LT1577CS-3.3/ADJ#TR [Linear]

LT1577 - Ultrafast Transient Response, Low Dropout Regulators Adjustable and Fixed; Package: SO; Pins: 16; Temperature Range: 0°C to 70°C;
LT1577CS-3.3/ADJ#TR
型号: LT1577CS-3.3/ADJ#TR
厂家: Linear    Linear
描述:

LT1577 - Ultrafast Transient Response, Low Dropout Regulators Adjustable and Fixed; Package: SO; Pins: 16; Temperature Range: 0°C to 70°C

线性稳压器IC 调节器 电源电路 光电二极管 输出元件
文件: 总20页 (文件大小:372K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1575/LT1577  
Ultrafast Transient Response,  
Low Dropout Regulators  
Adjustable and Fixed  
U
DESCRIPTION  
FEATURES  
UltraFastTM Transient Response Eliminates  
The LT®1575/LT1577 are single/dual controller ICs that  
drive low cost external N-channel MOSFETs as source  
followers to produce ultrafast transient response, low  
dropout voltage regulators.  
Tantalum and Electrolytic Output Capacitors  
FET RDS(ON) Defines Dropout Voltage  
1% Reference/Output Voltage Tolerance Over  
Temperature  
Typical Load Regulation: 1mV  
The LT1575/LT1577 achieve unprecedented transient-  
load performance by eliminating expensive tantalum or  
bulk electrolytic output capacitors in the most demanding  
modern microprocessor applications. Precision-trimmed  
adjustable and fixed output voltage versions accommo-  
date any required microprocessor power supply voltage.  
Selection of the N-channel MOSFET RDS(ON) allows very  
low dropout voltages to be achieved.  
High Side Sense Current Limit  
Multifunction ShUutdown Pin with Latchoff  
APPLICATIONS  
Pentium® Processor Supplies  
PowerPCTM Supplies  
5V to 3.XXV or 3.3V to 2.XXV Microprocessor Supplies  
GTL Termination  
Low Voltage Logic Supplies  
Unique protection features include a high side current  
limit amplifier that activates a fault protection timer  
circuit. A multifunction Shutdown pin provides either  
current limit time-out with latchoff, overvoltage protec-  
tion, thermal shutdown or a combination of these func-  
tions. TheLT1575isavailablein8-pinSOorPDIPandthe  
LT1577 is available in 16-pin narrow body SO.  
LT1575CN8/LT1575CS8  
LT1575CN8-1.5/LT1575CS8-1.5  
LT1575CN8-2.8/LT1575CS8-2.8  
LT1575CN8-3.3/LT1575CS8-3.3  
LT1575CN8-3.5/LT1575CS8-3.5  
LT1575CN8-5/LT1575CS8-5  
LT1577CS-ADJ/ADJ  
Adjustable  
1.5V Fixed  
2.8V Fixed  
3.3V Fixed  
3.5V Fixed  
5V Fixed  
Adjustable, Adjustable  
3.3V Fixed, Adjustable  
3.3V Fixed, 2.8V Fixed  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
UltraFast is a trademark of Linear Technology Corporation.  
Pentium is a registered trademark of Intel Corporation.  
PowerPC is a trademark of IBM Corporation.  
LT1577CS-3.3/ADJ  
LT1577CS-3.3/2.8  
Consult factory for additional output voltage combinations available  
in the LT1577.  
U
TYPICAL APPLICATION  
Transient Response for  
0.2A to 5A Output Load Step  
Ultrafast Transient Response 5V to 3.3V Low Dropout Regulator  
(For Schematic Including Current Limit, See Typical Applications)  
LT1575-3.3  
12V  
1
2
3
4
8
7
6
5
SHDN  
IPOS  
INEG  
5V  
50mV/DIV  
2A/DIV  
+
FOR T < 45°C:  
*
C5  
220µF  
C2  
1µF  
V
IN  
C6 = 24 × 1µF Y5V  
CERAMIC SURFACE  
MOUNT CAPACITORS.  
Q1  
IRFZ24  
GND  
OUT  
GATE  
COMP  
R2  
5Ω  
V
3.3V  
5A  
FOR T > 45°C:  
OUT  
C6 = 24 × 1µF X7R  
CERAMIC SURFACE  
MOUNT CAPACITORS.  
PLACE C6 IN THE  
MICROPROCESSOR  
SOCKET CAVITY  
R1  
7.5k  
C4  
C6*  
24µF  
C3  
10pF  
1000pF  
GND  
1575/77 TA02  
100µs/DIV  
1575/77 TA01  
1
LT1575/LT1577  
W W W  
U
ABSOLUTE AXI U RATI GS  
(Note 1)  
Junction Temperature (Note 2)................ 0°C to 100°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
VIN, IPOS, INEG ...................................................... 22V  
SHDN....................................................................... VIN  
Operating Ambient Temperature Range ..... 0°C to 70°C  
W
U
/O  
PACKAGE RDER I FOR ATIO  
TOP VIEW  
TOP VIEW  
SHDN  
1
2
3
4
IPOS  
INEG  
GATE  
COMP  
8
7
6
5
SHDN  
IPOS  
INEG  
GATE  
COMP  
1
2
3
4
8
7
6
5
TOP VIEW  
V
V
IN  
IN  
GND  
FB  
GND  
OUT  
SHDN1  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
IPOS1  
INEG1  
GATE1  
COMP1  
IPOS2  
INEG2  
GATE2  
COMP2  
V
IN1  
GND1  
FB1  
N8 PACKAGE  
8-LEAD PDIP  
S8 PACKAGE  
N8 PACKAGE  
8-LEAD PDIP  
S8 PACKAGE  
8-LEAD PLASTIC SO  
8-LEAD PLASTIC SO  
TJMAX = 100°C, θJA = 100°C/ W (N8)  
JMAX = 100°C, θJA = 130°C/ W (S8)  
TJMAX = 100°C, θJA = 100°C/ W (N8)  
JMAX = 100°C, θJA = 130°C/ W (S8)  
SHDN2  
T
T
V
IN2  
GND2  
FB2  
ORDER PART NUMBER  
ORDER PART NUMBER  
LT1575CN8  
LT1575CS8  
LT1575CN8-1.5  
LT1575CS8-3.3  
LT1575CN8-3.5  
LT1575CS8-3.5  
LT1575CN8-5  
LT1575CS8-5  
S PACKAGE  
16-LEAD PLASTIC NARROW SO  
LT1575CS8-1.5  
LT1575CN8-2.8  
LT1575CS8-2.8  
LT1575CN8-3.3  
TJMAX = 100°C, θJA = 100°C/ W  
S8 PART MARKING  
1575  
S8 PART MARKING  
ORDER PART NUMBER  
LT1577CS-ADJ/ADJ  
157535  
15755  
157515  
157528  
157533  
TOP VIEW  
TOP VIEW  
SHDN1  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
16  
15  
14  
13  
12  
11  
10  
9
IPOS1  
SHDN1  
1
2
3
4
5
6
7
8
IPOS1  
INEG1  
GATE1  
COMP1  
IPOS2  
INEG2  
GATE2  
COMP2  
V
INEG1  
GATE1  
COMP1  
IPOS2  
INEG2  
GATE2  
COMP2  
V
IN1  
IN1  
GND1  
OUT-3.3  
SHDN2  
GND1  
OUT-3.3  
SHDN2  
V
V
IN2  
IN2  
GND2  
FB  
GND2  
OUT-2.8  
S PACKAGE  
16-LEAD PLASTIC NARROW SO  
S PACKAGE  
16-LEAD PLASTIC NARROW SO  
TJMAX = 100°C, θJA = 100°C/ W  
TJMAX = 100°C, θJA = 100°C/ W  
ORDER PART NUMBER  
LT1577CS-3.3/2.8  
ORDER PART NUMBER  
LT1577CS-3.3/ADJ  
Consult factory for Industrial and Military grade parts.  
2
LT1575/LT1577  
ELECTRICAL CHARACTERISTICS  
TA = 25°C, VIN = 12V, GATE = 6V, IPOS = INEG = 5V, SHDN = 0.75V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Supply Current  
5
12  
19  
mA  
Q
V
LT1575 Reference Voltage  
0.6  
1.0  
1.210  
1.210  
0.6  
1.0  
%
%
FB  
V
LT1575-1.5 Output Voltage  
LT1575-2.8 Output Voltage  
LT1575-3.3 Output Voltage  
LT1575-3.5 Output Voltage  
LT1575-5 Output Voltage  
0.6  
1.0  
1.500  
1.500  
0.6  
1.0  
%
%
OUT  
0.6  
1.0  
2.800  
2.800  
0.6  
1.0  
%
%
0.6  
1.0  
3.300  
3.300  
0.6  
1.0  
%
%
0.6  
1.0  
3.500  
3.500  
0.6  
1.0  
%
%
0.6  
1.0  
5.000  
5.000  
0.6  
1.0  
%
%
Line Regulation  
10V V 20V  
0.01  
0.6  
1.0  
84  
0.03  
4.0  
1.5  
%/V  
µA  
mA  
dB  
dB  
dB  
dB  
dB  
dB  
V
IN  
I
I
FB Input Bias Current  
FB = V  
FB  
FB  
OUT  
OUT Divider Current  
OUT = V  
0.5  
69  
67  
60  
60  
60  
56  
OUT  
A
LT1575 Large-Signal Voltage Gain  
LT1575-1.5 Large-Signal Voltage Gain  
LT1575-2.8 Large-Signal Voltage Gain  
LT1575-3.3 Large-Signal Voltage Gain  
LT1575-3.5 Large-Signal Voltage Gain  
LT1575-5 Large-Signal Voltage Gain  
GATE Output Swing Low (Note 3)  
GATE Output Swing High  
V
V
V
V
V
V
= 3V to 10V  
= 3V to 10V  
= 3V to 10V  
= 3V to 10V  
= 3V to 10V  
= 3V to 10V  
= 0mA  
VOL  
GATE  
GATE  
GATE  
GATE  
GATE  
GATE  
GATE  
GATE  
82  
76  
75  
74  
71  
V
V
I
I
2.5  
3.0  
1.0  
OL  
= 0mA  
V
– 1.6  
V
– 1  
IN  
V
OH  
IN  
IPOS + INEG Supply Current  
Current Limit Threshold Voltage  
3V IPOS 20V  
0.3  
0.625  
mA  
42  
37  
50  
50  
58  
63  
mV  
mV  
Current Limit Threshold Voltage  
Line Regulation  
3V IPOS 20V  
0.20  
0.50  
%/V  
SHDN Sink Current  
Current Flows Into Pin  
Current Flows Out of Pin  
2.5  
–8  
5.0  
15  
0.1  
8.0  
23  
0.25  
2.20  
1.240  
150  
µA  
µA  
V
SHDN Source Current  
SHDN Low Clamp Voltage  
SHDN High Clamp Voltage  
SHDN Threshold Voltage  
SHDN Threshold Hysteresis  
1.50  
1.18  
50  
1.85  
1.21  
100  
V
V
mV  
The  
denotes specifications which apply over the full operating  
Because the LT1577 consists of two regulators in the package, the total  
LT1577 power dissipation must be used for its junction temperature  
temperature range.  
calculation. The total LT1577 P = P (Regulator 1) + P (Regulator 2).  
D
D
D
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of the device may be impaired.  
Note 3: The V  
of the external MOSFET must be greater than  
GS(th)  
3V – V  
.
OUT  
Note 2: T is calculated from the ambient temperature T and power  
J
A
dissipation P according to the following formulas:  
D
LT1575CN8: T = T + (P • 100°CW)  
J
A
D
LT1575CS8: T = T + (P • 130°CW)  
J
A
D
LT1577CS: T = T + (P • 100°CW)  
J
A
D
3
LT1575/LT1577  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Adjustable LT1575 VREF  
vs Temperature  
FB Input Bias Current  
vs Temperature  
Quiescent Current vs Temperature  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
4.0  
3.5  
1.222  
1.220  
1.218  
1.216  
3.0  
2.5  
V
IN  
V
IN  
= 12V  
= 20V  
1.214  
1.212  
2.0  
1.5  
1.210  
1.208  
V
IN  
= 8V  
1.206  
1.204  
V
IN  
= 20V  
1.0  
0.5  
8
7
6
1.202  
1.200  
V
IN  
V
IN  
= 12V  
= 8V  
5
0
1.198  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1575/77 G03  
1575/77 G01  
1575/77 G02  
LT1575-2.8 VOUT vs Temperature  
LT1575-3.3 VOUT vs Temperature  
LT1575-1.5 VOUT vs Temperature  
2.828  
2.824  
2.800  
2.816  
2.812  
2.808  
2.804  
2.800  
2.796  
2.792  
2.788  
2.784  
2.780  
2.776  
2.772  
3.333  
3.327  
3.321  
3.315  
3.309  
3.303  
3.297  
3.291  
3.285  
3.279  
3.273  
3.267  
1.515  
1.512  
1.509  
1.506  
1.503  
1.500  
1.497  
1.494  
1.491  
1.488  
1.485  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
50  
100 125 150 175  
75  
25  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1575/77 G04  
1575/77 G06  
1575/77 G05  
OUT Divider Current  
vs Temperature  
LT1575-5 VOUT vs Temperature  
LT1575-3.5 VOUT vs Temperature  
3.535  
3.530  
3.525  
3.520  
3.515  
3.510  
3.505  
3.500  
3.495  
3.490  
3.485  
3.480  
3.475  
3.470  
3.465  
5.050  
5.040  
5.030  
5.020  
5.010  
5.000  
4.990  
4.980  
4.970  
4.960  
4.950  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
–75 –50 –25  
0
25 50 75  
100 125  
150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1575/77 G08  
1575/77 G09  
1575/77 G07  
4
LT1575/LT1577  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Error Amplifier Large-Signal  
Voltage Gain vs Temperature  
VREF/VOUT Line Regulation  
vs Temperature  
Gain and Phase vs Frequency  
200  
150  
100  
50  
0.030  
0.025  
120  
115  
110  
105  
100  
95  
0.020  
0.015  
PHASE  
90  
GAIN  
0.010  
0.005  
0
85  
80  
75  
70  
0
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
75 100 125 150 175  
1k  
10k  
100k  
1M  
10M  
100M  
25 50  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
1575/77 G12  
1575/77 G10  
1575/77 G11  
Gate Output Swing Low  
vs Temperature  
Gate Output Swing High  
vs Temperature  
IPOS + INEG Supply Current  
vs Temperature  
3.00  
2.75  
3.0  
2.5  
1000  
900  
I
= 50mA  
LOAD  
2.50  
2.25  
IPOS = INEG = 5V  
IPOS = INEG = 12V  
IPOS = INEG = 20V  
800  
NO LOAD  
2.0  
1.5  
700  
600  
500  
400  
I
= 50mA  
LOAD  
2.00  
1.75  
IPOS = INEG = 3V  
1.0  
0.5  
0
1.50  
1.25  
NO LOAD  
1.00  
300  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75  
0
50 75 100 125 150 175  
50 –25  
25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1575/77 G13  
1575/77 G14  
1575/77 G15  
Current Limit Threshold Voltage  
Line Regulation vs Temperature  
Current Limit Threshold Voltage  
vs Temperature  
0
65  
60  
0.1  
0.2  
0.3  
0.4  
0.5  
IPOS = 5V  
IPOS = 3V  
55  
50  
IPOS = 20V  
45  
40  
35  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1575/77 G17  
1575/77 G16  
5
LT1575/LT1577  
TYPICAL PERFORMANCE CHARACTERISTICS  
W
U
SHDN Low Clamp Voltage  
vs Temperature  
SHDN Sink Current  
vs Temperature  
SHDN Source Current  
vs Temperature  
–10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
0.25  
0.20  
0.15  
0.10  
0.05  
0
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
75 50 25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1575/77 G18  
1575/77 G19  
1575/77 G20  
SHDN High Clamp Voltage  
vs Temperature  
SHDN Hysteresis vs Temperature  
2.1  
2.0  
150  
140  
130  
120  
110  
100  
90  
1.9  
1.8  
1.7  
1.6  
1.5  
80  
70  
60  
50  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1575/77 G21  
1575/77 G22  
6
LT1575/LT1577  
U
U
U
PIN FUNCTIONS  
SHDN (Pin 1): This is a multifunction shutdown pin that  
provides GATE drive latchoff capability. A 15µA current  
source, that turns on when current limit is activated,  
charges a capacitor placed in series with SHDN to GND  
and performs a current limit time-out function. The pin is  
also the input to a comparator referenced to VREF (1.21V).  
WhenthepinpullsaboveVREF, thecomparatorlatchesthe  
gate drive to the external MOSFET off. The comparator  
typically has 100mV of hysteresis and the Shutdown pin  
can be pulled low to reset the latchoff function. This pin  
provides overvoltage protection or thermal shutdown  
protection when driven from various resistor divider  
schemes.  
sation. The transconductance of the error amplifier is 15  
millimhos and open-loop voltage gain is typically 84dB.  
Frequency compensation is generally performed with a  
series RC network to ground.  
GATE (Pin 6): This is the output of the error amplifier that  
drives N-channel MOSFETs with up to 5000pF of “effec-  
tive” gate capacitance. The typical open-loop output  
impedance is 2. When using low input capacitance  
MOSFETs (<1500pF), a small gate resistor of 2to 10Ω  
dampens high frequency ringing created by an LC reso-  
nance that is created by the MOSFET gate’s lead induc-  
tance and input capacitance. The GATE pin delivers up to  
50mA for a few hundred nanoseconds when slewing the  
gateoftheN-channelMOSFETinresponsetooutputload  
current transients.  
VIN (Pin 2): This is the input supply for the IC that powers  
the majority of internal circuitry and provides sufficient  
gatedrivecompliancefortheexternalN-channelMOSFET.  
Thetypicalsupplyvoltageis12Vwith12.5mAofquiescent  
current. The maximum operating VIN is 20V and the  
minimum operating VIN is set by VOUT + VGS of the  
MOSFET at max. IOUT + 1.6V (worst-case VIN to GATE  
output swing).  
INEG (Pin 7): This is the negative sense terminal of the  
current limit amplifier. A small sense resistor is connected  
in series with the drain of the external MOSFET and is  
connected between the IPOS and INEG pins. A 50mV  
threshold voltage in conjunction with the sense resistor  
value sets the current limit level. The current sense resis-  
tor can be a low value shunt or can be made from a piece  
of PC board trace. If the current limit amplifier is not used,  
tie the INEG pin to IPOS to defeat current limit. An  
alternative is to ground the INEG pin. This action disables  
the current limit amplifier and additional internal circuitry  
activates the timer circuit on the SHDN pin if the GATE pin  
swings to the VIN rail. This option provides the user with  
a “sense-less” current limit function.  
GND (Pin 3): Analog Ground. This pin is also the negative  
sense terminal for the internal 1.21V reference. Connect  
external feedback divider networks that terminate to GND  
and frequency compensation components that terminate  
to GND directly to this pin for best regulation and perfor-  
mance.  
FB (Pin 4): This is the inverting input of the error amplifier  
for the adjustable voltage LT1575. The noninverting input  
is tied to the internal 1.21V reference. Input bias current  
forthispinistypically0.6µAflowingoutofthepin.Thispin  
is normally tied to a resistor divider network to set output  
voltage. Tie the top of the external resistor divider directly  
to the output voltage for best regulation performance.  
IPOS (Pin 8): This is the positive sense terminal of the  
current limit amplifier. Tie this pin directly to the main  
input voltage from which the output voltage is regulated.  
The typical input voltage is a 5V logic supply. This pin is  
also the input to a comparator on the fixed voltage ver-  
sions that monitors the input/output differential voltage of  
theexternalMOSFET.Ifthisdifferentialvoltageislessthan  
0.5V,thentheSHDNtimerisnotallowedtostartevenifthe  
GATE is at the VIN rail. This allows the regulator to start up  
normallyastheinputvoltageisrampingup,evenwithvery  
slow ramp rates.  
OUT (Pin 4): This is the inverting input of the error  
amplifier for the fixed voltage LT1575. The fixed voltage  
parts contain a precision resistor divider network to set  
output voltage. The typical resistor divider current is 1mA  
into the pin. Tie this pin directly to the output voltage for  
best regulation performance.  
COMP (Pin 5):This is the high impedance gain node of the  
erroramplifierandisusedforexternalfrequencycompen-  
7
LT1575/LT1577  
W
BLOCK DIAGRAM  
LT1575 Adjustable Voltage  
V
TH1  
50mV  
IPOS  
INEG  
I1  
+
15µA  
I
AMP  
LIM  
OR1  
SW1  
NORMALLY  
OPEN  
D1  
D2  
SHDN  
+
COMP1  
R2  
5k  
+
Q6  
I2  
5µA  
COMP2  
COMP3  
100mV  
HYSTERESIS  
OR2  
SW2  
NORMALLY  
CLOSED  
+
V
IN  
V
TH2  
1V  
1.21V  
START-UP  
V
REF  
GND  
FB  
+
GATE  
ERROR AMP  
COMP  
I3  
100µA  
Q4  
Q5  
Q1  
Q2  
Q3  
R1  
50k  
1575/77 BD1  
8
LT1575/LT1577  
W
BLOCK DIAGRAM  
LT1575 Fixed Voltage  
IPOS  
I1  
+
15µA  
V
TH1  
I
AMP  
LIM  
INEG  
OR1  
SW1  
50mV  
NORMALLY  
OPEN  
D1  
D2  
SHDN  
+
+
V
TH3  
COMP4  
COMP2  
COMP3  
COMP1  
500mV  
R2  
5k  
Q6  
100mV  
HYSTERESIS  
I2  
5µA  
+
OR2  
SW2  
NORMALLY  
CLOSED  
+
V
IN  
V
TH2  
1V  
1.21V  
START-UP  
V
REF  
Q7  
GND  
OUT  
+
GATE  
ERROR AMP  
R3*  
COMP  
I3  
100µA  
Q4  
Q5  
Q1  
Q2  
Q3  
R4*  
R1  
50k  
*V  
= (1 + R3/R4)V  
REF  
1575/77 BD2  
OUT  
9
LT1575/LT1577  
U
W U U  
APPLICATIONS INFORMATION  
Introduction  
nificant cost as all additional bulk capacitance is removed.  
The additional savings of insertion cost, purchasing/in-  
ventory cost and board space are readily apparent.  
The current generation of microprocessors place strin-  
gent demands on the power supply that powers the  
processor core. These microprocessors cycle load cur-  
rent from near zero to amps in tens of nanoseconds.  
Output voltage tolerances as low as ±100mV include  
transient response as part of the specification. Some  
microprocessorsrequireonlyasingleoutputvoltagefrom  
which the core and I/O circuitry operate. Other higher  
performance processors require a separate power supply  
voltage for the processor core and the I/O circuitry. These  
requirements mandate the need for very accurate, very  
high speed regulator circuits.  
Precision-trimmed adjustable and fixed output voltage  
versions accommodate any required microprocessor  
power supply voltage. Proper selection of the N-channel  
MOSFET RDS(ON) allows user-settable dropout voltage  
performance. The only output capacitors required are the  
high frequency ceramic decoupling capacitors. This regu-  
lator design provides ample bandwidth and responds to  
transient load changes in a few hundred nanoseconds  
versus regulators that respond in many microseconds.  
The ceramic capacitor network generally consists of 10 to  
24 1uF capacitors for individual microprocessor require-  
ments. The LT1575/LT1577 family also incorporates cur-  
rent limitingfor no additional system cost, provides on/off  
control and overvoltage protection or thermal shutdown  
with simple external components.  
Previously employed solutions included monolithic  
3-terminallinearregulators,PNPtransistorsdrivenbylow  
cost control circuits and simple buck converter switching  
regulators. The 3-terminal regulator achieves a high level  
of integration, the PNP driven regulator achieves very low  
dropoutperformanceandtheswitchingregulatorachieves  
high electrical efficiency.  
Therefore, the unique design of these new ICs combines  
the benefits of low dropout voltage, high functional inte-  
gration, precision performance and ultrafast transient  
response, as well as providing significant cost savings on  
the output capacitance needed in fast load transient appli-  
cations. As lower input/output differential voltage applica-  
tions become increasingly prevalent, an LT1575-based  
solutionachievescomparableefficiencyperformancewith  
a switching regulator at an appreciable cost savings.  
However, the common trait manifested by these solutions  
is that transient response is measured in many microsec-  
onds. This fact translates to a regulator output decoupling  
capacitor scheme that requires several hundred microfar-  
ads of very low ESR bulk capacitance using multiple  
capacitors surrounding the CPU. This required bulk ca-  
pacitance is in addition to the ceramic decoupling capaci-  
tor network that handles the transient load response  
during the first few hundred nanoseconds as well as  
providing microprocessor clock frequency noise immu-  
nity. The combined cost of all capacitors is a significant  
percentage of the total power supply cost.  
The new LT1575/LT1577 family of low dropout regulator  
controller ICs step to the next level of performance re-  
quired by system designers for the latest generation  
motherboards and microprocessors. The simple versatil-  
ity and benefits derived from these circuits allow the  
power supply needs of today’s high performance micro-  
processors to be met with ease.  
The LT1575/LT1577 family of single/dual controller ICs  
are unique, easy to use devices that drive external  
N-channelMOSFETsassourcefollowersandpermitauser  
to realize an extremely low dropout, ultrafast transient  
response regulator. These circuits achieve superior regu-  
lator bandwidth and transient load performance by com-  
pletely eliminating expensive tantalum or bulk electrolytic  
capacitors in the most modern and demanding micropro-  
cessor applications. For example, a 200MHz Pentium  
processor can operate with only the recommended 24 1µF  
ceramic capacitors. Users benefit directly by saving sig-  
Block Diagram Operation  
The primary block diagram elements consist of a simple  
feedback control loop and the secondary block diagram  
elements consist of multiple protection functions. Exam-  
ining the block diagram for the LT1575, a start-up circuit  
provides controlled start-up for the IC, including the  
precision-trimmed bandgap reference, and establishes all  
internal current and voltage biasing.  
10  
LT1575/LT1577  
U
W U U  
APPLICATIONS INFORMATION  
Reference voltage accuracy for the adjustable version and  
output voltage accuracy for the fixed voltage versions are  
specified as ±0.6% at room temperature and as ±1% over  
the full operating temperature range. This places the  
LT1575/LT1577familyamongaselectgroupofregulators  
with a very tightly specified output voltage tolerance. The  
accurate 1.21V reference is tied to the noninverting input  
of the main error amplifier in the feedback control loop.  
Because the MOSFET pass transistor is connected as a  
source follower, the power path gain is much more pre-  
dictable than designs that employ a discrete PNP transis-  
tor as the pass device. This is due to the significant  
production variations encountered with PNP Beta.  
MOSFETsarealsoveryhighspeeddeviceswhichenhance  
the ability to produce a stable wide bandwidth control  
loop. An additional advantage of the follower topology is  
inherently good line rejection. Input supply disturbances  
donotpropagatethroughtotheoutput. Thefeedbackloop  
for a regulator circuit is completed by providing an error  
signal to the FB pin in the adjustable voltage version and  
the OUT pin in the fixed voltage version. In both cases, a  
resistor divider network senses the output voltage and  
sets the regulated DC bias point. In general, the LT1575  
regulator feedback loop permits a loop crossover fre-  
quency on the order of 1MHz while maintaining good  
phase and gain margins. This unity-gain frequency is a  
factor of 20 to 30 times the bandwidth of currently  
implementedregulatorsolutionsformicroprocessorpower  
supplies. This significant performance benefit is what  
permits the elimination of all bulk output capacitance.  
Theerroramplifierconsistsofasinglehighgaingm stage  
with a transconductance equal to 15 millimhos. The  
inverting terminal is brought out as the FB pin in the  
adjustable voltage version and as the OUT pin in fixed  
voltage versions. The gm stage provides differential-to-  
single ended conversion at the COMP pin. The output  
impedance of the gm stage is about 1Mand thus, 84dB  
of typical DC error amplifier open-loop gain is realized  
along with a typical 75MHz uncompensated unity-gain  
crossover frequency. Note that the overall feedback  
loop’s DC gain decreases from the gain provided by the  
error amplifier by the attenuation factor in the resistor  
divider network which sets the DC output voltage. These  
attenuation factors are already built into the Open-Loop  
Voltage Gain specifications for the LT1575 fixed voltage  
versions in the Electrical Characteristics table to simplify  
user calculations. External access to the high impedance  
gain node of the error amplifier permits typical loop  
compensation to be accomplished with a series RC  
network to ground.  
Several other unique features are included in the design  
that increase its functionality and robustness. These func-  
tions comprise the remainder of the block diagram.  
A high side sense, current limit amplifier provides active  
current limiting for the regulator. The current limit ampli-  
fier uses an external low value shunt resistor connected in  
series with the external MOSFET’s drain. This resistor can  
be a discrete shunt resistor or can be manufactured from  
a Kelvin-sensed section of “free” PC board trace. All load  
currentflowsthroughtheMOSFETdrainandthus,through  
the sense resistor. The advantage of using high side  
current sensing in this topology is that the MOSFET’s gain  
and the main feedback loop’s gain remain unaffected. The  
sense resistor develops a voltage equal to IOUT(RSENSE).  
The current limit amplifier’s 50mV threshold voltage is a  
goodcompromisebetweenpowerdissipationinthesense  
resistor, dropout voltage impact and noise immunity.  
Current limit activates when the sense resistor voltage  
equals the 50mV threshold.  
A high speed, high current output stage buffers the COMP  
node and drives up to 5000pF of “effective” MOSFET gate  
capacitance with almost no change in load transient per-  
formance. The output stage delivers up to 50mA peak  
when slewing the MOSFET gate in response to load  
current transients. The typical output impedance of the  
GATE pin is typically 2. This pushes the pole due to the  
error amplifier output impedance and the MOSFET input  
capacitance well beyond the loop crossover frequency. If  
the capacitance of the MOSFET used is less than 1500pF,  
it may be necessary to add a small value series gate  
resistor of 2to 10. This gate resistor helps damp the  
LC resonance created by the MOSFET gate’s lead induc-  
tance and input capacitance. In addition, the pole formed  
by this resistance and the MOSFET input capacitance can  
be fine tuned.  
Two events occur when current limit activates: the first is  
that the current limit amplifier drives Q2 in the block  
11  
LT1575/LT1577  
U
W U U  
APPLICATIONS INFORMATION  
diagram and clamps the positive swing of the COMP node  
in the main error amplifier to a voltage that provides an  
output load current of 50mV/RSENSE. This action contin-  
ues as long as the output current overload persists. The  
second event is that a timer circuit activates at the SHDN  
pin.Thispinisnormallyheldlowbya5µAactivepull-down  
that limits to 100mV above ground. When current limit  
activates, the 5µA pull-down turns off and a 15µA pull-up  
current source turns on. Placing a capacitor in series with  
the SHDN pin to ground generates a programmable time  
ramp voltage.  
provide thermal shutdown with the use of a thermistor in  
the divider network. Diode-ORing these functions to-  
gether is simple to accomplish and provides multiple  
functionality for one pin.  
If the current limit amplifier is not used, two choices  
present themselves. The simplest choice is to tie the INEG  
pin directly to the IPOS pin. This action defeats current  
limit and provides the simplest, no frills circuit. An appli-  
cation in which the current limit amplifier is not used is  
where an extremely low dropout voltage must be achieved  
and the 50mV threshold voltage cannot be tolerated.  
The SHDN pin is also the positive input of COMP1. The  
negativeinputistiedtotheinternal1.21Vreference. When  
the SHDN pin ramps above VREF, the comparator drives  
Q4 and Q5. This action pulls the COMP and GATE pins low  
and latches the external MOSFET drive off. This condition  
reduces the MOSFET power dissipation to zero. The time  
period until the latched-off condition occurs is typically  
equaltoCSHUT(1.11V)/15µA. Forexample, a1µFcapacitor  
on the SHDN pin yields a 74ms ramp time. In short, this  
unique circuit block performs a current limit time-out  
function that latches off the regulator drive after a pre-  
defined time period. The time-out period selected is a  
function of system requirements including start-up and  
safe operating area. The SHDN pin is internally clamped to  
typically 1.85V by Q6 and R2. The comparator tied to the  
SHDN pin has 100mV of typical hysteresis to provide  
noise immunity. The hysteresis is especially useful when  
using the SHDN pin for thermal shutdown.  
However, a second available choice permits a user to  
provide short-circuit protection with no external sensing.  
This technique is activated by grounding the INEG pin.  
This action disables the current limit amplifier because  
Schottky diode D1 clamps the amplifier’s output and  
prevents Q2 from pulling down the COMP node. In addi-  
tion, Schottky diode D2 turns off pull-down transistor Q1.  
Q1isnormallyonandholdsinternalcomparatorCOMP3’s  
output low. This comparator circuit, now enabled, moni-  
torstheGATEpinanddetectssaturationatthepositiverail.  
When a saturated condition is detected, COMP3 activates  
the shutdown timer. Once the time-out period occurs, the  
output is shut down and latched off. The operation of  
resetting the latch remains the same. Note that this tech-  
nique does not limit the FET current during the time-out  
period. The output current is only limited by the input  
powersupplyandtheinput/outputimpedance. Settingthe  
timer to a short period in this mode of operation keeps the  
external MOSFET within its SOA (safe operating area)  
boundaryandkeepstheMOSFET’stemperatureriseunder  
control.  
Restoring normal operation after the load current fault is  
cleared is accomplished in two ways. One option is to  
recycle the nominal 12V LT1575 supply voltage as long as  
an external bleed path for the Shutdown pin capacitor is  
provided. The second option is to provide an active reset  
circuit that pulls the SHDN pin below VREF. Pulling the  
SHDN pin below VREF turns off the 15µA pull-up current  
source and reactivates the 5µA pull-down. If the SHDN pin  
is held below VREF during a fault condition, the regulator  
continues to operate in current limit into a short. This  
action requires being able to sink 15µA from the SHDN pin  
at less than 1V. The 5µA pull-down current source and the  
15µA pull-up current source are designed low enough in  
value so that an external resistor divider network can drive  
the SHDN pin to provide overvoltage protection or to  
Unique circuit design incorporated into the LT1575 allevi-  
ates all concerns about power supply sequencing. The  
issue of power supply sequencing is an important topic as  
the typical LT1575 application has inputs from two sepa-  
rate power supply voltages. If the typical 12V VIN supply  
voltage is slow in ramping up, insufficient MOSFET gate  
drive is present and therefore, the output voltage does  
not come up. If the VIN supply voltage is present, but the  
typical 5V supply voltage tied to the IPOS pin has not  
started yet, then the feedback loop wants to drive the  
GATE pin to the positive VIN rail. This would result in a  
12  
LT1575/LT1577  
U
W U U  
APPLICATIONS INFORMATION  
very large current spike as soon as the 5V supply started  
torampup.However,undervoltagelockoutcircuitCOMP2,  
whichmonitorstheIPOSsupplyvoltage,holdsQ3onand  
pulls the COMP pin low until the IPOS voltage increases  
to greater than the internal 1.21 reference voltage. The  
undervoltage lockout circuit then smoothly releases the  
COMP pin and allows the output voltage to come up in  
dropout from the input supply voltage. An additional  
benefit derived from the speed of the LT1575 feedback  
loop is that turn-on overshoot is virtually nonexistent in  
a properly compensated system.  
cessors dictate that precision resistors must be used with  
currently available adjustable voltage regulators to meet  
the initial set point tolerance. The LT1575 fixed voltage  
versions incorporate the precision resistor divider into the  
IC and still maintain a 1% output voltage tolerance over  
temperature. Thus, the LT1575 fixed voltage versions  
completely eliminate the requirement for precision resis-  
tors and this results in additional system cost savings.  
Applications Support  
Linear Technology invests an enormous amount of time,  
resources and technical expertise in understanding, de-  
signing and evaluating microprocessor power supply so-  
lutions for system designers. As processor speeds and  
powerincrease, thepowersupplychallengespresentedto  
the motherboard designer increase as well. Application  
Note 69, “Using the LT1575 Linear Regulator Controller,”  
has been written and serves as an extremely useful guide  
for this new family of ICs. This Application Note covers  
topics including PC board layout for the LT1575/LT1577  
family, MOSFET selection criteria, external component  
selection (capacitors) and loop compensation. Linear  
Technology welcomes the opportunity to discuss, design,  
evaluate and optimize a microprocessor power supply  
solution with a customer. For additional information,  
consult the factory.  
An additional circuit feature is built-in to the LT1575 fixed  
voltage versions. When the regulator circuit starts up, it  
must charge up the output capacitors. The output voltage  
typicallytrackstheinputvoltagesupplyasitrampsupwith  
the difference in input/output voltage defined by the drop-  
outvoltage. Untilthefeedbackloopcomesintoregulation,  
the circuit operation results in the GATE pin being at the  
positive VIN rail, which starts the timer at the SHDN pin if  
the current limit amplifier is disabled. However, internal  
comparator COMP4 monitors the input/output voltage  
differential. This comparator does not permit the shut-  
down timer to start until the differential voltage is greater  
than 500mV. This permits normal start-up to occur.  
One final benefit is derived in using an LT1575 fixed  
voltage version. Today’s highest performance micropro-  
U
TYPICAL APPLICATIONS N  
UltraFast Transient Response 5V to 3.5V Low Dropout Regulator  
with Current Limit and Timer Latchoff  
LT1575-3.5  
12V  
1
2
3
4
8
7
6
5
5V  
SHDN  
IPOS  
INEG  
C1  
1µF  
R3*  
0.007Ω  
Q2  
VN2222L  
RESET  
C2  
1µF  
V
IN  
+
GND  
OUT  
GATE  
COMP  
C5  
R2  
5Ω  
220µF  
Q1  
IRFZ24  
V
*R3 IS MADE FROM  
“FREE” PC BOARD  
TRACE  
OUT  
3.5V  
5A  
**C6 = 24 × 1µF X7R  
CERAMIC SURFACE  
MOUNT CAPACITORS.  
PLACE C6 IN THE  
MICROPROCESSOR  
SOCKET CAVITY  
R1  
C6**  
24µF  
C3  
10pF  
7.5k  
C4  
1000pF  
GND  
1575/77 TA11  
13  
LT1575/LT1577  
U
TYPICAL APPLICATIONS N  
Setting Output Voltage with the Adjustable LT1575  
Using “Sense-Less” Current Limit  
V
R3  
10Ω  
OUT  
SHDN IPOS  
V
CC  
R2  
C1  
10µF  
C
T
FB  
INEG  
GATE  
R1  
Q1  
V
= 1.21V(1 + R2/R1)  
OUT  
V
OUT  
1575 TA04  
1575 TA03  
Setting Current Limit  
Setting Current Limit with Foldback Limiting  
IPOS  
V
IPOS  
INEG  
V
CC  
CC  
R5  
R
*
R4  
SENSE  
10Ω  
INEG  
GATE  
D1  
Q2  
1N4148  
D2  
1N4148  
Q3  
GATE  
V
OUT  
R6  
1.2k  
*I  
= 50mV/R  
LIM  
SENSE  
V
OUT  
R
= DISCRETE SHUNT RESISTOR OR  
= KELVIN-SENSED PC BOARD TRACE  
SENSE  
SENSE  
1575 TA06  
R
ACTIVATING CURRENT LIMIT ALSO ACTIVATES  
THE SHDN PIN TIMER  
1575 TA05  
Shutdown Time-Out with Reset  
Basic Thermal Shutdown  
SHDN  
5V  
RESET  
0V TO 5V  
Q1  
VN2222L  
RT1  
10k  
R1  
100k  
C1*  
NTC  
RT1 = DALE NTHS-1206N02  
THERMALLY MOUNT RT1  
IN CLOSE PROXIMITY  
TO THE EXTERNAL  
SHDN  
*C1 = 15µA(t)/1.11V  
t = SHUTDOWN LATCHOFF TIME  
R4  
549Ω  
1575 TA07  
N-CHANNEL MOSFET  
1575 TA08  
Shutdown Time-Out with Reset  
Overvoltage Protection  
R2  
100k  
V
SHDN  
C2*  
OUT  
RESET  
0V TO 5V  
Q2  
2N3904  
R6  
R3  
100k  
SHDN  
R5  
*C2 = 15µA(t)/1.11V  
t = SHUTDOWN LATCH-OFF TIME  
1575 TA10  
1575 TA09  
V
V
= 1.21(R6/R5) + 5µA(R6)  
= 1.11(R6/R5) – 15µA(R6)  
OUT(uth)  
OUT(lth)  
14  
LT1575/LT1577  
U
TYPICAL APPLICATIONS N  
Pentium® II Processor GTL+ Power Supply  
V
TT  
1.5V  
V
IN  
3.3V  
12V  
+
C1  
220µF  
6.3V  
R4  
R6  
75Ω  
R8  
100Ω  
R10  
R11  
R9  
100Ω  
75Ω  
100100Ω  
V
REF  
V
REF  
R7  
LT1575-1.5  
C6  
0.1µF  
C7  
0.1µF  
1
2
3
4
8
R5  
150Ω  
R1  
0.005Ω  
RESET  
SHDN  
IPOS  
INEG  
150Ω  
7
6
5
V
IN  
C2  
0.22µF  
C3  
1µF  
R2  
3.9Ω  
GND  
OUT  
GATE  
COMP  
RX  
TX  
RX  
TX  
Q1  
IRFZ24  
Q3  
Q5  
Q2  
Q4  
C8 TO C23  
1µF  
CERAMIC  
0805  
CASE  
R3  
C4  
10pF  
4.99k  
C5  
1000pF  
RX  
TX  
RX  
TX  
NOTE: LTC RECOMMENDS CENTRALLY  
LOCATING THE LT1575-1.5 OUTPUT  
TO MINIMIZE V DISTRIBUTION  
TT  
142 TOTAL SIGNAL LINES  
DROPS AND USING SEPARATE V  
REF  
1575/77 TA12  
GENERATORS AT EACH BUS END  
Generating 12V Gate Drive from a 5V Power Supply  
D1  
1N5818  
LT1262  
L1  
33µH  
1
2
3
4
8
7
6
5
+
+
C1  
C1  
C2  
C2  
SHDN  
GND  
V
12V  
25mA  
C1  
0.22µF  
CC  
C4  
4.75V TO 5.5V  
+
4.7µF  
2
12V  
V
OUT  
SW  
C2  
25mA  
C3  
0.22µF  
+
C5  
LT1109CZ-12  
V
V
CC  
+
4.7µF  
3
100µF  
V
CC  
OUT  
10V  
4.75V TO 5.5V  
+
C6  
GND  
1
10µF  
25V  
D2  
BAT85  
V
CC  
4.75V TO 5.5V  
C9  
0.22µF  
D3  
BAT85  
D4  
BAT85  
D5  
BAT85  
74HC14  
12V  
25mA  
+
C7  
R1  
2k  
×5  
100µF  
10V  
D6  
BAT85  
C11  
0.22µF  
C12  
0.22µF  
C8  
390pF  
C10  
0.22µF  
1575/77 TA13  
Pentium is a registered trademark of Intel Corporation.  
15  
LT1575/LT1577  
TYPICAL APPLICATIONS N  
U
12V to 3.3V/9A (14A Peak) Hybrid Regulator  
LT1575  
1
2
3
4
8
7
6
5
SHDN  
IPOS  
INEG  
V
IN  
12V  
Q1  
IRLZ44  
GND  
OUT  
GATE  
COMP  
C6  
0.1µF  
C21, 10pF  
C1, 470pF  
R9  
2k  
12V  
C22, 1000pF  
R1  
C14  
150µF  
16V  
+
C11  
150µF  
16V  
+
C12  
150µF  
16V  
+
C13  
150µF  
16V  
+
C17  
1µF  
C15  
1µF  
2.1k, 1%  
C16  
1µF  
V
CORE  
R2  
1.21k  
1%  
3.3V  
13  
V
1µF  
IN  
9
1
2
3
4
5
6
16  
14  
15  
12  
11  
8
X7R  
Q2  
Q3  
EXTV  
TG  
CC  
CERAMIC  
0805 CASE  
×40  
L1  
C
OSC  
SW  
R6  
4µH  
C3, 0.1µF  
C8, 68pF  
C7, 0.1µF  
0.0075  
RUN/SS  
BOOST  
LTC1435  
+
+
C18  
C20  
I
INTV  
C23  
1µF  
TH  
CC  
R3  
100  
R4  
100  
1000µF 1000µF  
C10, 1000pF  
D1, CMDSH-3  
10V  
10V  
SFB  
BG  
C9  
1500pF  
+
C19  
1000µF  
10V  
SGND  
S
+
C2, 1000pF  
7
V
OS  
S
R5  
16.5k  
PGND  
10  
D2  
MBRS330T3  
R7  
35.7k  
+
C5  
0.1µF  
C4, 4.7µF  
1575/77 TA16  
L1  
= COILTRONICS CTX02-13199  
R8  
15K  
Q2, Q3 = SILICONIX SUD50N03-10  
Transient Response to a 10A Load Step  
1575/77 TA17  
200µs/DIV  
16  
LT1575/LT1577  
U
TYPICAL APPLICATIONS N  
3.3V to 2.8V ±100mV at 5.7A with Sense-Less Current Limit and Timer Latchoff  
INPUT  
3.3V  
+
+
C2  
330µF  
6.3V  
C1  
330µF  
6.3V  
R2  
10Ω  
FAULT RESET  
C7  
10µF  
LT1575-2.8  
12V  
1
2
3
4
8
7
6
5
SHDN  
IPOS  
INEG  
RTN  
V
IN  
Q1  
IRL3303  
GND  
OUT  
GATE  
COMP  
C3  
680pF  
V
CORE  
R1  
C6  
0.1µF  
2.8V  
4.7k  
C5  
22pF  
+
C8 TO C31*  
C4  
1000pF  
1µF  
1575/77 TA14  
*X7R CERAMIC 0805 CASE  
U
PACKAGE DESCRIPTION  
Dimensions in inches (millimeters) unless otherwise noted.  
N8 Package  
8-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
0.400*  
(10.160)  
MAX  
8
7
6
5
4
0.255 ± 0.015*  
(6.477 ± 0.381)  
1
2
3
0.130 ± 0.005  
0.300 – 0.325  
0.045 – 0.065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
0.020  
(0.508)  
MIN  
(3.175)  
MIN  
+0.035  
0.325  
–0.015  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
(0.457 ± 0.076)  
+0.889  
8.255  
(
)
N8 1197  
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
17  
LT1575/LT1577  
U
PACKAGE DESCRIPTION  
Dimensions in inches (millimeters) unless otherwise noted.  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
7
5
8
6
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
1
0.053 – 0.069  
3
4
2
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
SO8 0996  
18  
LT1575/LT1577  
U
PACKAGE DESCRIPTION  
Dimensions in inches (millimeters) unless otherwise noted.  
S Package  
16-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.386 – 0.394*  
(9.804 – 10.008)  
16  
15  
14  
13  
12  
11  
10  
9
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
5
7
8
1
2
3
4
6
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0° – 8° TYP  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
0.016 – 0.050  
0.406 – 1.270  
S16 0695  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
19  
LT1575/LT1577  
U
TYPICAL APPLICATION  
LT1577 Split Plane System  
FAULT RESET  
INPUT  
5V  
C1  
C2  
330µF  
6.3V  
+
+
330µF  
6.3V  
1/2 LT1577  
1/2 LT1577  
1
16  
15  
14  
13  
5
6
7
8
12  
11  
10  
9
SHDN1 IPOS1  
SHDN2 IPOS2  
2
V
INEG1  
GATE1  
V
INEG2  
GATE2  
12V  
IN1  
IN2  
3
4
Q1  
IRFZ24  
Q2  
IRFZ24  
GND1  
GND2  
C3  
0.33µF  
R1  
R5  
3.9Ω  
OUT-3.3 COMP1  
OUT-2.8 COMP2  
3.9Ω  
V
V
CORE  
I/O  
R2  
R6  
7.5k  
2.8V  
3.3V  
3.9k  
C5  
10pF  
C7  
10pF  
C21 TO  
C44*  
1µF  
C9 TO  
C20*  
1µF  
C4  
1µF  
C6  
1500pF  
C8  
1000pF  
*X7R CERAMIC 0805 CASE  
1575/77 TA15  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1266  
Current Mode, Step-Up/Down Switching Regulator Controller  
Synchronous N- or P-Channel FETs, Comparator/Low  
Battery Detector  
LTC1392  
Micropower Temperature, Power Supply and Differential  
Voltage Monitor  
Temperature to Bits Control  
LTC1430  
LTC1435  
High Power Step-Down Switching Regulator Controller  
Voltage Mode, 5V to 3.xxV at >10A  
High Efficiency, Low Noise Synchronous Step-Down  
Switching Regulator  
Current Mode with Wide Input Voltage Range  
LTC1553  
LTC1553L  
LT1573  
Digitally Controlled Synchronous Switching Regulator Controller  
Digitally Controlled Synchronous Switching Regulator Controller  
Low Dropout Regulator Driver  
Controller for Pentium II Processor, Buck Conversion  
from 5V or 12V Main Power  
Controller for Pentium II Processor, Buck Conversion  
from 5V Main Power  
Drives Low Cost PNP Transistor for High Power,  
Low Dropout Applications  
LT1580  
7A, Very Low Dropout Linear Regulator  
0.54V Dropout at 7A, Fixed 2.5V  
GTL+ Regulator  
and Adjustable  
OUT  
LT1585-1.5  
Fixed 1.5V, 5A Low Dropout Fast Response Regulator  
15757f LT/TP 0598 4K • PRINTED IN THE USA  
LINEAR TECHNOLOGY CORPORATION 1996  
20 Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

LT1577CS-3.3/ADJ#TRPBF

LT1577 - Ultrafast Transient Response, Low Dropout Regulators Adjustable and Fixed; Package: SO; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1577CS-ADJ/ADJ

Ultrafast Transient Response, Low Dropout Regulators Adjustable and Fixed
Linear

LT1577CS-ADJ/ADJ#PBF

LT1577 - Ultrafast Transient Response, Low Dropout Regulators Adjustable and Fixed; Package: SO; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1577CS-ADJ/ADJ#TRPBF

LT1577 - Ultrafast Transient Response, Low Dropout Regulators Adjustable and Fixed; Package: SO; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1577_15

Ultrafast Transient Response, Low Dropout Regulators Adjustable and Fixed
Linear

LT1578

1.5A, 200kHz Step-Down Switching Regulator
Linear

LT1578-2.5

1.5A, 200kHz Step-Down Switching Regulator
Linear

LT1578-2.5_15

1.5A, 200kHz Step-Down Switching Regulator
Linear

LT1578C

1.5A, 200kHz Step-Down Switching Regulator
Linear

LT1578CS8

1.5A, 200kHz Step-Down Switching Regulator
Linear

LT1578CS8#PBF

LT1578 - 1.5A, 200kHz Step-Down Switching Regulator; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1578CS8-2.5

1.5A, 200kHz Step-Down Switching Regulator
Linear