LT1614CMS8#TRPBF [Linear]

LT1614 - Inverting 600kHz Switching Regulator; Package: MSOP; Pins: 8; Temperature Range: 0°C to 70°C;
LT1614CMS8#TRPBF
型号: LT1614CMS8#TRPBF
厂家: Linear    Linear
描述:

LT1614 - Inverting 600kHz Switching Regulator; Package: MSOP; Pins: 8; Temperature Range: 0°C to 70°C

稳压器 开关
文件: 总16页 (文件大小:262K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1614  
Inverting 600kHz  
Switching Regulator  
U
DESCRIPTIO  
FEATURES  
The LT®1614 is a fixed frequency, inverting mode switch-  
ing reglator that operates from an input voltage as low as  
1V. Utilizing a low noise topology, the LT1614 can gener-  
ate a negative output down to 24V from a 1V to 5V input.  
Fixed frequency switching ensures a clean output free  
from low frequency noise. The device contains a low-  
battery detector with a 200mV reference and shuts down  
tolessthan10µA.NoloadquiescentcurrentoftheLT1614  
is 1mA and the internal NPN power switch handles a  
500mA current with a voltage drop of just 295mV.  
Better Regulation Than a Charge Pump  
0.1Effective Output Impedance  
5V at 200mA from a 5V Input  
600kHz Fixed Frequency Operation  
Operates with VIN as Low as 1V  
1mA Quiescent Current  
Low Shutdown Current: 10µA  
Low-Battery Detector  
Low VCESAT Switch: 295mV at 500mA  
U
APPLICATIO S  
High frequency switching enables the use of small induc-  
tors and capacitors. Ceramic capacitors can be used in  
many applications, eliminating the need for bulky tanta-  
lum types.  
MR Head Bias  
LCD Bias  
GaAs FET Bias  
Positive-to-Negative Conversion  
The LT1614 is available in 8-lead MSOP or SO packages.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
C3  
1µF  
L1  
22µH  
L2  
22µH  
5V to 5V Converter Efficiency  
V
IN  
90  
5V  
V
OUT  
V
SW  
IN  
5V  
80  
70  
60  
50  
40  
+
SHDN  
LT1614  
C1  
200mA  
69.8k  
24.9k  
33µF  
C2  
33µF  
D1  
V
C
NFB  
+
GND  
100k  
1nF  
1614 TA01  
C1, C2: AVX TAJB336M010  
C3: TAIYO YUDEN EMK316BJ105MF  
D1: MBR0520  
L1, L2: MURATA LQH3C220  
3
10  
30  
100  
300  
Figure 1. 5V to 5V/200mA Converter  
LOAD CURRENT (mA)  
1614 TA02  
1
LT1614  
ABSOLUTE AXI U RATI GS  
VIN, SHDN, LBO Voltage ......................................... 12V  
SW Voltage ............................................... 0.4V to 30V  
NFB Voltage ............................................................ 3V  
VC Voltage ................................................................ 2V  
LBI Voltage ............................................ 0V VLBI 1V  
Current into FB Pin .............................................. ±1mA  
Junction Temperature...........................................125°C  
W W W  
U
(Note 1)  
Operating Temperature Range  
LT1614C................................................. 0°C to 70°C  
LT1614I ............................................. 40°C to 85°C  
Extended Commercial  
Temperature Range (Note 2) .................. 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
W
U
/O  
PACKAGE RDER I FOR ATIO  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
TOP VIEW  
TOP VIEW  
LT1614CS8  
LT1614CMS8  
NFB  
1
2
3
4
8
7
6
5
LBO  
LBI  
NFB  
1
2
3
4
8 LBO  
7 LBI  
LT1614IS8  
LT1614IMS8  
V
C
V
C
6 V  
SHDN  
GND  
IN  
5 SW  
SHDN  
GND  
V
IN  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
SW  
MS8 PART MARKING  
S8 PART MARKING  
S8 PACKAGE  
8-LEAD PLASTIC SO  
TJMAX = 125°C, θJA = 160°C/W  
LTID  
LTJB  
1614  
1614I  
TJMAX = 125°C, θJA = 120°C/W  
Consult factory for Military grade parts.  
The denotes the specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
otherwise noted.  
temperature range, otherwise specifications are at TA = 25°C. Commercial Grade 0°C to 70°C. VIN = 1.5V, VSHDN = VIN unless  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Quiescent Current  
1
5
2
10  
mA  
µA  
V
= 0V  
SHDN  
Feedback Voltage  
1.21  
2.5  
1.24  
4.5  
1.27  
–7  
V
NFB Pin Bias Current (Note 3)  
Reference Line Regulation  
V
= –1.24V  
µA  
NFB  
1V V 2V  
2V V 6V  
0.6  
0.3  
1.1  
0.8  
%/V  
%/V  
IN  
IN  
Minimum Input Voltage  
Maximum Input Voltage  
Error Amp Transconductance  
Error Amp Voltage Gain  
Switching Frequency  
0.92  
1
6
V
V
I = 5µA  
16  
µmhos  
V/V  
100  
600  
500  
750  
kHz  
Maximum Duty Cycle  
73  
70  
80  
80  
%
%
Switch Current Limit (Note 4)  
0.75  
1.2  
A
2
LT1614  
ELECTRICAL CHARACTERISTICS  
otherwise noted.  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. Commercial Grade 0°C to 70°C. VIN = 1.5V, VSHDN = VIN unless  
PARAMETER  
Switch V  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
I
= 500mA (25°C, 0°C)  
= 500mA (70°C)  
295  
350  
400  
mV  
mV  
CESAT  
SW  
SW  
Shutdown Pin Current  
LBI Threshold Voltage  
V
V
= V  
= 0V  
10  
–5  
20  
10  
µA  
µA  
SHDN  
SHDN  
IN  
190  
185  
200  
210  
215  
mV  
mV  
LBO Output Low  
I
= 10µA  
0.1  
0.01  
10  
0.25  
0.1  
50  
V
µA  
SINK  
LBO Leakage Current  
V
V
= 250mV, V  
= 5V  
LBO  
LBI  
LBI  
LBI Input Bias Current (Note 5)  
Low-Battery Detector Gain  
Switch Leakage Current  
= 150mV  
nA  
1MLoad  
= 5V  
1000  
0.01  
V/V  
µA  
V
3
SW  
Industrial Grade 40°C to 85°C. VIN = 1.5V, VSHDN = VIN unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Quiescent Current  
1
5
2
10  
mA  
µA  
V
SHDN  
= 0V  
Feedback Voltage  
1.21  
–2  
1.24  
4.5  
1.27  
7.5  
V
NFB Pin Bias Current (Note 3)  
Reference Line Regulation  
V
= 1.24V  
µA  
NFB  
1V V 2V  
2V V 6V  
0.6  
0.3  
1.1  
0.8  
%/V  
%/V  
IN  
IN  
Minimum Input Voltage  
40°C  
85°C  
1.1  
0.8  
1.25  
1.0  
V
V
Maximum Input Voltage  
Error Amp Transconductance  
Error Amp Voltage Gain  
Switching Frequency  
6
V
µmhos  
V/V  
I = 5µA  
16  
100  
600  
80  
500  
70  
750  
kHz  
Maximum Duty Cycle  
%
Switch Current Limit (Note 4)  
0.75  
1.2  
A
Switch V  
I
I
= 500mA (40°C)  
= 500mA (85°C)  
250  
330  
350  
400  
mV  
mV  
CESAT  
SW  
SW  
Shutdown Pin Current  
V
SHDN  
V
SHDN  
= V  
= 0V  
10  
–5  
20  
10  
µA  
µA  
IN  
LBI Threshold Voltage  
LBO Output Low  
180  
200  
0.1  
220  
0.25  
0.3  
mV  
V
I
= 10µA  
SINK  
LBO Leakage Current  
V
V
= 250mV, V  
= 150mV  
= 5V  
LBO  
0.1  
µA  
nA  
V/V  
µA  
LBI  
LBI  
LBI Input Bias Current (Note 5)  
Low-Battery Detector Gain  
Switch Leakage Current  
5
30  
1MLoad  
= 5V  
1000  
0.01  
V
3
SW  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
Note 3: Bias current flows out of NFB pin.  
of a device may be impaired.  
Note 4: Switch current limit guaranteed by design and/or correlation to  
Note 2: The LT1614C is guaranteed to meet specified performance from  
0°C to 70°C and is designed, characterized and expected to meet these  
extended temperature limits, but is not tested at 40°C and 85°C. The  
LT1614I is guaranteed to meet the extended temperature limits.  
static tests. Duty cycle affects current limit due to ramp generator.  
Note 5: Bias current flows out of LBI pin.  
3
LT1614  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Shutdown Pin Bias Current vs  
Input Voltage  
Quiescent Current in Shutdown  
LBI Bias Current vs Temperature  
10  
8
10  
8
16  
14  
12  
10  
8
6
6
4
4
6
4
2
2
2
0
0
0
–25  
0
50  
0
1
2
3
4
5
0
1
2
3
4
5
–50  
75  
100  
25  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
1614 G01  
1614 G02  
1614 G03  
Oscillator Frequency vs  
Input Voltage  
Switch VCESAT vs Current  
LBI Reference vs Temperature  
500  
210  
900  
800  
700  
600  
500  
400  
T
= 25°C  
A
208  
206  
204  
202  
200  
198  
196  
194  
192  
190  
25°C  
85°C  
400  
300  
200  
–40°C  
100  
0
0
200  
300  
400  
500  
600  
–50  
–25  
25  
50  
75  
100  
1
2
3
4
100  
0
5
SWITCH CURRENT (mA)  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
1614 G04  
1614 G05  
1614 G06  
Quiescent Current vs  
Temperature*  
NFB Pin Bias Current vs  
Temperature  
VNFB vs Temperature  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
–1.245  
–1.240  
–1.235  
–1.230  
–1.225  
–1.220  
–1.215  
–1.210  
V
= 1.25V  
IN  
V
= 3V  
IN  
V
= 5V  
IN  
–40 –20  
0
20  
40  
60  
80  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1614 G07  
1614 G08  
1614 G09  
*Includes diode leakage  
4
LT1614  
U
U
U
PIN FUNCTIONS  
NFB(Pin1):NegativeFeedbackPin. Referencevoltageis  
1.24V. Connect resistive divider tap here. The sug-  
gested value for R2 is 24.9k. Set R1 and R2 according to:  
GND (Pin 4): Ground. Connect directly to local ground  
plane.  
SW (Pin 5): Switch Pin. Minimize trace area at this pin to  
keep EMI down.  
| VOUT | 1.24  
R1=  
VIN (Pin 6): Supply Pin. Must have 1µF ceramic bypass  
capacitor right at the pin, connected directly to ground.  
1.24  
+ 4.5 106  
R2  
LBI (Pin 7): Low-Battery Detector Input. 200mV refer-  
ence. Voltage on LBI must stay between ground and  
700mV. Float this pin if not used.  
VC (Pin 2): Compensation Pin for Error Amplifier. Con-  
nect a series RC from this pin to ground. Typical values  
are 100kand 1nF. Minimize trace area at VC.  
LBO (Pin 8): Low-Battery Detector Output. Open collec-  
tor,cansink10µA.A1Mpull-upisrecommended.Float  
this pin if not used. The low-battery detector is disabled  
when SHDN is low. LBO is high-Z in this state.  
SHDN (Pin 3): Shutdown. Ground this pin to turn off  
switcher. MustbetiedtoVIN (orhighervoltage)toenable  
switcher. Do not float the SHDN pin.  
W
BLOCK DIAGRAM  
V
IN  
6
V
IN  
+
R5  
40k  
R6  
40k  
SHDN  
V
C
SHUTDOWN  
3
g
m
2
LBI  
7
ERROR  
AMPLIFIER  
A1  
+
+
LBO  
8
Q1  
Q2  
ENABLE  
200mV  
×10  
BIAS  
R3  
30k  
A4  
R4  
140k  
SW  
5
COMPARATOR  
+
1
DRIVER  
FF  
RAMP  
NFB  
GENERATOR  
V
OUT  
Q3  
R
Q
+
Σ
S
R1  
A2  
+
(EXTERNAL)  
+
A = 3  
NFB  
0.15Ω  
R2  
600kHz  
OSCILLATOR  
(EXTERNAL)  
4
GND  
1614 BD  
Figure 2. Block Diagram  
5
LT1614  
U
OPERATIO  
The LT1614 combines a current mode, fixed frequency  
PWM architecture with a –1.23V reference to directly  
regulate negative outputs. Operation can be best under-  
stood by referring to the block diagram of Figure 2. Q1 and  
Q2 form a bandgap reference core whose loop is closed  
around the output of the converter. The driven reference  
point is the lower end of resistor R4, which normally sits  
at a voltage of –1.23V. As the load current changes, the  
NFB pin voltage also changes slightly, driving the output  
of gm amplifier A1. Switch current is regulated directly on  
a cycle-to-cycle basis by A1’s output. The flip-flop is set at  
the beginning of each cycle, turning on the switch. When  
thesummationofasignalrepresentingswitchcurrentand  
a ramp generator (introduced to avoid subharmonic oscil-  
lations at duty factors greater than 50%) exceeds the VC  
signal, comparator A2 changes stage, resetting the flip-  
flop and turning off the switch. Output voltage decreases  
(the magnitude increases) as switch current is increased.  
The output, attenuated by external resistor divider R1 and  
R2, appears at the NFB pin, closing the overall loop.  
Frequencycompensationisprovidedexternallybyaseries  
RC connected from the VC pin to ground. Typical values  
are 100k and 1nF. Transient response can be tailored by  
adjustment of these values.  
The LT1614 can work in either of two topologies. The  
simpler topology appends a capacitive level shift to a  
boost converter, generating a negative output voltage,  
which is directly regulated. The circuit schematic is de-  
tailed in Figure 3. Only one inductor is required, and the  
two diodes can be in a single SOT-23 package. Output  
noise is the same as in a boost converter, because current  
is delivered to the output only during the time when the  
LT1614’s internal switch is on.  
If D2 is replaced by an inductor, as shown in Figure 4, a  
higherperformancesolutionresults.Thisconvertertopol-  
ogy was developed by Professor S. Cuk of the California  
Institute of Technology in the 1970s. A low ripple voltage  
results with this topology due to inductor L2 in series with  
theoutput. Abruptchangesinoutputcapacitorcurrentare  
eliminated because the output inductor delivers current to  
the output during both the off-time and the on-time of the  
LT1614switch. Withproperlayoutandhighqualityoutput  
capacitors, output ripple can be as low as 1mVP–P  
.
The operation of Cuk’s topology is shown in Figures 5  
and 6. During the first switching phase, the LT1614’s  
switch, represented by Q1, is on. There are two current  
loops in operation. The first loop begins at input capacitor  
C1, flows through L1, Q1 and back to C1. The second loop  
flows from output capacitor C3, through L2, C2, Q1 and  
back to C3. The output current from RLOAD is supplied by  
L2 and C3. The voltage at node SW is VCESAT and at node  
SWX the voltage is –(VIN + |VOUT|). Q1 must conduct both  
L1 and L2 current. C2 functions as a voltage level shifter,  
with an approximately constant voltage of (VIN + |VOUT|)  
As load current is decreased, the switch turns on for a  
shorter period each cycle. If the load current is further  
decreased, the converter will skip cycles to maintain  
output voltage regulation.  
across it.  
C2  
C2  
1µF  
1µF  
D2  
L1  
L1  
L2  
V
V
IN  
IN  
D1  
D1  
+
V
IN  
SW  
V
IN  
SW  
C1  
+
–V  
OUT  
–V  
OUT  
LT1614  
LT1614  
C1  
R1  
R1  
SHUTDOWN  
SHDN  
SHUTDOWN  
SHDN  
V
C
NFB  
V
C
NFB  
C3  
C3  
+
+
GND  
GND  
R2  
10k  
R2  
10k  
10Ok  
1nF  
10Ok  
1nF  
1614 F03  
1614 F04  
Figure 3. Direct Regulation of Negative Output  
Using Boost Converter with Charge Pump  
Figure 4. L2 Replaces D2 to Make Low Output Ripple  
Inverting Topology. Coupled or Uncoupled Inductors Can  
Be Used. Follow Phasing If Coupled for Best Results  
6
LT1614  
U
OPERATIO  
When Q1 turns off during the second phase of switching,  
theSWXnodevoltageabruptlyincreasesto(VIN +|VOUT|).  
TheSWnodevoltageincreasestoVD (about350mV).Now  
current in the first loop, begining at C1, flows through L1,  
C2, D1 and back to C1. Current in the second loop flows  
from C3 through L2, D1 and back to C3. Load current  
continues to be supplied by L2 and C3.  
rents are dumped into the ground plane as drawn in  
Figures 4, 5 and 6. This single layout technique can  
virtually eliminate high frequency “spike” noise so often  
present on switching regulator outputs.  
Output ripple voltage appears as a triangular waveform  
ridingonVOUT. Ripplemagnitudeequalstheripplecurrent  
of L2 multiplied by the equivalent series resistance (ESR)  
of output capacitor C3. Increasing the inductance of L1  
and L2 lowers the ripple current, which leads to lower  
output voltage ripple. Decreasing the ESR of C3, by using  
ceramic or other low ESR type capacitors, lowers output  
ripple voltage. Output ripple voltage can be reduced to  
arbitrarily low levels by using large value inductors and  
low ESR, high value capacitors.  
An important layout issue arises due to the chopped  
natureofthecurrentsflowinginQ1andD1.Iftheyareboth  
tied directly to the ground plane before being combined,  
switching noise will be introduced into the ground plane.  
Itisalmostimpossibletogetridofthisnoise,oncepresent  
in the ground plane. The solution is to tie D1’s cathode to  
the ground pin of the LT1614 before the combined cur-  
V
–(V  
+
V
OUT  
)
CESAT  
IN  
C2  
L1  
L2  
SW  
SWX  
V
IN  
–V  
OUT  
D1  
Q1  
+
C1  
C3  
R
LOAD  
+
1614 F05  
Figure 5. Switch-On Phase of Inverting Converter. L1 and L2 Current Have Positive dI/dt  
V
+
V
+ V  
V
D
IN  
OUT  
D
C2  
L1  
L2  
SW  
SWX  
V
–V  
OUT  
IN  
D1  
Q1  
+
C1  
C3  
R
LOAD  
+
1614 F06  
Figure 6. Switch-Off Phase of Inverting Converter. L1 and L2 Current Have Negative dI/dt  
7
LT1614  
U
OPERATIO  
Transient Response  
In Figure 10, output capacitor C3 is replaced by a ceramic  
unit.TheselargevaluecapacitorshaveESRof2morless  
and result in very low output ripple. A 1nF capacitor, CPL,  
connected across R1 reduces output perburbation due to  
load step. This keeps the output voltage within 5% of  
steady-state value. Figure 11 pictures the output and  
switch nodes at 500ns per division. Output ripple is about  
5mVP-P. Again, goodlayoutisessentialtoachievethislow  
noise performance.  
The inverting architecture of the LT1614 can generate a  
very low ripple output voltage. Recently available high  
value ceramic capacitors can be used successfully in  
LT1614 designs. The addition of a phase lead capacitor,  
CPL, reduces output perturbations due to load steps when  
lower value ceramic capacitors are used and connected in  
parallel with feedback resistor R1. Figure 7 shows an  
LT1614 inverting converter with resistor loads RL1 and  
RL2. RL1 is connected across the output, while RL2 is  
switched in externally via a pulse generator. Output volt-  
age waveforms are pictured in subsequent figures, illus-  
trating the performance of output capacitor type.  
Layout  
The LT1614 switches current at high speed, mandating  
careful attention to layout for best performance. You will  
not get advertised performance with careless layout. Figure 12  
shows recommended component placement. Follow this  
closely in your printed circuit layout. The cut ground  
copper at D1’s cathode is essential to obtain the low noise  
achieved in Figures 10 and 11’s oscillographs. Input  
bypass capacitor C1 should be placed close to the LT1614  
as shown. The load should connect directly to output  
capacitor C2 for best load regulation. You can tie the local  
ground into the system ground plane at C3’s ground  
terminal.  
Figure 8 shows the output voltage with a 50mA to 200mA  
load step, using an AVX TAJ “B” case 33µF tantalum  
capacitor at the output. Output perturbation is approxi-  
mately 250mV as the load changes from 50mA to 200mA.  
Steady-state ripple voltage is 40mVP–P, due to L1’s ripple  
current and C3’s ESR. Figure 9 pictures the output voltage  
and switch pin voltage at 500ns per division. Note the  
absence of high frequency spikes at the output. This is  
easily repeatable with proper layout, described in the next  
section.  
COMPONENT SELECTION  
Inductors  
C2  
1µF  
L1  
22µH  
L2  
22µH  
V
IN  
5V  
Each of the two inductors used with the LT1614 should  
have a saturation current rating (where inductance is  
approximately 70% of zero current inductance) of ap-  
proximately 0.4A or greater. If the device is used in  
“charge pump” mode, where there is only one inductor,  
then its rating should be 0.75A or greater. DCR of the  
inductors should be 0.4or less. 22µH inductors are  
called out in the applications schematics because these  
Murata units are physically small and inexpensive. In-  
creasing the inductance will lower ripple current, increas-  
ing available output current. A coupled inductor of 33µH,  
such as Coiltronics CTX33-2, will provide 290mA at 5V  
from a 5V input. Inductance can be reduced if operating  
from a supply voltage below 3V. Table 1 lists several  
inductors that will work with the LT1614, although this is  
not an exhaustive list. There are many magnetics vendors  
whose components are suitable.  
D1  
–V  
OUT  
V
SW  
IN  
SHDN  
R
C
PL  
1nF  
L2  
33Ω  
R1  
+
LT1614  
GND  
69.8k  
R
L1  
100Ω  
C1  
V
C
NFB  
C
C3  
+
R2  
24.9k  
R
C
C
C1: AVX TAJB226M010  
C2: TAIYO YUDEN LMK212BJ105MG  
C3: AVX TAJB336M006 OR MURATA (SEE TEXT)  
D1: MBR0520  
L1, L2: MURATA LQH3C220  
1614 F07  
Figure 7. Switching RL2 Provides 50mA to 200mA  
Load Step for LT1614 5V to 5V Converter  
8
LT1614  
U
OPERATIO  
VOUT  
100mV/DIV  
AC COUPLED  
VOUT  
20mV/DIV  
AC COUPLED  
VSW  
5V/DIV  
200mA  
ILOAD  
50mA  
500µs/DIV  
1614 F08  
500ns/DIV  
1614 F09  
Figure 8. Load Step Response of LT1614  
with 33µF Tantalum Output Capacitor  
Figure 9. 33µF “B” Case Tantalum Capacitor Has ESR Resulting  
in 40mVP-P Voltage Ripple at Output with 200mA Load  
VOUT  
100mV/DIV  
AC COUPLED  
VOUT  
10mV/DIV  
AC COUPLED  
VSW  
5V/DIV  
200mA  
ILOAD  
50mA  
500µs/DIV  
1614 F10  
500ns/DIV  
1614 F11  
Figure 10. Replacing C3 with 22µF Ceramic Capacitor  
Lowers Output Voltage Ripple. 1nF Phase-Lead Capacitor  
in Parallel with R1 Lowers Transient Excursion  
Figure 11. 22µF Ceramic Capacitor at  
Output Reduces Output Ripple Voltage  
C1  
+
SHUTDOWN  
V
IN  
1
8
R
C
C
R1  
R2  
2
3
4
7
6
5
L1  
C
D1  
GND  
C3  
C2  
1614 F12  
L2  
V
OUT  
Figure 12. Suggested Component Placement. Note: Cut in Ground Copper at D1’s Cathode  
9
LT1614  
U
OPERATIO  
Capacitors  
critical, and either tantalum or ceramic can be used with  
little trade-off in circuit performance. Some capacitor  
types appropriate for use with the LT1614 are listed in  
Table 2.  
As described previously, ceramic capacitors can be used  
with the LT1614. For lower cost applications, small tanta-  
lum units can be used. A value of 22µF is acceptable,  
althoughlargercapacitancevaluescanbeused. ESRisthe  
most important parameter in selecting an output capaci-  
tor. The “flying” capacitor (C2 in the schematic figures)  
should be a 1µF ceramic type. An X5R or X7R dielectric  
should be used to avoid capacitance decreasing severely  
with applied voltage. The input bypass capacitor is less  
Diodes  
ASchottkydiodeisrecommendedforusewiththeLT1614.  
The Motorola MBR0520 is a very good choice. Where the  
input to output voltage differential exceeds 20V, use the  
MBR0530 ( a 30V diode).  
Table 1. Inductor Vendors  
VENDOR  
PHONE  
URL  
PART  
COMMENT  
Sumida  
(847) 956-0666  
www.sumida.com  
CLS62-22022  
CD43-470  
22µH Coupled  
47µH  
Murata  
(404) 436-1300  
(407) 241-7876  
www.murata.com  
LQH3C-220  
CTX20-1  
22µH, 2mm Height  
Coiltronics  
www.coiltronics.com  
20µH Coupled, Low DCR  
Table 2. Capacitor Vendors  
VENDOR  
Taiyo Yuden  
AVX  
PHONE  
URL  
PART  
COMMENT  
(408) 573-4150  
(803) 448-9411  
www.t-yuden.com  
www.avxcorp.com  
Ceramic Caps  
X5R Dielectric  
Ceramic Caps  
Tantalum Caps  
Murata  
(404) 436-1300  
www.murata.com  
Ceramic Caps  
10  
LT1614  
U
W U U  
APPLICATIONS INFORMATION  
Shutdown Pin  
3.3V  
R1  
V
IN  
LT1614  
LBO  
The LT1614 has a Shutdown pin (SHDN) that must be  
groundedtoshutthedevicedownortiedtoavoltageequal  
or greater than VIN to operate. The shutdown circuit is  
shown in Figure 13.  
1M  
LBI  
+
TO PROCESSOR  
R2  
100k  
200mV  
V
LB  
– 200mV  
2µA  
Note that allowing SHDN to float turns on both the start-  
up current (Q2) and the shutdown current (Q3) for VIN >  
2VBE.TheLT1614doesn’tknowwhattodointhissituation  
and behaves erratically. SHDN voltage above VIN is al-  
lowed. This merely reverse-biases Q3’s base emitter junc-  
tion, a benign condition. The low-battery detector is dis-  
abled when SHDN is low.  
R1 =  
INTERNAL  
REFERENCE  
GND  
1614 F14  
Figure 14. Setting Low-Battery Detector Trip Point  
V
IN  
200k  
V
IN  
2N3906  
REF  
LBO  
LBI  
Q3  
LT1614  
R2  
V
SHUTDOWN  
CURRENT  
400k  
200mV  
+
SHDN  
GND  
10k  
10µF  
200k  
1614 F15  
START-UP  
CURRENT  
Figure 15. Accessing 200mV Reference  
Q2  
Q1  
Coupled Inductors  
1614 F13  
The applications shown in this data sheet use two un-  
coupled inductors because the Murata units specified are  
small and inexpensive. This topology can also be used  
with a coupled inductor as shown in Figure 16. Be sure to  
get the phasing right.  
Figure 13. Shutdown Circuit  
Low-Battery Detector  
The LT1614’s low-battery detector is a simple PNP input  
gain stage with an open collector NPN output. The nega-  
tive input of the gain stage is tied internally to a 200mV  
reference. The positive input is the LBI pin. Arrangement  
as a low-battery detector is straightforward. Figure 14  
details hookup. R1 and R2 need only be low enough in  
value so that the bias current of the LBI pin doesn’t cause  
large errors. For R2, 100k is adequate. The 200mV refer-  
encecanalsobeaccessedasshowninFigure15. Thelow-  
battery detect is not operative when the device is shut  
down.  
C3  
1µF  
L1A  
10µH  
L1B  
10µH  
V
IN  
5V  
V
OUT  
V
SW  
IN  
5V  
+
SHDN  
C1  
33µF  
200mA  
69.8k  
LT1614  
C2  
33µF  
D1  
V
C
NFB  
+
GND  
24.9k  
100k  
1nF  
1614 F16  
C1, C2: AVX TAJB336M010  
C3: AVX 1206CY106  
D1: MBR0520  
L1: COILTRONICS CTX10-1  
Figure 16. 5V to 5V Converter with Coupled Inductor  
11  
LT1614  
TYPICAL APPLICATIO S  
U
5V to 15V/80mA DC/DC Converter  
C1  
1µF  
L1  
22µH  
L2  
22µH  
V
IN  
5V  
V
OUT  
V
SW  
IN  
–15V  
+
SHDN  
80mA  
255k  
22µF  
LT1614  
10µF  
25V  
D1  
NFB  
V
C
+
GND  
24.9k  
100k  
1nF  
1614 TA05  
C1: 25V, Y5V  
D1: MBR0520  
L1, L2: MURATA LQH3C220  
5V to 15V Converter Efficiency  
80  
75  
70  
65  
60  
55  
50  
1
10  
100  
LOAD CURRENT (mA)  
1614 TA06  
12  
LT1614  
U
TYPICAL APPLICATIO S  
3.3V to 3.1V/200mA DC/DC Converter  
C1  
1µF  
L1  
22µH  
L2  
22µH  
V
IN  
3.3V  
V
OUT  
V
SW  
FB  
IN  
3.1V  
SHDN  
+
200mA  
18.7k  
LT1614  
22µF  
D1  
V
C
22µF  
+
GND  
12.7k  
100k  
1nF  
1614 TA03  
C1: AVX1206CY106  
D1: MBR0520  
L1, L2: MURATA LQH3C220  
3.3V to 3.1V Converter Efficiency  
80  
70  
60  
50  
40  
30  
20  
3
10  
30  
100  
300  
LOAD CURRENT (mA)  
1614 TA04  
13  
LT1614  
U
PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.  
MS8 Package  
8-Lead Plastic MSOP  
(LTC DWG # 05-08-1660)  
0.118 ± 0.004*  
(3.00 ± 0.102)  
8
7
6
5
0.040 ± 0.006  
(1.02 ± 0.15)  
0.034 ± 0.004  
(0.86 ± 0.102)  
0.007  
(0.18)  
0° – 6° TYP  
0.118 ± 0.004**  
(3.00 ± 0.102)  
SEATING  
PLANE  
0.193 ± 0.006  
(4.90 ± 0.15)  
0.012  
(0.30)  
REF  
0.021 ± 0.006  
(0.53 ± 0.015)  
0.006 ± 0.004  
(0.15 ± 0.102)  
0.0256  
(0.65)  
BSC  
MSOP (MS8) 1098  
1
2
3
4
* DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH,  
PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
14  
LT1614  
U
PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
7
5
8
6
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
1
3
4
2
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.016 – 0.050  
(0.406 – 1.270)  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
TYP  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
SO8 1298  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT1614  
TYPICAL APPLICATIO S  
U
5V to 5V Converter Uses All Ceramic Capacitors  
C3  
1µF  
L1  
22µH  
L2  
22µH  
V
IN  
3V TO 5V  
V
OUT  
V
SW  
IN  
5V  
200mA  
SHDN  
C1  
1nF  
69.8k  
24.9k  
LT1614  
4.7µF  
C2  
10µF  
D1  
V
C
NFB  
GND  
100k  
1nF  
1614 TA07  
C1: TAIYO YUDEN LMK316BJ475ML  
C2: TAIYO YUDEN JMK316BJ106ML  
C3: TAIYO YUDEN EMK316BJ105MF  
D1: MOTOROLA MBR0520  
L1, L2: MURATA LQH3C220 OR SUMIDA CD43-220  
Efficiency vs Load Current  
80  
75  
70  
65  
60  
55  
50  
45  
40  
V
V
= 3V  
IN  
OUT  
= –5V  
1
10  
LOAD CURRENT (mA)  
100  
1614 TA08  
RELATED PARTS  
PART NUMBER  
LTC®1174  
LT1307  
DESCRIPTION  
COMMENTS  
High Efficiency Step-Down and Inverting DC/DC Converter  
Single Cell Micropower 600kHz PWM DC/DC Converter  
Single Cell High Current Micropower 600kHz Boost Converter  
Micropower Boost DC/DC Converter  
Selectable I  
= 300mA or 600mA  
PEAK  
3.3V at 75mA from 1 Cell, MSOP Package  
5V at 1A from a Single Li-Ion Cell, SO-8 Package  
Programmable Peak Current Limit, MSOP Package  
2 Cells to 3.3V at 200mA, MSOP Package  
LT1308  
LT1316  
LT1317  
Micropower 600kHz PWM DC/DC Converter  
LTC1474  
LT1610  
Low Quiescent Current High Efficiency DC/DC Converter  
1.7MHz Single Cell Micropower DC/DC Converter  
Inverting 1.4MHz Switching Regulator in 5-Lead SOT-23  
1.4MHz Switching Regulator in 5-Lead SOT-23  
I = 10µA, Programmable Peak Current Limit, MSOP  
Q
5V at 200mA from 3.3V, MSOP Package  
LT1611  
5V at 150mA from 5V Input, Tiny SOT-23 Package  
5V at 200mA from 3.3V Input, Tiny SOT-23 Package  
20V at 12mA from 2.5V, Tiny SOT-23 Package  
–15V at 12mA from 2.5V, Tiny SOT-23 Package  
LT1613  
LT1615  
Micropower Constant Off-Time DC/DC Converter in 5-Lead SOT-23  
Micropower Inverting DC/DC Converter in 5-Lead SOT-23  
1.2MHz Boost DC/DC Converter in 5-Lead SOT-23  
1.2MHz Inverting DC/DC Converter in 5-Lead SOT-23  
LT1617  
LT1930  
5V at 480mA from 3.3V Input, V  
Up to 34V  
OUT  
LT1931  
–5V at 350mA from 5V Input, 1mV Output Ripple  
P-P  
sn1614 1614fs LT/TP 1000 4K • PRINTED IN THE USA  
LINEAR TECHNOLOGY CORPORATION 1998  
16 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

LT1614CS8

Inverting 600kHz Switching Regulator
Linear

LT1614CS8#PBF

LT1614 - Inverting 600kHz Switching Regulator; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LT1614CS8#TRPBF

暂无描述
Linear

LT1614IMS8

Inverting 600kHz Switching Regulator
Linear

LT1614IMS8#PBF

暂无描述
Linear

LT1614IMS8#TRPBF

暂无描述
Linear

LT1614IS8

Inverting 600kHz Switching Regulator
Linear

LT1614IS8#PBF

LT1614 - Inverting 600kHz Switching Regulator; Package: SO; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LT1614IS8#TR

暂无描述
Linear

LT1614IS8#TRPBF

LT1614 - Inverting 600kHz Switching Regulator; Package: SO; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LT1614_1

Inverting 600kHz Switching Regulator
Linear

LT1615

Micropower Step-Up DC/DC Convertersin SOT-23
Linear