LT1610CS8#PBF [Linear]

LT1610 - 1.7MHz, Single Cell Micropower DC/DC Converter; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C;
LT1610CS8#PBF
型号: LT1610CS8#PBF
厂家: Linear    Linear
描述:

LT1610 - 1.7MHz, Single Cell Micropower DC/DC Converter; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C

转换器 稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管
文件: 总16页 (文件大小:212K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1610  
1.7MHz, Single Cell  
Micropower  
DC/DC Converter  
U
FEATURES  
DESCRIPTIO  
The LT®1610 is a micropower fixed frequency DC/DC  
converterthatoperatesfromaninputvoltageaslowas1V.  
Intended for small, low power applications, it switches at  
1.7MHz, allowing the use of tiny capacitors and inductors.  
Uses Tiny Capacitors and Inductor  
Internally Compensated  
Low Quiescent Current: 30µA  
Operates with VIN as Low as 1V  
3V at 30mA from a Single Cell  
The device can generate 3V at 30mA from a single cell  
(1V) supply. An internal compensation network can be  
connected to the LT1610’s VC pin, eliminating two exter-  
nalcomponents.No-loadquiescentcurrentoftheLT1610  
is 30µA, and the internal NPN power switch handles a  
300mA current with a voltage drop of 300mV.  
5V at 200mA from 3.3V  
High Output Voltage Capability: Up to 28V  
Low Shutdown Current: <1µA  
Automatic Burst ModeTM Switching at Light Load  
Low VCESAT Switch: 300mV at 300mA  
8-Lead MSOP and SO Packages  
TheLT1610isavailablein8-leadMSOPandSOpackages.  
U
APPLICATIO S  
Pagers  
Cordless Phones  
Battery Backup  
LCD Bias  
Portable Electronic Equipment  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Burst Mode is a trademark of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
L1  
Efficiency  
D1  
4.7µH  
V
OUT  
85  
3V  
30mA  
V
= 3V  
OUT  
R1  
6
5
SW  
80  
75  
70  
65  
60  
55  
50  
V
= 1.5V  
IN  
1M  
V
V
= 1.25V  
IN  
IN  
2
3
FB  
SHDN  
+
+
R2  
681k  
C1  
22µF  
C2  
22µF  
LT1610  
1 CELL  
V
= 1V  
IN  
8
7
COMP  
GND  
PGND  
V
C
1
4
C1, C2: AVX TAJA226M006R  
D1: MOTOROLA MBR0520  
L1: MURATA LQH1C4R7  
1610 F01  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
1610 TA01  
Figure 1. 1-Cell to 3V Step-Up Converter  
1
LT1610  
W W U W  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
Maximum Junction Temperature ......................... 125°C  
Operating Temperature Range (Note 1)  
Commercial ............................................. 0°C to 70°C  
Extended Commercial (Note 2).......... 40°C to 85°C  
Industrial ........................................... 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
VIN Voltage ................................................................ 8V  
SW Voltage ............................................... 0.4V to 30V  
FB Voltage ..................................................... VIN + 0.3V  
VC Voltage ................................................................ 2V  
COMP Voltage .......................................................... 2V  
Current into FB Pin .............................................. ±1mA  
SHDN Voltage ............................................................ 8V  
U
W U  
PACKAGE/ORDER INFORMATION  
ORDER PART  
ORDER PART  
TOP VIEW  
NUMBER  
NUMBER  
TOP VIEW  
V
1
2
3
4
COMP  
GND  
8
7
6
5
C
V
1
8 COMP  
7 GND  
C
LT1610CMS8  
LT1610CS8  
LT1610IS8  
FB  
SHDN  
PGND  
FB 2  
SHDN 3  
PGND 4  
6 V  
IN  
V
IN  
5 SW  
SW  
MS8 PACKAGE  
MS8 PART MARKING  
LTDT  
S8 PART MARKING  
8-LEAD PLASTIC MSOP  
S8 PACKAGE  
8-LEAD PLASTIC SO  
TJMAX = 125°C, θJA = 160°C/W  
1610  
1610I  
T
JMAX = 125°C, θJA = 120°C/W  
Consult factory for Military grade parts.  
The denotes specifications which apply over the specified temperature  
ELECTRICAL CHARACTERISTICS  
(Note 2)  
range, otherwise specifications are at TA = 25°C. Commercial grade 0°C to 70°C, VIN = 1.5V, VSHDN = VIN, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
1
UNITS  
Minimum Operating Voltage  
Maximum Operating Voltage  
Feedback Voltage  
0.9  
V
V
8
1.20  
1.23  
30  
1.26  
60  
V
Quiescent Current  
V
= 1.5V, Not Switching  
µA  
SHDN  
Quiescent Current in Shutdown  
V
V
= 0V, V = 2V  
= 0V, V = 5V  
0.01  
0.01  
0.5  
1.0  
µA  
µA  
SHDN  
SHDN  
IN  
IN  
FB Pin Bias Current  
27  
80  
nA  
Reference Line Regulation  
1V V 2V (25°C, 0°C)  
0.6  
1
2
0.15  
0.2  
%/V  
%/V  
%/V  
%/V  
IN  
1V V 2V (70°C)  
IN  
2V V 8V (25°C, 0°C)  
0.03  
IN  
2V V 8V (70°C)  
IN  
Error Amp Transconductance  
Error Amp Voltage Gain  
Switching Frequency  
I = 2µA  
25  
100  
1.7  
80  
µmhos  
V/V  
1.4  
2
MHz  
Maximum Duty Cycle  
77  
75  
95  
95  
%
%
2
LT1610  
The denotes specifications which apply over the specified temperature  
ELECTRICAL CHARACTERISTICS  
(Note 2)  
range, otherwise specifications are at TA = 25°C. Commercial grade 0°C to 70°C, VIN = 1.5V, VSHDN = VIN, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
600  
300  
MAX  
UNITS  
Switch Current Limit  
(Note 3)  
450  
900  
mA  
Switch V  
I
= 300mA  
350  
400  
mV  
mV  
CESAT  
SW  
Switch Leakage Current  
SHDN Input Voltage High  
SHDN Input Voltage Low  
SHDN Pin Bias Current  
V
= 5V  
0.01  
1
µA  
V
SW  
1
0.3  
0.1  
V
V
V
= 3V  
= 0V  
10  
0.01  
µA  
µA  
SHDN  
SHDN  
The denotes specifications which apply over the specified temperature range, otherwise specifications are at TA = 25°C.  
Industrial grade 40°C to 85°C, VIN = 1.5V, VSHDN = VIN, unless otherwise noted.  
PARAMETER  
CONDITIONS  
T = 85°C  
T = 40°C  
A
MIN  
TYP  
MAX  
UNITS  
Minimum Operating Voltage  
0.9  
1
1.25  
V
V
A
Maximum Operating Voltage  
Feedback Voltage  
8
V
V
1.20  
1.23  
30  
1.26  
60  
Quiescent Current  
µA  
Quiescent Current in Shutdown  
V
V
= 0V, V = 2V  
0.01  
0.01  
0.5  
1.0  
µA  
µA  
SHDN  
SHDN  
IN  
= 0V, V = 5V  
IN  
FB Pin Bias Current  
27  
80  
nA  
Reference Line Regulation  
2V V 8V (40°C)  
0.03  
0.15  
0.2  
%/V  
%/V  
IN  
2V V 8V (85°C)  
IN  
Error Amp Transconductance  
Error Amp Voltage Gain  
Switching Frequency  
I = 2µA  
25  
100  
1.7  
80  
µmhos  
V/V  
(Note 4)  
(Note 4)  
1.4  
2
MHz  
Maximum Duty Cycle  
77  
75  
95  
95  
%
%
Switch Current Limit  
450  
600  
300  
900  
mA  
Switch V  
I
= 300mA  
= 5V  
350  
400  
mV  
mV  
CESAT  
SW  
Switch Leakage Current  
SHDN Input Voltage High  
SHDN Input Voltage Low  
SHDN Pin Bias Current  
V
0.01  
1
µA  
V
SW  
1
0.3  
0.1  
V
V
V
= 3V  
= 0V  
10  
0.01  
µA  
µA  
SHDN  
SHDN  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: The LT1610C is guaranteed to meet specified performance from  
0°C to 70°C and is designed, characterized and expected to meet these  
extended temperature limits, but is not tested at 40°C and 85°C. The  
LT1610I is guaranteed to meet the extended temperature limits.  
Note 3: Current limit guaranteed by design and/or correlation to static test.  
Current limit is affected by duty cycle due to ramp generator. See Block  
Diagram.  
Note 4: Not 100% tested at 85°C.  
3
LT1610  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Current Limit (DC = 30%)  
vs Temperature  
VCESAT vs Current  
Current Limit vs Duty Cycle  
600  
500  
400  
300  
800  
700  
600  
500  
400  
300  
200  
100  
0
800  
700  
600  
500  
400  
300  
200  
T
= 25°C  
A
T
= 85°C  
A
T
= 25°C  
A
T
= 40°C  
A
200  
100  
0
200  
300  
400  
500  
600  
100  
–50  
0
25  
50  
75  
100  
0
10 20 30 40 50 60 70 80 90 100  
DUTY CYCLE (%)  
–25  
SWITCH CURRENT (mA)  
TEMPERATURE (°C)  
1610 G01  
1610 G02  
1610 G03  
Oscillator Frequency  
vs Input Voltage  
Quiescent Current  
vs Temperature  
Feedback Voltage  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
1.240  
1.235  
1.230  
1.225  
1.220  
1.215  
1.210  
40  
35  
30  
25  
T
A
= 25°C  
20  
15  
10  
5
0
0
4
6
7
–50  
0
25  
50  
75  
100  
1
2
3
5
8
–25  
25  
0
50  
50  
75  
100  
25  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1610 G04  
1610 G05  
1610 G06  
Burst Mode Operation,  
Circuit of Figure 1  
SHDN Pin Current  
vs SHDN Pin Voltage  
Transient Response,  
Circuit of Figure 1  
50  
40  
30  
VOUT  
20mV/DIV  
VOUT  
50mV/DIV  
AC COUPLED  
AC COUPLED  
SWITCH  
VOLTAGE  
2V/DIV  
SWITCH  
CURRENT  
50mA/DIV  
IL1  
100mA/DIV  
31mA  
ILOAD  
1mA  
20  
10  
0
1610 TA08  
1610 TA08  
VIN = 1.25V  
VOUT = 3V  
ILOAD = 3mA  
20µs/DIV  
VIN = 1.25V  
OUT = 3V  
500µs/DIV  
V
4
0
1
2
3
5
6
7
8
SHDN VOLTAGE (V)  
1610 G07  
4
LT1610  
U
U
U
PIN FUNCTIONS  
VC (Pin 1): Error Amplifier Output. Frequency compensa-  
tion network must be connected to this pin, either internal  
(COMP pin) or external series RC to ground. 220k/  
220pF typical value.  
SW (Pin 5): Switch Pin. Connect inductor/diode here.  
Minimize trace area at this pin to keep EMI down.  
VIN (Pin 6): Input Supply Pin. Must be locally bypassed.  
GND (Pin 7): Signal Ground. Carries all device ground  
current except switch current. Tie to local ground plane.  
FB (Pin 2): Feedback Pin. Reference voltage is 1.23V.  
Connect resistive divider tap here. Minimize trace area at  
FB. Set VOUT according to VOUT = 1.23V (1 + R1/R2).  
COMP (Pin 8): Internal Compensation Network. Tie to VC  
pin, or let float if external compensation is used. Output  
capacitor must be tantalum if COMP pin is used for com-  
pensation.  
SHDN (Pin 3): Shutdown. Ground this pin to turn off  
device. Tie to 1V or more to enable.  
PGND (Pin 4): Power Ground. Tie directly to local ground  
plane.  
W
BLOCK DIAGRA  
V
IN  
6
V
IN  
R6  
40k  
R5  
40k  
V
OUT  
+
A1  
m
1
8
3
7
V
SHUTDOWN  
SHDN  
GND  
C
g
R1  
(EXTERNAL)  
COMP  
C
Q1  
FB  
2
Q2  
× 10  
FB  
R
C
R3  
30k  
C
R2  
(EXTERNAL)  
R4  
140k  
+
ENABLE  
BIAS  
SW  
5
COMPARATOR  
FF  
DRIVER  
RAMP  
Q3  
A2  
R
Q
GENERATOR  
+
S
Σ
+
0.15  
A = 3  
1.7MHz  
OSCILLATOR  
4
PGND  
1610 F02  
Figure 2. LT1610 Block Diagram  
5
LT1610  
U
W U U  
APPLICATIONS INFORMATION  
OPERATION  
Iftheoutputloadincreasessufficiently,A1’soutputremains  
high, resulting in continuous operation. When the LT1610  
is running continuously, peak switch current is controlled  
by VC to regulate the output voltage. The switch is turned  
on at the beginning of each switch cycle. When the sum-  
mation of a signal representing switch current and a ramp  
generator(introducedtoavoidsubharmonicoscillationsat  
duty factors greater than 50%) exceeds the VC signal,  
comparator A2 changes state, resetting the flip-flop and  
turning off the switch. Output voltage increases as switch  
current is increased. The output, attenuated by a resistor  
divider, appears at the FB pin, closing the overall loop.  
Frequency compensation is provided by either an external  
series RC network connected between the VC pin and  
ground or the internal RC network on the COMP pin (Pin  
8). The typical values for the internal RC are 50k and 50pF.  
The LT1610 combines a current mode, fixed frequency  
PWMarchitecturewithBurstModemicropoweroperation  
to maintain high efficiency at light loads. Operation can be  
best understood by referring to the block diagram in  
Figure 2. Q1 and Q2 form a bandgap reference core whose  
loop is closed around the output of the converter. When  
VIN is 1V, the feedback voltage of 1.23V, along with an  
70mV drop across R5 and R6, forward biases Q1 and Q2’s  
base collector junctions to 300mV. Because this is not  
enough to saturate either transistor, FB can be at a higher  
voltage than VIN. When there is no load, FB rises slightly  
above 1.23V, causing VC (the error amplifier’s output) to  
decrease. When VC reaches the bias voltage on hysteretic  
comparator A1, A1’s output goes low, turning off all  
circuitry except the input stage, error amplifier and low-  
battery detector. Total current consumption in this state is  
30µA. As output loading causes the FB voltage to de-  
crease, A1’s output goes high, enabling the rest of the IC.  
Switch current is limited to approximately 100mA initially  
after A1’s output goes high. If the load is light, the output  
voltage (and FB voltage) will increase until A1’s output  
goes low, turning off the rest of the LT1610. Low fre-  
quency ripple voltage appears at the output. The ripple  
frequencyisdependentonloadcurrentandoutputcapaci-  
tance. This Burst Mode operation keeps the output regu-  
lated and reduces average current into the IC, resulting in  
high efficiency even at load currents of 1mA or less.  
LAYOUT  
Although the LT1610 is a relatively low current device, its  
high switching speed mandates careful attention to layout  
for optimum performance. For boost converters, follow  
thecomponentplacementindicatedinFigure3forthebest  
results. C2’s negative terminal should be placed close to  
Pin4oftheLT1610.Doingthisreducesswitchingcurrents  
in the ground copper which keeps high frequency “spike”  
noise to a minimum. Tie the local ground into the system  
ground plane at one point only, using a few vias, to avoid  
introducing dI/dt induced noise into the ground plane.  
GROUND PLANE  
V
IN  
R1  
1
2
3
4
8
7
6
5
C1  
+
L1  
LT1610  
R2  
SHUTDOWN  
MULTIPLE  
VIAs  
+
D1  
C2  
GND  
V
OUT  
1610 F03  
Figure 3. Recommended Component Placement for Boost Converter. Note Direct High Current Paths Using  
Wide PC Traces. Minimize Trace Area at Pin 1 (VC) and Pin 2 (FB). Use Multiple Vias to Tie Pin 4 Copper to  
Ground Plane. Use Vias at One Location Only to Avoid Introducing Switching Currents into the Ground Plane  
6
LT1610  
U
W U U  
APPLICATIONS INFORMATION  
A SEPIC (Single-Ended Primary Inductance Converter)  
schematic is shown in Figure 4. This converter topology  
produces a regulated output over an input voltage range  
that spans (i.e., can be higher or lower than) the output.  
Recommended component placement for a SEPIC is  
shown in Figure 5.  
C3  
1µF  
CERAMIC  
L1  
22µH  
D1  
V
INPUT  
OUT  
3.3V  
Li-ION  
120mA  
3V to 4.2V  
6
5
SW  
1M  
V
IN  
L2  
22µH  
1
8
2
3
+
C1  
22µF  
6.3V  
V
C
FB  
+
C2  
22µF  
6.3V  
LT1610  
604k  
COMP  
SHDN  
GND  
7
PGND  
4
C1, C2: AVX TAJA226M006  
C3: AVX 1206YC105 (X7R)  
D1: MOTOROLA MBR0520  
1610 F04  
SHUTDOWN  
L1, L2: MURATA LQH3C220 (UNCOUPLED)  
OR SUMIDA CLS62-220 (COUPLED)  
Figure 4. Li-Ion to 3.3V SEPIC DC/DC Converter  
GROUND PLANE  
R1  
V
IN  
1
2
8
7
6
5
C1  
+
LT1610  
R2  
SHUTDOWN  
3
4
L1  
L2  
MULTIPLE  
VIAs  
C2  
C3  
D1  
+
GND  
V
OUT  
1610 F05  
Figure 5. Recommended Component Placement for SEPIC  
7
LT1610  
U
W U U  
APPLICATIONS INFORMATION  
COMPONENT SELECTION  
impedance of the output capacitor. The capacitor should  
havelowimpedanceatthe1.7MHzswitchingfrequencyof  
the LT1610. At this frequency, the impedance is usually  
dominated by the capacitor’s equivalent series resistance  
(ESR). Choosing a capacitor with lower ESR will result in  
lower output ripple.  
Inductors  
Inductors used with the LT1610 should have a saturation  
current rating (–30% of zero current inductance) of ap-  
proximately 0.5A or greater. DCR should be 0.5or less.  
The value of the inductor should be matched to the power  
requirements and operating voltages of the application. In  
mostcasesavalueof4.7µHor10µHissuitable.TheMurata  
LQH3C inductors specified throughout the data sheet are  
small and inexpensive, and are a good fit for the LT1610.  
Alternatives are the CD43 series from Sumida and the  
DO1608seriesfromCoilcraft. Theseinductorsareslightly  
larger but will result in slightly higher circuit efficiency.  
Perhaps the best way to decrease ripple is to add a 1µF  
ceramic capacitor in parallel with the bulk output capaci-  
tor. Ceramic capacitors have very low ESR and 1µF is  
enough capacitance to result in low impedance at the  
switching frequency. The low impedance can have a  
dramatic effect on output ripple voltage. To illustrate,  
examine Figure 6’s circuit, a 4-cell to 5V/100mA SEPIC  
DC/DCconverter. Thisdesignusesinexpensivealuminum  
electrolytic capacitors at input and output to keep cost  
down. Figure 7 details converter operation at a 100mA  
load, without ceramic capacitor C5. Note the 400mV  
Chip inductors, although tempting to use because of their  
small size and low cost, generally do not have enough  
energy storage capacity or low enough DCR to be used  
successfully with the LT1610.  
spikes on VOUT  
.
After C5 is installed, output ripple decreases by a factor of  
8 to about 50mVP-P. The addition of C5 also improves  
efficiency by 1 to 2 percent.  
Diodes  
The Motorola MBR0520 is a 0.5 amp, 20V Schottky diode.  
This is a good choice for nearly any LT1610 application,  
unless the output voltage or the circuit topology require a  
diode rated for higher reverse voltages. Motorola also  
offers the MBR0530 (30V) and MBR0540 (40V) versions.  
Most one-half amp and one amp Schottky diodes are  
suitable; these are available from many manufacturers. If  
you use a silicon diode, it must be an ultrafast recovery  
type. Efficiency will be lower due to the silicon diode’s  
higher forward voltage drop.  
Low ESR and the required bulk output capacitance can be  
obtained using a single larger output capacitor. Larger  
tantalum capacitors, newer capacitor technologies (for  
example the POSCAP from Sanyo and SPCAP from  
Panasonic) or large value ceramic capacitors will reduce  
the output ripple. Note, however, that the stability of the  
circuit depends on both the value of the output capacitor  
and its ESR. When using low value capacitors or capaci-  
tors with very low ESR, circuit stability should be evalu-  
ated carefully, as described below.  
Capacitors  
Loop Compensation  
The input capacitor must be placed physically close to the  
LT1610. ESR is not critical for the input. In most cases  
inexpensive tantalum can be used.  
The LT1610 is a current mode PWM switching regulator  
that achieves regulation with a linear control loop. The  
LT1610 provides the designer with two methods of com-  
pensatingthisloop. First, youcanuseaninternalcompen-  
sation network by tying the COMP pin to the VC pin. This  
results in a very small solution and reduces the circuit’s  
total part count. The second option is to tie a resistor RC  
andacapacitorCC inseriesfromtheVC pintoground. This  
allows optimization of the transient response for a wide  
variety of operating conditions and power components.  
The choice of output capacitor is far more important. The  
quality of this capacitor is the greatest determinant of the  
output voltage ripple. The output capacitor performs two  
major functions. It must have enough capacitance to  
satisfy the load under transient conditions and it must  
shunt the AC component of the current coming through  
the diode from the inductor. The ripple on the output  
results when this AC current passes through the finite  
8
LT1610  
U
W U U  
APPLICATIONS INFORMATION  
C3  
1µF  
CERAMIC  
L1  
22µH  
D1  
V
OUT  
5V  
120mA  
6
5
SW  
1M  
V
IN  
L2  
22µH  
1
2
3
+
C1  
22µF  
6.3V  
C4  
V
C
FB  
4 CELLS  
1µF  
+
C5  
C2  
22µF  
6.3V  
LT1610  
324k  
CERAMIC  
1µF  
8
COMP  
SHDN  
CERAMIC  
GND  
7
PGND  
4
C1, C2: ALUMINUM ELECTROLYTIC  
C3 TO C5: CERAMIC X7R OR X5R  
D1: MBR0520  
1610 F06  
SHUTDOWN  
L1, L2: MURATA LQH3C220 OR SUMIDA CLS62-220  
Figure 6. 4-Cell Alkaline to 5V/120mA SEPIC DC/DC Converter  
sation network is modified to achieve stable operation.  
Linear Technology’s Application Note 19 contains a de-  
tailed description of the method. A good starting point for  
the LT1610 is CC ~ 220pF and RC ~ 220k.  
VOUT  
200mV/DIV  
IDIODE  
500mA/DIV  
SWITCH  
VOLTAGE  
10V/DIV  
All Ceramic, Low Profile Design  
Largevalueceramiccapacitorsthataresuitableforuseas  
the main output capacitor of an LT1610 regulator are now  
available. These capacitors have very low ESR and there-  
fore offer very low output ripple in a small package.  
However, you should approach their use with some  
caution.  
100ns/DIV  
1610 F07  
Figure 7. Switching Waveforms Without Ceramic Capacitor C5  
VOUT  
50mV/DIV  
IDIODE  
Ceramic capacitors are manufactured using a number of  
dielectrics, each with different behavior across tempera-  
ture and applied voltage. Y5V is a common dielectric used  
for high value capacitors, but it can lose more than 80% of  
the original capacitance with applied voltage and extreme  
temperatures. The transient behavior and loop stability of  
the switching regulator depend on the value of the output  
capacitor, so you may not be able to afford this loss. Other  
dielectrics (X7R and X5R) result in more stable character-  
istics and are suitable for use as the output capacitor. The  
X7R type has better stability across temperature, whereas  
the X5R is less expensive and is available in higher values.  
500mA/DIV  
SWITCH  
VOLTAGE  
10V/DIV  
VIN = 4.1V  
LOAD = 100mA  
100ns/DIV  
1610 F08  
Figure 8. Switching Waveforms with Ceramic Capacitor C5.  
Note the 50mV/DIV Scale for VOUT  
Itisbesttochoosethecompensationcomponentsempiri-  
cally. Once the power components have been chosen  
(based on size, efficiency, cost and space requirements),  
a working circuit is built using conservative (or merely  
guessed) values of RC and CC. Then the response of the  
circuitisobservedunderatransientload,andthecompen-  
The second concern in using ceramic capacitors is that  
many switching regulators benefit from the ESR of the  
9
LT1610  
U
W U U  
APPLICATIONS INFORMATION  
output capacitor because it introduces a zero in the  
regulator’s loop gain. This zero may not be effective  
because the ceramic capacitor’s ESR is very low. Most  
currentmodeswitchingregulators(includingtheLT1610)  
can easily be compensated without this zero. Any design  
should be tested for stability at the extremes of operating  
temperatures; this is particularly so of circuits that use  
ceramic output capacitors.  
VOUT  
100mV/DIV  
LOAD  
CURRENT  
105mA  
5mA  
500µs/DIV  
1610 F10  
Figure 10. Tantalum Output Capacitor  
and Internal RC Compensation  
Figure 9 details a 2.5V to 5V boost converter. Transient  
responsetoa5mAto105mAloadstepispicturedinFigure  
10. The “double trace” of VOUT at 105mA load is due to the  
ESR of C2. This ESR aids stability. In Figure 11, C2 is  
replaced by a 10µF ceramic capacitor. Note the low phase  
margin; at higher input voltage, the converter may oscil-  
late. After replacing the internal compensation network  
with an external 220pF/220k series RC, the transient  
response is shown in Figure 12. This is acceptable tran-  
sient response.  
VOUT  
100mV/DIV  
LOAD  
CURRENT  
105mA  
5mA  
500µs/DIV  
1610 F11  
Table 1  
FIGURE C2  
Figure 11. 10µF X5R-Type Ceramic Output Capacitor  
and Internal RC Compensation has Low Phase Margin  
COMPENSATION  
Internal  
10  
11  
12  
AVX TAJA226M006 Tantalum  
Taiyo Yuden JMK316BJ106  
Taiyo Yuden JMK316BJ106  
Internal  
220pF/220k  
VOUT  
L1  
10µH  
100mV/DIV  
D1  
V
OUT  
V
IN  
5V  
2.5V  
100mA  
LOAD  
CURRENT  
6
5
SW  
1M  
105mA  
V
IN  
5mA  
2
3
1
FB  
SHDN  
500µs/DIV  
1610 F12  
+
+
C1  
R2  
324k  
C2  
22µF  
LT1610  
Figure 12. Ceramic Output Capacitor with 220pF/220k  
External Compensation has Adequate Phase Margin  
22µF  
7
V
C
GND  
PGND  
COMP  
8
R
C
4
C
C
C1: AVX TAJA226M006  
C2: SEE TABLE  
1610 F09  
D1: MOTOROLA MBR0520  
L1: MURATA LQH30100  
Figure 9. 2.5V to 5V Boost Converter Can Operate with a  
Ceramic Output Capacitor as Long as Proper RC and CC  
are Used. Disconnect COMP Pin if External Compensation  
Components Are Used  
10  
LT1610  
U
TYPICAL APPLICATIONS  
2-Cell to 5V Converter  
Efficiency  
90  
80  
70  
60  
50  
L1  
D1  
4.7µH  
V
OUT  
V
= 3V  
IN  
5V  
50mA  
V
= 2V  
IN  
6
5
SW  
1M  
V
IN  
2
7
3
8
FB  
SHDN  
V
= 1.5V  
IN  
+
+
C1  
15µF  
C2  
15µF  
LT1610  
2 CELLS  
324k  
COMP  
V
C
GND  
PGND  
1
4
0.1  
1
10  
100  
1000  
1610 TA02  
C1, C2: AVX TAJA156M010R  
D1: MOTOROLA MBR0520  
L1: SUMIDA CD43-4R7  
MURATA LQH1C4R7  
LOAD CURRENT (mA)  
1610 TA03  
2-Cell to 3.3V Converter  
Efficiency  
90  
80  
70  
L1  
D1  
3.3V  
OUT  
4.7µH  
V
OUT  
3.3V  
3V  
IN  
70mA  
6
5
R2  
1M  
V
SW  
IN  
2
3
1
8
1.5V  
FB  
V
IN  
C
+
+
C1  
10µF  
R3  
604k  
C2  
33µF  
LT1610  
2 CELLS  
2V  
IN  
COMP  
GND  
7
SHDN  
PGND  
4
60  
50  
0.1  
1
10  
100  
1000  
1610 TA04  
C1: AVX TAJA106M010R  
C2: AVX TAJB336M006R  
D1: MBR0520  
LOAD (mA)  
SHUTDOWN  
1610 TA05  
L1: MURATA LQH3C4R7  
5V to 12V/100mA Boost Converter  
Efficiency  
90  
85  
80  
75  
70  
65  
60  
55  
50  
L1  
D1  
10µH  
V
OUT  
V
IN  
12V  
100mA  
5V  
6
5
R2  
1M  
V
SW  
IN  
2
3
1
8
FB  
V
C
+
+
C1  
15µF  
R3  
115k  
C2  
15µF  
LT1610  
COMP  
GND  
7
SHDN  
PGND  
4
0.1  
1
10  
100  
1610 TA06  
C1: AVX TAJA156M010  
C2: AVX TAJB156M016  
LOAD CURRENT (mA)  
SHUTDOWN  
1610 TA07  
D1: MOTOROLA MBR0520  
L1: MURATA LQH3C100M24  
11  
LT1610  
TYPICAL APPLICATIONS  
U
5V to 9V/150mA Boost Converter  
Efficiency  
L1  
90  
85  
80  
75  
70  
65  
60  
55  
50  
D1  
10µH  
V
OUT  
V
IN  
9V  
5V  
150mA  
6
5
R2  
1M  
V
SW  
IN  
2
1
8
FB  
V
C
+
+
C1  
15µF  
R3  
158k  
C2  
15µF  
LT1610  
3
COMP  
GND  
7
SHDN  
PGND  
4
1
10  
100  
300  
1610 TA08  
C1: AVX TAJA156M010  
C2: AVX TAJB156M016  
D1: MOTOROLA MBR0520  
L1: MURATA LQH3C100M24  
SHUTDOWN  
LOAD CURRENT (mA)  
1610 TA09  
5V to 9V Boost Converter Transient Response  
VOUT  
200mV/DIV  
140mA  
LOAD  
CURRENT  
10mA  
INDUCTOR  
CURRENT  
200mA/DIV  
200µs/DIV  
1610 TA10  
12  
LT1610  
U
TYPICAL APPLICATIONS  
3.3V TO 8V/70mA, 8V/5mA, 24V/5mA TFT LCD Bias Supply Uses All Ceramic Capacitors  
D2  
V
OFF  
8V  
5mA  
1µF  
D3  
V
ON  
24V  
0.22µF  
5mA  
0.22µF  
0.22µF: TAIYO YUDEN EMK212BJ224MG  
1µF  
1µF  
D4  
1µF: TAIYO YUDEN LMK212BJ105MG  
4.7µF: TAIYO YUDEN LMK316BJ475ML  
D1: MOTOROLA MBRO520  
0.22µF  
D2, D3, D4: BAT54S  
L1: SUMIDA CDRH5D185R4  
L1  
5.4µH  
D1  
V
IN  
3.3V  
AV  
8V  
DD  
6
5
V
SW  
IN  
70mA  
8
2
3
1
COMP  
SHDN  
274k  
C1  
4.7µF  
C2  
4.7µF  
LT1610  
FB  
PGND  
4
V
C
GND  
100k  
51pF  
48.7k  
7
1610 TA18  
TFT LCD Bias Supply Transient Response  
AVDD  
200mV/DIV  
VON  
500mV/DIV  
VOFF  
200mV/DIV  
70mA  
AVDD LOAD  
25mA  
VON LOAD = 5mA  
OFF LOAD = 5mA  
200µs/DIV  
1610 TA19  
V
13  
LT1610  
U
TYPICAL APPLICATIONS  
Single Cell Super Cap Charger  
L1  
4.7µH  
R4  
20  
D1  
V
OUT  
4.5V  
R1  
6
5
200k  
CHARGE  
V
SW  
IN  
Q1  
8
2
3
1
COMP  
SHDN  
+
+
+
R2  
2M  
C2  
15µF  
C1  
LT1610  
C
BIG  
15µF  
SHUTDOWN  
V
FB  
PGND  
4
C
GND  
1 AA  
15k  
R3  
845k  
ALKALINE  
7
3.3nF  
1610 TA11  
C1, C2: AVX TAJA156M010  
D1: MOTOROLA MBR0530T1  
L1: MURATA LQH1C4R7  
Q1: 2N3906  
Super Cap Charger Output Current vs Output Voltage  
Super Cap Charger Output Power vs Output Voltage  
25  
60  
50  
40  
30  
20  
10  
0
20  
15  
10  
5
0
2.0  
3.0  
3.5  
4.0  
4.5  
5.0  
2.5  
2.0  
3.0  
3.5  
4.0  
4.5  
5.0  
2.5  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
1610 TA12  
1610 TA13  
14  
LT1610  
U
PACKAGE DESCRIPTION  
Dimensions in inches (millimeters) unless otherwise noted.  
MS8 Package  
8-Lead Plastic MSOP  
(LTC DWG # 05-08-1660)  
0.118 ± 0.004*  
(3.00 ± 0.102)  
8
7
6
5
0.118 ± 0.004**  
(3.00 ± 0.102)  
0.192 ± 0.004  
(4.88 ± 0.10)  
1
2
3
4
0.040 ± 0.006  
(1.02 ± 0.15)  
0.034 ± 0.004  
(0.86 ± 0.102)  
0.007  
(0.18)  
0° – 6° TYP  
SEATING  
PLANE  
0.012  
(0.30)  
REF  
0.021 ± 0.006  
(0.53 ± 0.015)  
0.006 ± 0.004  
(0.15 ± 0.102)  
MSOP (MS8) 1197  
0.0256  
(0.65)  
TYP  
* DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH,  
PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
7
5
8
6
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
1
0.053 – 0.069  
3
4
2
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.016 – 0.050  
(0.406 – 1.270)  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
SO8 0996  
15  
LT1610  
U
TYPICAL APPLICATIONS N  
Li-Ion to 3.3V SEPIC DC/DC Converter  
Efficiency  
80  
70  
60  
50  
40  
30  
C3  
V
IN  
V
IN  
V
IN  
= 2.7V  
= 3.6V  
= 4.2V  
1µF  
L1  
CERAMIC  
D1  
22µH  
V
INPUT  
OUT  
3.3V  
Li-ION  
120mA  
3V to 4.2V  
6
5
1M  
V
SW  
IN  
L2  
22µH  
1
8
2
3
+
C1  
22µF  
6.3V  
V
C
FB  
+
C2  
LT1610  
604k  
22µF  
6.3V  
COMP  
SHDN  
GND  
7
PGND  
4
0.1  
1
10  
100  
LOAD CURRENT (mA)  
C1, C2: AVX TAJB226M006  
C3: AVX 1206YC105 (X7R)  
D1: MOTOROLA MBR0520  
1610 TA14  
1610 TA15  
SHUTDOWN  
L1, L2: MURATA LQH3C220 (UNCOUPLED)  
OR SUMIDA CLS62-220 (COUPLED)  
4-Cell to 5V/120mA SEPIC DC/DC Converter  
4-Cell to 5V Efficiency  
80  
70  
60  
50  
40  
30  
C3  
V
IN  
V
IN  
V
IN  
V
IN  
= 3.6V  
= 4.2V  
= 5V  
1µF  
L1  
CERAMIC  
D1  
22µH  
V
OUT  
= 6.5V  
5V  
120mA  
6
5
1M  
V
SW  
IN  
L2  
22µH  
1
8
2
3
+
C1  
22µF  
6.3V  
V
C
FB  
4 CELLS  
+
C2  
LT1610  
324k  
22µF  
6.3V  
COMP  
SHDN  
GND  
7
PGND  
4
0.1  
1
10  
100  
LOAD CURRENT (mA)  
C1, C2: AVX TAJB226M006  
C3: AVX 1206YC105 (X7R)  
D1: MOTOROLA MBR0520  
1610 TA16  
1610 TA17  
SHUTDOWN  
L1, L2: MURATA LQH3C220 (UNCOUPLED)  
OR SUMIDA CLS62-220 (COUPLED)  
RELATED PARTS  
PART NUMBER  
LTC®1474  
LT1307  
DESCRIPTION  
COMMENTS  
Micropower Step-Down DC/DC Converter  
94% Efficiency, 10µA I , 9V to 5V at 250mA  
Q
Single Cell Micropower 600kHz PWM DC/DC Converter  
Ultralow Power Single/Dual Comparators with Reference  
Single Cell to 3.3V Regulated Charge Pump  
Micropower Low Dropout Linear Regulator  
Inverting 1.4MHz DC/DC Converter  
3.3V at 75mA from 1 Cell, MSOP Package  
LTC1440/1/2  
LTC1502-3.3  
LT1521  
2.8µA I , Adjustable Hysteresis  
Q
40µA I , No Inductors, 3.3V at 10mA from 1V Input  
Q
500mV Dropout, 300mA Current, 12µA I  
Q
LT1611  
5V to 5V at 150mA, Tiny SOT-23 Package  
3.3V to 5V at 200mA, Tiny SOT-23 Package  
LT1613  
Step-Up 1.4MHz DC/DC Converter  
LTC1682  
Doubler Charge Pump with Low Noise Linear Regulator  
Fixed 3.3V and 5V Outputs, 1.8V to 4.4V Input Range, 50mA Output  
1610f LT/TP 0699 4K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
LINEAR TECHNOLOGY CORPORATION 1998  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

LT1610CS8#TRPBF

暂无描述
Linear

LT1610IS8

1.7MHz, Single Cell Micropower DC/DC Converter
Linear

LT1610IS8#PBF

暂无描述
Linear

LT1610IS8#TR

LT1610 - 1.7MHz, Single Cell Micropower DC/DC Converter; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1610IS8#TRPBF

暂无描述
Linear

LT1611

Inverting 1.4MHz Switching Regulator in SOT-23
Linear

LT1611

High Voltage, Low Quiescent Current Inverting Charge Pump
Linear System

LT1611CS5

Inverting 1.4MHz Switching Regulator in SOT-23
Linear

LT1611CS5#TRMPBF

LT1611 - Inverting 1.4MHz Switching Regulator in 5-Lead SOT-23; Package: SOT; Pins: 5; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1611CS5#TRPBF

LT1611 - Inverting 1.4MHz Switching Regulator in 5-Lead SOT-23; Package: SOT; Pins: 5; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1612

Synchronous, Step-Down 800kHz PWM DC/DC Converter
Linear

LT1612EMS8

Synchronous, Step-Down 800kHz PWM DC/DC Converter
Linear