over the  
entire common-mode range. Excessive power dissipation  
caused by bus contention or faults is prevented by a  
thermal shutdown circuit which forces the driver outputs  
into a high impedance state. I/O pins are protected against  
multiple ESD strikes of over ±10kV.  
Pin Compatible with the SN75176A, DS75176A, and  
SN75LBC176  
The receiver has a fail-safe feature which guarantees a  
high output state when the inputs are left open.  
O U  
BothACandDCspecificationsareguaranteedfrom40°C  
to 85°C and 4.75V to 5.25V supply voltage range.  
PPLICATI  
S
A
Low Power RS485/RS422 Transceiver  
Level Translator  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
O
TYPICAL APPLICATI  
5V  
DE  
5V  
DE  
3
8
3
8
LTC1485  
LTC1485  
6
7
6
4
1
4
1
120Ω  
4000 FT 24 GAUGE TWISTED PAIR  
DI  
120Ω  
DI  
DRIVER  
DRIVER  
7
RO  
RO  
RECEIVER  
RECEIVER  
5
2
5
2
RE  
RE  
1485 TA01  
1
LTC1485  
W W W  
U
/O  
ABSOLUTE AXI U RATI GS  
(Note 1)  
PACKAGE RDER I FOR ATIO  
ORDER PART  
TOP VIEW  
Supply Voltage (VCC) .............................................. 12V  
Control Input Voltages ................... – 0.5V to VCC + 0.5V  
Control Input Currents ........................ – 50mA to 50mA  
Driver Input Voltages ..................... – 0.5V to VCC + 0.5V  
Driver Input Currents .......................... – 25mA to 25mA  
Driver Output Voltages ......................................... ±14V  
Receiver Input Voltages ........................................ ±14V  
Receiver Output Voltages .............. – 0.5V to VCC + 0.5V  
Operating Temperature Range  
LTC1485C............................................... 0°C to 70°C  
LTC1485I .......................................... – 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec.)................ 300°C  
NUMBER  
RO  
RE  
DE  
DI  
1
2
3
4
8
7
6
5
V
B
CC  
R
LTC1485CN8  
LTC1485IN8  
LTC1485CS8  
LTC1485IS8  
A
D
GND  
N8 PACKAGE  
8-LEAD PLASTIC DIP 8-LEAD PLASTIC SOIC  
S8 PACKAGE  
TJMAX = 125°C, θJA = 100°C/ W (N)  
TJMAX = 150°C, θJA = 150°C/ W (S)  
S8 PART MARKING  
1485  
1485I  
Consult factory for Military grade parts.  
DC ELECTRICAL CHARACTERISTICS  
VCC = 5V (Notes 2, 3), unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
I = 0  
R = 50, (RS422)  
MIN  
TYP  
5
MAX  
V
UNITS  
V
V
Differential Driver Output Voltage (Unloaded)  
Differential Driver Output Voltage (With Load)  
OD1  
OD2  
O
2
1.5  
V
V
R = 27, (RS485) (Figure 1)  
5
V  
Change in Magnitude of Driver Differential  
Output Voltage for Complementary Output States  
R = 27or R = 50(Figure 1)  
0.2  
V
OD  
V
|V  
Driver Common-Mode Output Voltage  
Change in Magnitude of Driver Common-Mode  
Output Voltage for Complementary Output States  
R = 27or R = 50(Figure 1)  
R = 27or R = 50(Figure 1)  
3
0.2  
V
V
OC  
|
OC  
V
V
Input High Voltage  
Input Low Voltage  
Input Current  
DI, DE, RE  
DI, DE, RE  
DI, DE, RE  
2.0  
V
V
µA  
mA  
mA  
INH  
INL  
0.8  
±2  
1.0  
– 0.8  
I
I
IN1  
IN2  
Input Current (A, B)  
V
V
= 0V or 5.25V, V = 12V  
= 0V or 5.25V, V = 7V  
CC  
CC  
IN  
IN  
V
V  
Differential Input Threshold Voltage for Receiver  
Receiver Input Hysteresis  
Receiver Output High Voltage  
Receiver Output Low Voltage  
Three-State Output Current at Receiver  
Supply Current  
– 7V V 12V  
– 0.2  
3.5  
0.2  
V
mV  
V
V
µA  
TH  
CM  
V
= 0V  
CM  
60  
TH  
V
V
I = – 4mA, V = 0.2V  
O ID  
OH  
I = 4mA, V = – 0.2V  
0.4  
±1  
OL  
OZR  
CC  
O
ID  
I
I
V
= Max 0.4V V 2.4V  
CC  
O
No Load; DI = GND or V  
Outputs Enabled  
CC  
1.8  
1.7  
2.3  
2.3  
mA  
mA  
Outputs Disabled  
R
Receiver Input Resistance  
– 7V V 12V  
12  
7
kΩ  
mA  
mA  
mA  
IN  
CM  
I
I
I
Driver Short-Circuit Current, V  
Driver Short-Circuit Current, V  
Receiver Short-Circuit Current  
= High  
= Low  
V = 7V  
250  
250  
85  
OSD1  
OSD2  
OSR  
OUT  
O
V = 10 V  
OUT  
O
0V V V  
O
CC  
2
LTC1485  
U
SWI I  
TCH G CHARACTERISTICS  
VCC = 5V (Notes 2, 3), unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
= 54, C = C = 100pF  
(Figures 2, 5)  
MIN  
10  
TYP  
30  
MAX  
50  
UNITS  
t
t
t
Driver Input to Output  
Driver Input to Output  
Driver Output to Output  
Driver Rise or Fall Time  
R
DIFF  
ns  
PLH  
L1  
L2  
R
DIFF  
= 54, C = C = 100pF  
10  
5
30  
4
50  
10  
25  
ns  
ns  
ns  
PHL  
L1  
L2  
(Figures 2, 5)  
R
DIFF  
= 54, C = C = 100pF  
SKEW  
L1  
L2  
(Figures 2, 5)  
t , t  
r
R
DIFF  
= 54, C = C = 100pF  
15  
f
L1  
L2  
(Figures 2, 5)  
t
t
t
t
t
t
t
Driver Enable to Output High  
Driver Enable to Output Low  
Driver Disable Time from Low  
Driver Disable Time from High  
Receiver Input to Output  
C = 100pF (Figures 4, 6) S2 Closed  
40  
40  
40  
40  
25  
30  
5
70  
70  
70  
70  
50  
55  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ZH  
ZL  
LZ  
HZ  
L
C = 100pF (Figures 4, 6) S1 Closed  
L
C = 15pF (Figures 4, 6) S1 Closed  
L
C = 15pF (Figures 4, 6) S2 Closed  
L
R
DIFF  
R
DIFF  
R
DIFF  
= 54, C = C = 100pF (Figures 2, 7)  
= 54, C = C = 100pF (Figures 2, 7)  
L1 L2  
= 54, C = C = 100pF (Figures 2, 7)  
L1 L2  
15  
20  
PLH  
L1  
L2  
Receiver Input to Output  
PHL  
| t  
– t  
|
SKEW  
PLH  
PHL  
Differential Receiver Skew  
Receiver Enable to Output Low  
Receiver Enable to Output High  
Receiver Disable from Low  
Receiver Disable from High  
t
t
t
t
C = 15pF (Figures 3, 8) S1 Closed  
30  
30  
30  
30  
45  
45  
45  
45  
ns  
ns  
ns  
ns  
ZL  
ZH  
LZ  
HZ  
L
C = 15pF (Figures 3, 8) S2 Closed  
L
C = 15pF (Figures 3, 8) S1 Closed  
L
C = 15pF (Figures 3, 8) S2 Closed  
L
Note 2: All currents into device pins are positive. All currents out of device  
pins are negative. All voltages are referenced to device ground unless  
otherwise specified.  
The  
range.  
denotes specifications which apply over the operating temperature  
Note 1: Absolute Maximum Ratings are those values beyond which the  
safety of the device cannot be guaranteed.  
Note 3: All typicals are given for V = 5V and T = 25°C.  
CC  
A
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Receiver Output Low Voltage vs  
Output Current  
Receiver Output High Voltage vs  
Output Current  
Receiver Output High Voltage vs  
Temperature  
36  
32  
28  
24  
20  
–18  
–16  
–14  
–12  
–10  
4.8  
4.6  
4.4  
I = 8mA  
T
A
= 25°C  
T
A
= 25°C  
4.2  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
16  
12  
8
–8  
–6  
–4  
–2  
4
0
0
0
0.5  
1.5  
OUTPUT VOLTAGE (V)  
5
4
3
–50 –25  
0
25  
50  
75 100 125  
1.0  
2.0  
2
OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
1485 G01  
1485 G02  
1485 G03  
3
LTC1485  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Driver Differential Output Voltage  
vs Temperature  
Receiver Output Low Voltage  
vs Temperature  
Driver Differential Output Voltage  
vs Output Current  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
I = 8mA  
T
A
= 25°C  
R
=54Ω  
L
64  
48  
32  
16  
2.4  
2.2  
2.0  
1.8  
0
1.6  
0
0
1
3
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
2
4
OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1485 G05  
1485 G06  
1485 G04  
Driver Output Low Voltage vs  
Output Current  
Driver Output High Voltage vs  
Output Current  
TTL Input Threshold vs  
Temperature  
T
A
= 25°C  
T = 25°C  
A
80  
60  
40  
20  
–96  
–72  
–48  
–24  
1.63  
1.61  
1.59  
1.57  
0
0
1.55  
0
1
3
0
1
3
2
4
2
4
–50 –25  
0
25  
50  
75 100 125  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
1485 G07  
1485 G08  
1485 G09  
Receiver | tPLH – tPHL| vs  
Temperature  
Driver Skew vs Temperature  
Supply Current vs Temperature  
5
4
3
2
5
4
3
2
1.8  
1.7  
1.6  
1.5  
DRIVER ENABLED  
DRIVER DISABLED  
1
1
1.4  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1485 G10  
1485 G11  
1485 G12  
4
LTC1485  
U
U
U
PI FU CTIO S  
DI (Pin 4): Driver Input. If the driver outputs are enabled  
(DE high), then a low on DI forces the driver outputs A low  
and B high. A high on DI will force A high and B low.  
RO (Pin 1): Receiver Output. If the receiver output is  
enabled (RE low), then if A > B by 200mV, RO will be high.  
If A < B by 200mV, then RO will be low.  
GND (Pin 5): Ground Connection.  
RE (Pin 2): Receiver Output Enable. A low enables the  
receiver output, RO. A high input forces the receiver  
output into a high impedance state.  
A (Pin 6): Driver Output/Receiver Input.  
B (Pin 7): Driver Output/Receiver Input.  
DE (Pin 3): Driver Output Enable. A high on DE enables the  
driver outputs, A and B. A low input will force the driver  
outputs into a high impedance state.  
V
CC (Pin 8): Positive Supply. 4.75V VCC 5.25V.  
TEST CIRCUITS  
A
R
V
OD2  
A
A
B
C
C
L1  
R
DI  
R
DIFF  
RO  
DRIVER  
B
RECEIVER  
V
OC  
B
15pF  
L2  
1485 F02  
1485 F01  
Figure 1. Driver DC Test Load  
Figure 2. Driver/Receiver Timing Test Circuit  
S1  
1k  
S1  
RECEIVER  
OUTPUT  
V
V
CC  
CC  
500Ω  
OUTPUT  
UNDER TEST  
C
L
1k  
S2  
S2  
C
L
1485 F04  
1485 F03  
Figure 4. Driver Timing Test Load  
Figure 3. Receiver Timing Test Load  
5
LTC1485  
U
W
W
SWITCHI G TI E WAVEFOR S  
3V  
f = 1MHz; t 10ns; t 10ns  
r
f
1.5V  
DI  
1.5V  
0V  
t
PLH  
t
PHL  
V
O
90%  
90%  
V
– V  
B
50%  
50%  
10%  
A
10%  
–V  
O
t
t
r
f
B
A
1/2 V  
1/2 V  
O
O
V
O
t
t
SKEW  
SKEW  
1485 F05  
Figure 5. Driver Propagation Delays  
3V  
0V  
f = 1MHz; t 10ns; t 10ns  
r
f
1.5V  
ZL  
1.5V  
DE  
t
t
LZ  
5V  
A,B  
2.3V  
2.3V  
OUTPUT NORMALLY LOW  
OUTPUT NORMALLY HIGH  
0.5V  
V
OL  
V
OH  
0.5V  
A,B  
0V  
1485 F06  
t
ZH  
t
HZ  
Figure 6. Driver Enable and Disable Times  
INPUT  
V
OD2  
f = 1MHz; t 10ns; t 10ns  
r
f
0V  
0V  
V
A
– V  
B
–V  
OD2  
t
PLH  
t
PHL  
OUTPUT  
V
OH  
1.5V  
1.5V  
RO  
V
OL  
1485 F07  
Figure 7. Receiver Propagation Delays  
6
LTC1485  
U
W
W
SWITCHI G TI E WAVEFOR S  
3V  
1.5V  
RE  
1.5V  
LZ  
f = 1MHz; t 10ns; t 10ns  
r
f
0V  
t
ZL  
t
5V  
RO  
1.5V  
OUTPUT NORMALLY LOW  
OUTPUT NORMALLY HIGH  
0.5V  
0.5V  
V
OL  
V
OH  
1.5V  
RO  
0V  
1485 F08  
t
ZH  
t
HZ  
Figure 8. Receiver Enable and Disable Times  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
Typical Application  
ends with a resistor equal to their characteristic imped-  
ance, typically 120. The input impedance of a receiver is  
typically20ktoGND, or0.6unitRS485load, soinpractice  
50 to 60 transceivers can be connected to the same wires.  
The optional shields around the twisted pair help reduce  
unwanted noise, and are connected to GND at one end.  
A typical connection of the LTC1485 is shown in Figure 9.  
Two twisted pair wires connect up to 32 driver/receiver  
pairs for half duplex data transmission. There are no  
restrictions on where the chips are connected to the wires  
and it isn’t necessary to have the chips connected at the  
ends. However, the wires must be terminated only at the  
LTC1485  
1
LTC1485  
1
RX  
DX  
RECEIVER  
RX  
DX  
RECEIVER  
2
3
2
3
7
4
4
DRIVER  
120Ω  
120Ω  
DRIVER  
8
LTC1485  
1485 F09  
1
2
3
RX  
DX  
RECEIVER  
7
8
4
DRIVER  
Figure 9. Typical Connection  
7
LTC1485  
PPLICATI  
O U  
W
U
A
S I FOR ATIO  
10  
Thermal Shutdown  
The LTC1485 has a thermal shutdown feature which  
protects the part from excessive power dissipation. If the  
outputs of the driver are accidentally shorted to a power  
supply or low impedance source, up to 250mA can flow  
through the part. The thermal shutdown circuit disables  
the driver outputs when the internal temperature reaches  
150°C and turns them back on when the temperature  
cools to 130°C. If the outputs of two or more LTC1485  
drivers are shorted directly, the driver outputs can not  
supply enough current to activate the thermal shutdown.  
Thus, the thermal shutdown circuit will not prevent con-  
tention faults when two drivers are active on the bus at the  
same time.  
1
0.1  
0.1  
1
10  
100  
FREQUENCY (MHz)  
1485 F10  
Figure 10. Attenuation vs Frequency for Belden 9481  
10k  
Cables and Data Rate  
The transmission line of choice for RS485 applications is  
a twisted pair. There are coaxial cables (twinaxial) made  
for this purpose that contain straight pairs, but these are  
less flexible, more bulky, and more costly than twisted  
pairs. Many cable manufacturers offer a broad range of  
120cables designed for RS485 applications.  
1k  
100  
10  
Losses in a transmission line are a complex combination  
of DC conductor loss, AC losses (skin effect), leakage, and  
AC losses in the dielectric. In good polyethylene cables  
such as the Belden 9841, the conductor losses and dielec-  
tric losses are of the same order of magnitude, leading to  
relatively low overall loss (Figure 10).  
2.5M  
10k  
100k  
DATA RATE (bps)  
1M  
10M  
1485 F11  
Figure 11. Cable Length vs Data Rate  
end of the cable, since this eliminates the possibility of  
gettingreflectionsfromtwodirections.Simplylookatthe  
driver output while transmitting square wave data. If the  
cable is terminated properly, the waveform will look like  
a square wave (Figure12).  
When using low loss cables, Figure 11 can be used as a  
guidelineforchoosingthemaximumlinelengthforagiven  
data rate. With lower quality PVC cables the dielectric loss  
factor can be 1000 times worse. PVC twisted pairs have  
terrible losses at high data rates (>100kbs), and greatly  
reduce the maximum cable length. At low data rates  
however, theyareacceptableandmuchmoreeconomical.  
If the cable is loaded excessively (47) the signal initially  
sees the surge impedance of the cable and jumps to an  
initial amplitude. The signal travels down the cable and is  
reflectedbackoutofphasebecauseofthemistermination.  
When the reflected signal returns to the driver, the ampli-  
tude will be lowered. The width of the pedestal is equal to  
twice the electrical length of the cable (about 1.5ns/foot).  
If the cable is lightly loaded (470) the signal reflects in  
phase and increases the amplitude at the driver output. An  
input frequency of 30kHz is adequate for tests out to 4000  
feet of cable.  
Cable Termination  
The proper termination of the cable is very important. If  
the cable is not terminated with its characteristic imped-  
ance, distorted waveforms will result. In severe cases,  
distorted (false) data and nulls will occur. A quick look at  
the output of the driver will tell how well the cable is  
terminated. It is best to look at a driver connected to the  
8
LTC1485  
O U  
S
W
U
PPLICATI  
A
I FOR ATIO  
PROBE HERE  
of the coupling capacitor should therefore be set at 16.3pF  
perfootofcablelengthfor120cables. Withthecoupling  
capacitors in place, power is consumed only on the signal  
edges and not when the driver output is idling at a 1 or 0  
state.A100nFcapacitorisadequateforlinesupto400feet  
in length. Be aware that the power savings start to de-  
crease once the data rate surpasses 1/(120• C).  
R
DX  
Rt = 120Ω  
Rt = 47Ω  
RX  
DRIVER  
RECEIVER  
t
Receiver Open-Circuit Fail-Safe  
Some data encoding schemes require that the output of  
the receiver maintains a known state (usually a logic 1)  
whenthedataisfinishedtransmittingandalldriversonthe  
lineareforcedintothree-state.ThereceiveroftheLTC1485  
has a fail-safe feature which guarantees the output to be in  
a logic 1 state when the receiver inputs are left floating  
(open-circuit).  
Rt = 470Ω  
1485 F12  
Figure 12. Termination Effects  
If the receiver output must be forced to a known state, the  
circuits of Figure 14 can be used.  
AC Cable Termination  
Cable termination resistors are necessary to prevent un-  
wanted reflections, but they consume power. The typical  
differential output voltage of the driver is 2V when the  
cable is terminated with two 120resistors, causing  
33mA of DC current to flow in the cable when no data is  
being sent. This DC current is about 10 times greater than  
the supply current of the LTC1485. One way to eliminate  
the unwanted current is by AC-coupling the termination  
resistors as shown in Figure 13.  
5V  
110Ω  
130Ω  
130Ω  
110Ω  
RECEIVER  
RX  
5V  
1.5k  
120Ω  
RECEIVER  
RX  
120Ω  
RECEIVER  
RX  
1.5k  
C
1485 F13  
C = LINE LENGTH (FT) • 16.3pF  
5V  
Figure 13. AC-Coupled Termination  
100k  
C
The coupling capacitor must allow high frequency energy  
to flow to the termination, but block DC and low frequen-  
cies. The dividing line between high and low frequency  
depends on the length of the cable. The coupling capacitor  
must pass frequencies above the point where the line  
represents an electrical one-tenth wavelength. The value  
RECEIVER  
RX  
120Ω  
1485 F14  
Figure 14. Forcing “0” When All Drivers Are Off  
9
LTC1485  
PPLICATI  
O U  
W
U
A
S I FOR ATIO  
The termination resistors are used to generate a DC bias  
which forces the receiver output to a known state, in this  
case a logic 0. The first method consumes about 208mW  
and the second about 8mW. The lowest power solution is  
to use an AC termination with a pull-up resistor. Simply  
swap the receiver inputs for data protocols ending in  
logic 1.  
A
B
DRIVER  
120Ω  
1485 F15  
Fault Protection  
Figure 15. ESD Protection with TransZorbs  
All of LTC’s RS485 products are protected against ESD  
transients up to 2kV using the human body model  
(100pF, 1.5k). However, some applications need more  
protection. The best protection method is to connect a  
bidirectionalTransZorb® fromeachlinesidepintoground  
(Figure 15).  
time and low series resistance. They are available from  
General Semiconductor Industries and come in a variety  
of breakdown voltages and prices. Be sure to pick a  
breakdown voltage higher than the common-mode volt-  
age required for your application (typically 12V). Also,  
don’t forget to check how much the added parasitic  
capacitance will load down the bus.  
A TransZorb is a silicon transient voltage suppressor that  
has exceptional surge handling capabilities: fast response  
TransZorb is a registered trademark of General Instruments, GSI  
U
O
TYPICAL APPLICATI S  
RS232 Receiver  
RS232  
IN  
RX  
5.6k  
RECEIVER  
1485 TA02  
RS232 to RS485 Level Translator with Hysteresis  
220k  
A
10k  
RS232  
120Ω  
DRIVER  
IN  
5.6k  
HYSTERESIS = 10k •  
1485 TA03  
B
V
– V /R 19 (k• VOLT)/R  
B
A
10  
LTC1485  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTIO  
N8 Package  
8-Lead Plastic DIP  
0.400*  
(10.160)  
MAX  
8
7
6
5
4
0.255 ± 0.015*  
(6.477 ± 0.381)  
1
2
3
0.130 ± 0.005  
0.300 – 0.325  
0.045 – 0.065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
0.015  
(0.380)  
MIN  
(3.175)  
MIN  
+0.025  
0.045 ± 0.015  
(1.143 ± 0.381)  
0.325  
–0.015  
+0.635  
8.255  
(
)
–0.381  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
(0.457 ± 0.076)  
N8 0694  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm).  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection of circuits as described herein will not infringe on existing patent rights.  
11  
LTC1485  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTIO  
S8 Package  
8-Lead Plastic SOIC  
0.189 – 0.197*  
(4.801 – 5.004)  
7
5
8
6
0.150 – 0.157*  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
1
3
4
2
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
SO8 0294  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006 INCH (0.15mm).  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC486  
Quad RS485 Driver  
Fits 75172 Pinout, Only 110µA I  
Q
Q
LTC488  
Quad RS485 Receiver  
Fits 75173 Pinout, Only 7mA I  
Q
LTC490  
Full Duplex RS485 Transceiver  
Ultra-Low Power Half Duplex RS485 Transceiver  
Fits 75179 Pinout, Only 300µA I  
Fits 75176 Pinout, 80µA I  
LTC1481  
Q
LT/GP 0795 2K REV A • PRINTED IN THE USA  
LINEAR TECHNOLOGY CORPORATION 1995  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7487  
12  
(408) 432-1900 FAX: (408) 434-0507 TELEX: 499-3977  

相关型号:

LT1490

Dual and Quad Micropower Rail-to-Rail Input and Output Op Amps
Linear

LT1490

1.25MHz, Over-The-Top Micropower, Rail-to-Rail Input and Output Op Amp in SOT-23
LINEAR_DIMENS

LT1490A

Dual Over-The-Top Micropower Rail-to-Rail Input and Output Op Amp
Linear

LT1490ACDD

Dual/Quad Over-The-Top Micropower Rail-to-Rail Input and Output Op Amps
Linear

LT1490ACDD#PBF

LT1490A - Dual Over-The-Top Micropower Rail-to-Rail Input and Output Op Amps; Package: DFN; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1490ACDD#TR

Operational Amplifier, 2 Func, 1550uV Offset-Max, BIPolar, PDSO8
Linear

LT1490ACDD#TRPBF

Dual Over-The-Top Micropower Rail-to-Rail Input and Output Op Amps
Linear

LT1490ACMS8

Dual Over-The-Top Micropower Rail-to-Rail Input and Output Op Amp
Linear

LT1490ACMS8#TR

LT1490A - Dual Over-The-Top Micropower Rail-to-Rail Input and Output Op Amps; Package: MSOP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1490ACMS8#TRPBF

LT1490A - Dual Over-The-Top Micropower Rail-to-Rail Input and Output Op Amps; Package: MSOP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1490ACN8

Dual Over-The-Top Micropower Rail-to-Rail Input and Output Op Amp
Linear

LT1490ACN8#PBF

LT1490A - Dual Over-The-Top Micropower Rail-to-Rail Input and Output Op Amps; Package: PDIP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear