LT1633IS#TR [Linear]

LT1633 - 45MHz, 45V/us, Quad Rail-to-Rail Input and Output Precision Op Amps; Package: SO; Pins: 14; Temperature Range: -40°C to 85°C;
LT1633IS#TR
型号: LT1633IS#TR
厂家: Linear    Linear
描述:

LT1633 - 45MHz, 45V/us, Quad Rail-to-Rail Input and Output Precision Op Amps; Package: SO; Pins: 14; Temperature Range: -40°C to 85°C

运算放大器
文件: 总28页 (文件大小:315K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1806/LT1807  
325MHz, Single/Dual,  
Rail-to-Rail Input and Output, Low Distortion,  
Low Noise Precision Op Amps  
DESCRIPTION  
FEATURES  
The LT®1806/LT1807 are single/dual low noise rail-to-rail  
input and output unity-gain stable op amps that feature a  
325MHzgain-bandwidthproduct, a140V/μsslewrateand  
a85mAoutputcurrent.Theyareoptimizedforlowvoltage,  
high performance signal conditioning systems.  
n
Gain-Bandwidth Product: 325MHz  
n
n
n
n
n
n
n
n
n
n
n
n
n
n
Slew Rate: 140V/μs  
Wide Supply Range: 2.5V to 12.6V  
Large Output Current: 85mA  
Low Distortion, 5MHz: –80dBc  
Low Voltage Noise: 3.5nV/√Hz  
Input Common Mode Range Includes Both Rails  
Output Swings Rail-to-Rail  
The LT1806/LT1807 have a very low distortion of 80dBc  
at 5MHz, a low input referred noise voltage of 3.5nV/√Hz  
andamaximumoffsetvoltageof550μVthatallowsthemto  
be used in high performance data acquisition systems.  
Input Offset Voltage (Rail-to-Rail): 550μV Max  
Common Mode Rejection: 106dB Typ  
Power Supply Rejection: 105dB Typ  
Unity-Gain Stable  
The LT1806/LT1807 have an input range that includes  
both supply rails and an output that swings within 20mV  
of either supply rail to maximize the signal dynamic range  
in low supply applications.  
Power Down Pin (LT1806)  
Operating Temperature Range: 40°C to 85°C  
Single in SO-8 and 6-Pin Low Profile (1mm)  
ThinSOT™ Packages  
TheLT1806/LT1807maintaintheirperformanceforsupplies  
from 2.5V to 12.6V and are specified at 3V, 5V and 5V  
supplies. The inputs can be driven beyond the supplies  
without damage or phase reversal of the output.  
n
Dual in SO-8 and 8-Pin MSOP Packages  
APPLICATIONS  
The LT1806 is available in an 8-pin SO package with the  
standardopamppinoutanda6-pinTSOT-23package.The  
LT1807 features the standard dual op amp pinout and is  
available in 8-pin SO and MSOP packages.These devices  
can be used as plug-in replacements for many op amps  
to improve input/output range and performance.  
n
Low Voltage, High Frequency Signal Processing  
n
Driving A/D Converters  
Rail-to-Rail Buffer Amplifiers  
n
n
Active Filters  
Video Line Driver  
n
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. ThinSOT is a trademark of Linear Technology Corporation. All other  
trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
Gain of 20 Differential A/D Driver  
4096 Point FFT Response  
0
+
V
A
= p5V  
S
V
= 20  
1/2 LT1807  
–20  
f
f
= 10Msps  
= 1.4086MHz  
SAMPLE  
IN  
R2  
SFDR = 83dB  
5V  
909Ω  
–40  
–60  
NONAVERAGED  
V
= 200mV  
IN  
P-P  
R5  
R1  
49.9Ω  
100Ω  
+AV  
–AV  
LTC®1420  
V
IN  
IN  
C1 5.6pF  
C2 5.6pF  
C3  
470pF  
12 BITS  
10Msps  
PGA GAIN = 1  
–80  
–100  
–120  
V
= 4.096V  
REF  
IN  
R6  
49.9Ω  
18067 TA01  
R3  
100Ω  
R4  
1k  
–5V  
0
1
2
3
4
5
1/2 LT1807  
FREQUENCY (MHz)  
18067 TA02  
+
18067fc  
1
LT1806/LT1807  
(Note 1)  
ABSOLUTE MAXIMUM RATINGS  
+
Total Supply Voltage (V to V ) .............................12.6V  
Input Voltage (Note 2).............................................. VS  
Input Current (Note 2).......................................... 10mA  
Output Short-Circuit Duration (Note 3)............ Indefinite  
Operating Temperature Range (Note 4) ...40°C to 85°C  
Specified Temperature Range (Note 5) ....40°C to 85°C  
Junction Temperature ........................................... 150°C  
Storage Temperature Range ..................65°C to 150°C  
Lead Temperature (Soldering, 10 sec)...................300°C  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
+
SHDN  
–IN  
1
2
3
4
8
7
6
5
NC  
OUT 1  
6 V  
+
+
V
V
2
5 SHDN  
4 –IN  
+IN  
OUT  
NC  
+IN 3  
V
S6 PACKAGE  
6-LEAD PLASTIC TSOT-23  
S8 PACKAGE  
8-LEAD PLASTIC SO  
T
= 150°C, θ = 160°C/W (Note 9)  
JMAX  
JA  
T
JMAX  
= 150°C, θ = 100°C/W (Note 9)  
JA  
TOP VIEW  
TOP VIEW  
+
+
OUT A  
–IN A  
+IN A  
1
2
3
4
8
7
6
5
V
OUT A  
–IN A  
+IN A  
1
2
3
4
8 V  
+
OUT B  
–IN B  
+IN B  
7 OUT B  
6 –IN B  
5 +IN B  
+
V
V
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
S8 PACKAGE  
8-LEAD PLASTIC SO  
T
= 150°C, θ = 135°C/W (Note 9)  
JA  
JMAX  
T
JMAX  
= 150°C, θ = 100°C/W (Note 9)  
JA  
ORDER INFORMATION  
LEAD FREE FINISH  
LT1806CS6#PBF  
LT1806IS6#PBF  
LT1806CS8#PBF  
TAPE AND REEL  
PART MARKING  
LTNK  
PACKAGE DESCRIPTION  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
8-Lead Plastic SO  
SPECIFIED TEMPERATURE RANGE  
LT1806CS6#TRPBF  
LT1806IS6#TRPBF  
LT1806CS8#TRPBF  
0°C to 70°C  
40°C to 85°C  
0°C to 70°C  
LTNL  
1806  
LT1806IS8#PBF  
LT1807CMS8#PBF  
LT1807IMS8#PBF  
LT1807CS8#PBF  
LT1807IS8#PBF  
LT1806IS8#TRPBF  
LT1807CMS8#TRPBF  
LT1807IMS8#TRPBF  
LT1807CS8#TRPBF  
LT1807IS8#TRPBF  
1806I  
LTTT  
8-Lead Plastic SO  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic SO  
8-Lead Plastic SO  
40°C to 85°C  
0°C to 70°C  
LTTV  
40°C to 85°C  
0°C to 70°C  
1807  
1807I  
40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
18067fc  
2
LT1806/LT1807  
ELECTRICAL CHARACTERISTICS  
TA = 25°C. VS = 5V, 0V; VS = 3V, 0V; VSHDN = open; VCM = VOUT = half supply, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
+
V
Input Offset Voltage  
V
V
V
V
= V  
= V  
100  
100  
100  
100  
550  
550  
700  
700  
μV  
μV  
μV  
μV  
OS  
CM  
CM  
CM  
CM  
= V (LT1806 SOT-23)  
= V (LT1806 SOT-23)  
+
+
Input Offset Voltage Shift  
V
V
= V to V  
50  
100  
550  
700  
μV  
μV  
ΔV  
CM  
CM  
OS  
= V to V (LT1806 SOT-23)  
+
Input Offset Voltage Match (Channel-to-Channel) V = V to V  
200  
1000  
μV  
CM  
(Note 10)  
+
I
B
Input Bias Current  
V
V
= V  
1
–5  
4
μA  
μA  
CM  
CM  
= V + 0.2V  
–13  
+
Input Bias Current Shift  
V
= V to V  
6
17  
μA  
ΔI  
CM  
B
+
Input Bias Current Match (Channel-to-Channel)  
(Note 10)  
V
V
= V  
0.03  
0.05  
1.2  
3.0  
μA  
μA  
CM  
CM  
= V + 0.2V  
+
I
Input Offset Current  
V
V
= V  
0.03  
0.05  
0.6  
1.5  
μA  
μA  
OS  
CM  
CM  
= V + 0.2V  
+
Input Offset Current Shift  
Input Noise Voltage  
V
= V + 0.2V to V  
0.08  
800  
3.5  
1.5  
2
2.1  
μA  
ΔI  
CM  
OS  
0.1Hz to 10Hz  
f = 10kHz  
nV  
P-P  
e
n
Input Noise Voltage Density  
Input Noise Current Density  
Input Capacitance  
nV/√Hz  
pA/√Hz  
pF  
i
n
f = 10kHz  
C
IN  
A
VOL  
Large-Signal Voltage Gain  
V = 5V, V = 0.5V to 4.5V, R = 1k to V /2  
75  
9
60  
220  
22  
150  
V/mV  
V/mV  
V/mV  
S
O
L
S
V = 5V, V = 1V to 4V, R = 100 to V /2  
S
O
L
S
V = 3V, V = 0.5V to 2.5V, R = 1k to V /2  
S
O
L
S
+
+
CMRR  
Common Mode Rejection Ratio  
V = 5V, V = V to V  
79  
74  
100  
95  
dB  
dB  
S
CM  
V = 3V, V = V to V  
S
CM  
+
+
CMRR Match (Channel-to-Channel) (Note 10)  
V = 5V, V = V to V  
73  
68  
100  
95  
dB  
dB  
S
CM  
V = 3V, V = V to V  
S
CM  
+
Input Common Mode Range  
V
V
V
dB  
dB  
V
PSRR  
Power Supply Rejection Ratio  
V = 2.5V to 10V, V = 0V  
90  
84  
105  
105  
2.3  
S
CM  
PSRR Match (Channel-to-Channel) (Note 10)  
Minimum Supply Voltage (Note 6)  
Output Voltage Swing Low (Note 7)  
V = 2.5V to 10V, V = 0V  
S
CM  
2.5  
V
V
No Load  
8
50  
130  
375  
mV  
mV  
mV  
OL  
I
I
= 5mA  
= 25mA  
50  
SINK  
SINK  
170  
Output Voltage Swing High (Note 7)  
No Load  
15  
85  
350  
65  
180  
650  
mV  
mV  
mV  
OH  
I
I
= 5mA  
SOURCE  
SOURCE  
= 25mA  
18067fc  
3
LT1806/LT1807  
ELECTRICAL CHARACTERISTICS  
TA = 25°C. VS = 5V, 0V; VS = 3V, 0V; VSHDN = open; VCM = VOUT = half supply, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Short-Circuit Current  
V = 5V  
S
mA  
mA  
35  
30  
85  
65  
SC  
S
S
V = 3V  
I
Supply Current per Amplifier  
Disable Supply Current  
9
13  
mA  
V = 5V, V  
= 0.3V  
= 0.3V  
0.40  
0.22  
0.9  
0.7  
mA  
mA  
S
SHDN  
SHDN  
V = 3V, V  
S
I
SHDN Pin Current  
V = 5V, V  
S
= 0.3V  
= 0.3V  
150  
100  
350  
300  
μA  
μA  
SHDN  
S
SHDN  
SHDN  
V = 3V, V  
Shutdown Output Leakage Current  
SHDN Pin Input Voltage LOW  
SHDN Pin Input Voltage HIGH  
Turn-On Time  
V
= 0.3V  
0.1  
75  
μA  
V
SHDN  
V
V
0.3  
L
+
V – 0.5  
V
H
t
t
V
V
= 0.3V to 4.5V, R = 100Ω  
80  
50  
ns  
ON  
OFF  
SHDN  
SHDN  
L
Turn-Off Time  
= 4.5V to 0.3V, R = 100Ω  
ns  
L
GBW  
SR  
Gain-Bandwidth Product  
Slew Rate  
Frequency = 6MHz  
325  
125  
10  
MHz  
V/μs  
MHz  
dBc  
ns  
V = 5V, A = –1, R = 1k, V = 4V  
S
V
L
O
FPBW  
HD  
Full-Power Bandwidth  
Harmonic Distortion  
Settling Time  
V = 5V, V  
S
= 4V  
OUT P-P  
V = 5V, A = 1, R = 1k, V = 2V , f = 5MHz  
–78  
60  
S
V
L
O
P-P  
C
t
S
0.01%, V = 5V, V  
= 2V, A = 1, R = 1k  
STEP V L  
S
Differential Gain (NTSC)  
Differential Phase (NTSC)  
V = 5V, A = 2, R = 150  
0.015  
0.05  
%
ΔG  
S
V
L
V = 5V, A = 2, R = 150  
Deg  
Δθ  
S
V
L
The l denotes the specifications which apply over the 0°C < TA < 70°C temperature range. VS = 5V, 0V; VS = 3V, 0V; VSHDN = open;  
VCM = VOUT = half supply, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
+
l
l
l
l
V
Input Offset Voltage  
V
V
V
V
= V  
= V  
200  
200  
200  
200  
700  
700  
850  
850  
μV  
μV  
μV  
μV  
OS  
CM  
CM  
CM  
CM  
= V (LT1806 SOT-23)  
= V (LT1806 SOT-23)  
+
l
l
V
TC  
Input Offset Voltage Drift (Note 8)  
Input Offset Voltage Shift  
V
V
= V  
1.5  
1.5  
5
5
μV/°C  
μV/°C  
OS  
CM  
CM  
= V  
+
+
l
l
V
V
= V to V  
100  
100  
700  
850  
μV  
μV  
ΔV  
CM  
CM  
OS  
= V to V (LT1806 SOT-23)  
+
l
Input Offset Voltage Match (Channel-to-Channel) V = V , V = V  
300  
1200  
μV  
CM  
CM  
(Note 10)  
+
l
l
I
B
Input Bias Current  
V
V
= V – 0.2V  
1
–5  
5
μA  
μA  
CM  
CM  
= V + 0.4V  
–15  
+
l
Input Bias Current Shift  
V
= V + 0.4V to V – 0.2V  
6
20  
μA  
ΔI  
B
CM  
18067fc  
4
LT1806/LT1807  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the 0°C < TA < 70°C  
temperature range. VS = 5V, 0V; VS = 3V, 0V; VSHDN = open; VCM = VOUT = half supply, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
l
l
Input Bias Current Match (Channel-to-Channel)  
(Note 10)  
V
V
= V – 0.2V  
0.03  
0.05  
1.5  
3.5  
μA  
μA  
CM  
CM  
= V + 0.4V  
+
l
l
I
Input Offset Current  
V
V
= V – 0.2V  
0.03  
0.05  
0.75  
1.80  
μA  
μA  
OS  
CM  
CM  
= V + 0.4V  
+
l
Input Offset Current Shift  
Large-Signal Voltage Gain  
V
= V + 0.4V to V – 0.2V  
0.08  
2.55  
μA  
ΔI  
CM  
OS  
l
l
l
A
VOL  
V = 5V, V = 0.5V to 4.5V, R = 1k to V /2  
60  
7.5  
45  
175  
20  
140  
V/mV  
V/mV  
V/mV  
S
S
S
O
L
S
S
S
V = 5V, V = 1V to 4V, R = 100Ω to V /2  
O
L
V = 3V, V = 0.5V to 2.5V, R = 1k to V /2  
O
L
+
+
l
l
CMRR  
Common Mode Rejection Ratio  
V = 5V, V = V to V  
77  
72  
94  
89  
dB  
dB  
S
CM  
V = 3V, V = V to V  
S
CM  
+
+
l
l
CMRR Match (Channel-to-Channel) (Note 10)  
V = 5V, V = V to V  
71  
66  
94  
89  
dB  
dB  
S
CM  
V = 3V, V = V to V  
S
CM  
+
l
l
l
l
Input Common Mode Range  
V
V
V
dB  
dB  
V
PSRR  
Power Supply Rejection Ratio  
V = 2.5V to 10V, V = 0V  
88  
82  
105  
105  
2.3  
S
CM  
PSRR Match (Channel-to-Channel) (Note 10)  
Minimum Supply Voltage (Note 6)  
Output Voltage Swing Low (Note 7)  
V = 2.5V to 10V, V = 0V  
S
CM  
V
= V = 0.5V  
2.5  
CM  
O
l
l
l
V
V
I
No Load  
12  
60  
180  
60  
140  
425  
mV  
mV  
mV  
OL  
I
I
= 5mA  
= 25mA  
SINK  
SINK  
l
l
l
Output Voltage Swing High (Note 7)  
Short-Circuit Current  
No Load  
30  
120  
220  
700  
mV  
mV  
mV  
OH  
I
I
= 5mA  
110  
360  
SOURCE  
SOURCE  
= 25mA  
l
l
V = 5V  
mA  
mA  
30  
25  
65  
55  
SC  
S
V = 3V  
S
l
I
S
Supply Current per Amplifier  
Disable Supply Current  
10  
14  
mA  
l
l
V = 5V, V  
S
= 0.3V  
= 0.3V  
0.40  
0.22  
1.1  
0.9  
mA  
mA  
S
SHDN  
SHDN  
V = 3V, V  
l
l
I
SHDN Pin Current  
V = 5V, V  
S
= 0.3V  
= 0.3V  
160  
110  
400  
350  
μA  
μA  
SHDN  
S
SHDN  
SHDN  
V = 3V, V  
l
l
l
l
l
l
l
l
Shutdown Output Leakage Current  
SHDN Pin Input Voltage Low  
SHDN Pin Input Voltage High  
Turn-On Time  
V
= 0.3V  
1
μA  
V
SHDN  
V
V
0.3  
L
+
V – 0.5  
V
H
t
t
V
V
= 0.3V to 4.5V, R = 100Ω  
80  
50  
ns  
ON  
OFF  
SHDN  
SHDN  
L
Turn-Off Time  
= 4.5V to 0.3V, R = 100Ω  
ns  
L
GBW  
SR  
Gain-Bandwidth Product  
Slew Rate  
Frequency = 6MHz  
V = 5V, A = –1, R = 1k, V = 4V  
300  
100  
8
MHz  
V/μs  
MHz  
S
V
L
O
FPBW  
Full-Power Bandwidth  
V = 5V, V = 4V  
S O P-P  
18067fc  
5
LT1806/LT1807  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the –40°C < TA < 85°C  
temperature range. VS = 5V, 0V; VS = 3V, 0V; VSHDN = open; VCM = VOUT = half supply, unless otherwise noted. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
+
l
l
l
l
V
Input Offset Voltage  
V
CM  
V
CM  
V
CM  
V
CM  
= V  
= V  
200  
200  
200  
200  
800  
800  
950  
950  
μV  
μV  
μV  
μV  
OS  
= V (LT1806 SOT-23)  
= V (LT1806 SOT-23)  
+
l
l
V
TC  
Input Offset Voltage Drift (Note 8)  
Input Offset Voltage Shift  
V
V
= V  
= V  
1.5  
1.5  
5
5
μV/°C  
μV/°C  
OS  
CM  
CM  
+
+
l
l
V
V
= V to V  
100  
100  
800  
950  
μV  
μV  
ΔV  
CM  
CM  
OS  
= V to V (LT1806 SOT-23)  
+
l
Input Offset Voltage Match (Channel-to-Channel) V = V , V = V  
200  
1400  
μV  
CM  
CM  
(Note 10)  
+
l
l
I
Input Bias Current  
V
V
= V – 0.2V  
1
–5  
6
μA  
μA  
B
CM  
CM  
= V + 0.4V  
–16  
+
l
Input Bias Current Shift  
V
= V + 0.4V to V – 0.2V  
6
22  
μA  
ΔI  
B
CM  
+
l
l
Input Bias Current Match (Channel-to-Channel)  
(Note 10)  
V
V
= V – 0.2V  
0.02  
0.05  
1.8  
4
μA  
μA  
CM  
CM  
= V + 0.4V  
+
l
l
I
OS  
Input Offset Current  
V
V
= V – 0.2V  
0.02  
0.05  
0.9  
2.1  
μA  
μA  
CM  
CM  
= V + 0.4V  
+
l
Input Offset Current Shift  
Large-Signal Voltage Gain  
V
= V + 0.4V to V – 0.2V  
0.07  
3
μA  
ΔI  
CM  
OS  
l
l
l
A
VOL  
V = 5V, V = 0.5V to 4.5V, R = 1k to V /2  
50  
6
35  
140  
16  
100  
V/mV  
V/mV  
V/mV  
S
S
S
O
L
S
S
S
V = 5V, V = 1V to 4V, R = 100Ω to V /2  
O
L
V = 3V, V = 0.5V to 2.5V, R = 1k to V /2  
O
L
+
+
l
l
CMRR  
Common Mode Rejection Ratio  
V = 5V, V = V to V  
75  
71  
94  
89  
dB  
dB  
S
CM  
V = 3V, V = V to V  
S
CM  
+
+
l
l
CMRR Match (Channel-to-Channel) (Note 10)  
V = 5V, V = V to V  
69  
65  
94  
89  
dB  
dB  
S
CM  
V = 3V, V = V to V  
S
CM  
+
l
l
l
l
Input Common Mode Range  
V
V
V
dB  
dB  
V
PSRR  
Power Supply Rejection Ratio  
V = 2.5V to 10V, V = 0V  
86  
80  
105  
105  
2.3  
S
CM  
PSRR Match (Channel-to-Channel) (Note 10)  
Minimum Supply Voltage (Note 6)  
Output Voltage Swing Low (Note 7)  
V = 2.5V to 10V, V = 0V  
S
CM  
V
CM  
= V = 0.5V  
2.5  
O
l
l
l
V
V
I
No Load  
15  
65  
170  
70  
150  
400  
mV  
mV  
mV  
OL  
I
I
= 5mA  
= 20mA  
SINK  
SINK  
l
l
l
Output Voltage Swing High (Note 7)  
Short-Circuit Current  
No Load  
30  
130  
240  
700  
mV  
mV  
mV  
OH  
I
I
= 5mA  
110  
350  
SOURCE  
SOURCE  
= 20mA  
l
l
V = 5V  
mA  
mA  
22  
20  
45  
40  
SC  
S
V = 3V  
S
l
I
Supply Current per Amplifier  
Disable Supply Current  
11  
16  
mA  
S
l
l
V = 5V, V  
S
= 0.3V  
= 0.3V  
0.4  
0.3  
1.2  
1
mA  
mA  
S
SHDN  
SHDN  
V = 3V, V  
18067fc  
6
LT1806/LT1807  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the –40°C < TA < 85°C  
temperature range. VS = 5V, 0V; VS = 3V, 0V; VSHDN = open; VCM = VOUT = half supply, unless otherwise noted. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
I
SHDN Pin Current  
V = 5V, V  
S
= 0.3V  
= 0.3V  
170  
120  
450  
400  
μA  
μA  
SHDN  
S
SHDN  
SHDN  
V = 3V, V  
l
l
l
l
l
l
l
l
Shutdown Output Leakage Current  
SHDN Pin Input Voltage Low  
SHDN Pin Input Voltage High  
Turn-On Time  
V
= 0.3V  
1.2  
μA  
V
SHDN  
V
V
0.3  
L
+
V – 0.5  
V
H
t
t
V
V
= 0.3V to 4.5V, R = 100Ω  
80  
50  
250  
80  
6
ns  
ON  
OFF  
SHDN  
SHDN  
L
Turn-Off Time  
= 4.5V to 0.3V, R = 100Ω  
ns  
L
GBW  
SR  
Gain-Bandwidth Product  
Slew Rate  
Frequency = 6MHz  
V = 5V, A = –1, R = 1k, V = 4V  
MHz  
V/μs  
MHz  
S
V
L
O
FPBW  
Full-Power Bandwidth  
V = 5V, V = 4V  
S O P-P  
TA = 25°C. VS = 5V, VSHDN = open; VCM = 0V, VOUT = 0V, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
+
V
Input Offset Voltage  
V
CM  
V
CM  
V
CM  
V
CM  
= V  
= V  
100  
100  
100  
100  
700  
700  
750  
750  
μV  
μV  
μV  
μV  
OS  
= V (LT1806 SOT-23)  
= V (LT1806 SOT-23)  
+
+
Input Offset Voltage Shift  
V
CM  
V
CM  
= V to V  
50  
50  
700  
750  
μV  
μV  
ΔV  
OS  
= V to V (LT1806 SOT-23)  
+
Input Offset Voltage Match (Channel-to-Channel) V = V , V = V  
200  
1200  
μV  
CM  
CM  
(Note 10)  
+
I
Input Bias Current  
V
CM  
V
CM  
= V  
1
–5  
5
μA  
μA  
B
= V + 0.2V  
–14  
+
Input Bias Current Shift  
V
CM  
= V + 0.2V to V  
6
19  
μA  
ΔI  
B
+
Input Bias Current Match (Channel-to-Channel)  
(Note 10)  
V
V
= V  
0.03  
0.05  
1.4  
3.2  
μA  
μA  
CM  
CM  
= V + 0.2V  
+
I
Input Offset Current  
V
V
= V  
0.03  
0.04  
0.7  
1.6  
μA  
μA  
OS  
CM  
CM  
= V + 0.2V  
+
Input Offset Current Shift  
Input Noise Voltage  
V
= V + 0.2V to V  
0.07  
800  
3.5  
1.5  
2
2.3  
μA  
nVp-p  
nV/√Hz  
pA/√Hz  
pF  
ΔI  
CM  
OS  
0.1Hz to 10Hz  
f = 10kHz  
e
n
Input Noise Voltage Density  
Input Noise Current Density  
Input Capacitance  
i
n
f = 10kHz  
C
IN  
f = 10kHz  
A
VOL  
Large-Signal Voltage Gain  
V = –4V to 4V, R = 1k  
100  
10  
300  
27  
V/mV  
V/mV  
O
L
V = 2.5V to 2.5V, R = 100Ω  
O
L
18067fc  
7
LT1806/LT1807  
ELECTRICAL CHARACTERISTICS  
TA = 25°C. VS = 5V, VSHDN = open; VCM = 0V, VOUT = 0V, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
83  
TYP  
106  
106  
MAX  
UNITS  
dB  
+
+
CMRR  
Common Mode Rejection Ratio  
V
V
= V to V  
CM  
CM  
CMRR Match (Channel-to-Channel) (Note 10)  
Input Common Mode Range  
= V to V  
77  
dB  
+
V
V
V
+
PSRR  
Power Supply Rejection Ratio  
V = 2.5V to 10V, V = 0V  
90  
84  
105  
105  
dB  
+
PSRR Match (Channel-to-Channel) (Note 10)  
Output Voltage Swing Low (Note 7)  
V = 2.5V to 10V, V = 0V  
dB  
V
V
I
No Load  
SINK  
SINK  
14  
55  
180  
60  
mV  
mV  
mV  
OL  
I
I
= 5mA  
= 25mA  
140  
450  
Output Voltage Swing High (Note 7)  
No Load  
SOURCE  
SOURCE  
20  
90  
360  
70  
200  
700  
mV  
mV  
mV  
OH  
I
I
= 5mA  
= 25mA  
Short-Circuit Current  
Supply Current per Amplifier  
Disable Supply Current  
SHDN Pin Current  
mA  
mA  
mA  
μA  
40  
85  
11  
SC  
I
16  
1.2  
350  
75  
S
V
V
V
= 0.3V  
= 0.3V  
= 0.3V  
0.4  
150  
0.3  
SHDN  
SHDN  
SHDN  
I
SHDN  
Shutdown Output Leakage Current  
SHDN Pin Input Voltage Low  
SHDN Pin Input Voltage High  
Turn-On Time  
μA  
V
V
0.3  
V
L
+
V 0.5  
V
H
t
t
V
V
= 0.3V to 4.5V, R = 100Ω  
80  
50  
ns  
ON  
OFF  
SHDN  
SHDN  
L
Turn-Off Time  
= 4.5V to 0.3V, R = 100Ω  
ns  
L
GBW  
SR  
Gain-Bandwidth Product  
Slew Rate  
Frequency = 6MHz  
A = –1, R = 1k, V = 4V, Measured at V = 3V  
170  
70  
325  
140  
5.5  
MHz  
V/μs  
MHz  
dBc  
ns  
V
L
O
O
FPBW  
HD  
Full-Power Bandwidth  
Harmonic Distortion  
Settling Time  
V = 8V  
O P-P  
A = 1, R = 1k, V = 2V , f = 5MHz  
80  
120  
0.01  
0.01  
V
L
O
P-P  
C
t
0.01%, V  
= 8V, A = 1, R = 1k  
STEP V L  
S
Differential Gain (NTSC)  
Differential Phase (NTSC)  
A = 2, R = 150  
%
ΔG  
V
L
A = 2, R = 150  
Deg  
Δθ  
V
L
18067fc  
8
LT1806/LT1807  
ELECTRICAL CHARACTERISTICS  
The l denotes the specifications which apply over the 0°C < TA < 70°C  
temperature range. VS = 5V, VSHDN = open; VCM = 0V, VOUT = 0V, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
+
l
l
l
l
V
Input Offset Voltage  
V
V
V
V
= V  
= V  
200  
200  
200  
200  
800  
800  
900  
900  
μV  
μV  
μV  
μV  
OS  
CM  
CM  
CM  
CM  
= V (LT1806 SOT-23)  
= V (LT1806 SOT-23)  
+
l
l
V
TC  
Input Offset Voltage Drift (Note 8)  
Input Offset Voltage Shift  
V
V
= V  
= V  
1.5  
1.5  
5
5
μV/°C  
μV/°C  
OS  
CM  
CM  
+
+
l
l
V
V
= V to V  
100  
100  
800  
900  
μV  
μV  
ΔV  
CM  
CM  
OS  
= V to V (LT1806 SOT-23)  
+
l
Input Offset Voltage Match (Channel-to-Channel) V = V , V = V  
300  
1400  
μV  
CM  
CM  
(Note 10)  
+
l
l
I
B
Input Bias Current  
V
V
= V – 0.2V  
1
–6  
6
μA  
μA  
CM  
CM  
= V + 0.4V  
–15  
+
l
Input Bias Current Shift  
V
= V + 0.4V to V – 0.2V  
7
21  
μA  
ΔI  
CM  
B
+
l
l
Input Bias Current Match (Channel-to-Channel)  
(Note 10)  
V
V
= V – 0.2V  
0.03  
0.04  
1.8  
3.8  
μA  
μA  
CM  
CM  
= V + 0.4V  
+
l
l
I
Input Offset Current  
V
V
= V – 0.2V  
0.03  
0.04  
0.9  
1.9  
μA  
μA  
OS  
CM  
CM  
= V + 0.4V  
+
l
Input Offset Current Shift  
Large-Signal Voltage Gain  
V
= V + 0.4V to V – 0.2V  
0.07  
2.8  
μA  
ΔI  
CM  
OS  
l
l
A
VOL  
V = –4V to 4V, R = 1k  
V = –2.5V to 2.5V, R = 100Ω  
80  
8
250  
25  
V/mV  
V/mV  
O
O
L
L
+
l
l
l
l
l
CMRR  
Common Mode Rejection Ratio  
V
V
= V to V  
81  
75  
100  
100  
dB  
dB  
V
CM  
CM  
+
CMRR Match (Channel-to-Channel) (Note 10)  
Input Common Mode Range  
= V to V  
+
V
V
+
PSRR  
Power Supply Rejection Ratio  
V = 2.5V to 10V, V = 0V  
88  
82  
105  
106  
dB  
dB  
+
PSRR Match (Channel-to-Channel) (Note 10)  
Output Voltage Swing Low (Note 7)  
V = 2.5V to 10V, V = 0V  
l
l
l
V
V
I
No Load  
18  
60  
185  
80  
160  
500  
mV  
mV  
mV  
OL  
I
I
= 5mA  
= 25mA  
SINK  
SINK  
l
l
l
Output Voltage Swing High (Note 7)  
No Load  
40  
110  
360  
140  
240  
750  
mV  
mV  
mV  
OH  
I
I
= 5mA  
= 25mA  
SOURCE  
SOURCE  
l
l
l
l
l
l
l
l
l
l
l
Short-Circuit Current  
Supply Current per Amplifier  
Disable Supply Current  
SHDN Pin Current  
mA  
mA  
mA  
μA  
35  
75  
14  
SC  
I
20  
1.4  
400  
S
V
SHDN  
V
SHDN  
V
SHDN  
= 0.3V  
= 0.3V  
= 0.3V  
0.4  
160  
1
I
SHDN  
Shutdown Output Leakage Current  
SHDN Pin Input Voltage Low  
SHDN Pin Input Voltage High  
Turn-On Time  
μA  
V
V
0.3  
V
L
+
V – 0.5  
V
H
t
t
V
V
= 0.3V to 4.5V, R = 100Ω  
80  
50  
ns  
ON  
OFF  
SHDN  
SHDN  
L
Turn-Off Time  
= 4.5V to 0.3V, R = 100Ω  
ns  
L
GBW  
SR  
Gain-Bandwidth Product  
Slew Rate  
Frequency = 6MHz  
150  
60  
300  
120  
MHz  
V/μs  
A = –1, R = 1k, V = 4V,  
Measure at V = 3V  
V
L
O
O
l
FPBW  
Full-Power Bandwidth  
V = 8V  
O
4.5  
MHz  
18067fc  
9
P-P  
LT1806/LT1807  
ELECTRICAL CHARACTERISTICS  
The l denotes the specifications which apply over the 40°C < TA < 85°C  
temperature range. VS = 5V, VSHDN = open; VCM = 0V, VOUT = 0V, unless otherwise noted. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
+
l
l
l
l
V
Input Offset Voltage  
V
V
V
V
= V  
= V  
200  
200  
200  
200  
900  
900  
975  
975  
μV  
μV  
μV  
μV  
OS  
CM  
CM  
CM  
CM  
= V (LT1806 SOT-23)  
= V (LT1806 SOT-23)  
+
l
l
V
TC  
Input Offset Voltage Drift (Note 8)  
Input Offset Voltage Shift  
V
V
= V  
= V  
1.5  
1.5  
5
5
μV/°C  
μV/°C  
OS  
CM  
CM  
+
+
l
l
V
V
= V to V  
100  
100  
900  
975  
μV  
μV  
ΔV  
CM  
CM  
OS  
= V to V (LT1806 SOT-23)  
+
l
Input Offset Voltage Match (Channel-to-Channel) V = V , V = V  
300  
1600  
μV  
CM  
CM  
(Note 10)  
+
l
l
I
B
Input Bias Current  
V
V
= V – 0.2V  
1.2  
–5  
7
μA  
μA  
CM  
CM  
= V + 0.4V  
–16  
+
l
Input Bias Current Shift  
V
= V + 0.4V to V – 0.2V  
6
23  
μA  
ΔI  
CM  
B
+
l
l
Input Bias Current Match (Channel-to-Channel)  
(Note 10)  
V
V
= V – 0.2V  
0.03  
0.04  
2
4.5  
μA  
μA  
CM  
CM  
= V + 0.4V  
+
l
l
I
Input Offset Current  
V
V
= V – 0.2V  
0.03  
0.04  
1.0  
2.2  
μA  
μA  
OS  
CM  
CM  
= V + 0.4V  
+
l
Input Offset Current Shift  
Large-Signal Voltage Gain  
V
= V + 0.4V to V – 0.2V  
0.07  
3.2  
μA  
ΔI  
CM  
OS  
l
l
A
VOL  
V = 4V to 4V, R = 1k  
V = –2V to 2V, R =100Ω  
60  
7
175  
17  
V/mV  
V/mV  
O
O
L
L
+
l
l
l
l
l
CMRR  
Common Mode Rejection Ratio  
V
V
= V to V  
80  
74  
100  
100  
dB  
dB  
V
CM  
CM  
+
CMRR Match (Channel-to-Channel) (Note 10)  
Input Common Mode Range  
= V to V  
+
V
V
+
PSRR  
Power Supply Rejection Ratio  
V = 2.5V to 10V, V = 0V  
86  
80  
105  
105  
dB  
dB  
PSRR Match (Channel-to-Channel) (Note 10)  
Output Voltage Swing Low (Note 7)  
l
l
l
V
V
I
No Load  
20  
65  
200  
100  
170  
500  
mV  
mV  
mV  
OL  
I
I
= 5mA  
= 20mA  
SINK  
SINK  
l
l
l
Output Voltage Swing High (Note 7)  
No Load  
50  
115  
360  
160  
260  
700  
mV  
mV  
mV  
OH  
I
I
= 5mA  
= 20mA  
SOURCE  
SOURCE  
l
l
l
l
l
l
l
l
Short-Circuit Current  
mA  
mA  
mA  
μA  
μA  
V
25  
55  
15  
SC  
I
Supply Current per Amplifier  
Disable Supply Current  
SHDN Pin Current  
22  
1.5  
400  
S
V
SHDN  
V
SHDN  
V
SHDN  
= 0.3V  
= 0.3V  
= 0.3V  
0.45  
170  
1.2  
I
SHDN  
Shutdown Output Leakage Current  
SHDN Pin Input Voltage Low  
SHDN Pin Input Voltage High  
Turn-On Time  
V
V
0.3  
L
+
V – 0.5  
V
H
t
ON  
V
= 0.3V to 4.5V, R = 100Ω  
80  
ns  
SHDN  
L
18067fc  
10  
LT1806/LT1807  
ELECTRICAL CHARACTERISTICS  
The l denotes the specifications which apply over the 40°C < TA < 85°C  
temperature range. VS = 5V, VSHDN = open; VCM = 0V, VOUT = 0V, unless otherwise noted. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
= 4.5V to 0.3V, R = 100Ω  
MIN  
TYP  
50  
MAX  
UNITS  
ns  
l
l
l
t
Turn-Off Time  
V
SHDN  
OFF  
L
GBW  
SR  
Gain-Bandwidth Product  
Slew Rate  
Frequency = 6MHz  
125  
50  
290  
100  
MHz  
V/μs  
A = 1, R = 1k, V = 4V,  
V
L
O
Measure at V = 3V  
O
l
FPBW  
Full-Power Bandwidth  
V = 8V  
O
4
MHz  
P-P  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
characterized and expected to meet specified performance from –40°C to  
85°C but are not tested or QA sampled at these temperatures. The LT1806I/  
LT1807I are guaranteed to meet specified performance from –40°C to 85°C.  
Note 6: Minimum supply voltage is guaranteed by power supply rejection  
Note 2: The inputs are protected by back-to-back diodes. If the differential  
input voltage exceeds 1.4V, the input current should be limited to less  
than 10mA. This parameter is guaranteed to meet specified performance  
through design and/or characterization. It is not 100% tested.  
Note 3: A heat sink may be required to keep the junction temperature below  
the absolute maximum rating when the output is shorted indefinitely.  
ratio test.  
Note 7: Output voltage swings are measured between the output and  
power supply rails.  
Note 8: This parameter is not 100% tested.  
Note 9: Thermal resistance varies depending upon the amount of PC board  
metal attached to the V pin of the device. θ is specified for a certain  
amount of 2oz copper metal trace connecting to the V pin as described in  
the thermal resistance tables in the Applications Information section.  
JA  
Note 4: The LT1806C/LT1806I and LT1807C/LT1807I are guaranteed  
functional over the temperature range of –40°C and 85°C.  
Note 5: The LT1806C/LT1807C are guaranteed to meet specified  
performance from 0°C to 70°C. The LT1806C/LT1807C are designed,  
Note 10: Matching parameters are the difference between the two  
amplifiers of the LT1807.  
TYPICAL PERFORMANCE CHARACTERISTICS  
VOS Distribution, VCM = 0V  
(PNP Stage)  
VOS Distribution, VCM = 5V  
(NPN Stage)  
ΔVOS Shift for VCM = 0V to 5V  
50  
40  
30  
50  
40  
30  
50  
40  
30  
V
V
= 5V, 0V  
CM  
V
V
= 5V, 0V  
CM  
V = 5V, 0V  
S
S
S
= 0V  
= 5V  
20  
10  
0
20  
10  
0
20  
10  
0
–500  
–300  
–100  
100  
300  
500  
–500  
–300  
–100  
100  
300  
500  
–500  
–300  
–100  
100  
300  
500  
INPUT OFFSET VOLTAGE (μV)  
INPUT OFFSET VOLTAGE (μV)  
INPUT OFFSET VOLTAGE (μV)  
18067 G01  
18067 G02  
18067 G03  
18067fc  
11  
LT1806/LT1807  
TYPICAL PERFORMANCE CHARACTERISTICS  
Supply Current per Amp  
vs Supply Voltage  
Offset Voltage  
Input Bias Current  
vs Input Common Mode  
vs Common Mode Voltage  
5
0
500  
400  
20  
15  
10  
5
V
= 5V, 0V  
T = 125°C  
A
S
T
A
= 25°C  
T
= 125°C  
= 25°C  
A
T
A
= –55°C  
300  
200  
T
A
T
= 125°C  
T
A
100  
0
= 25°C  
–100  
–200  
–300  
–400  
–500  
A
T
= –55°C  
A
–5  
T
A
T
= 125°C  
= 25°C  
T
= –55°C  
A
A
T = –55°C  
A
V
= 5V, 0V  
S
TYPICAL PART  
0
–10  
6
7
8
0
1
3
4
5
–1  
0
1
2
3
4
5
6
0
1
2
3
4
5
9
10 11 12  
2
COMMON MODE VOLTAGE (V)  
TOTAL SUPPLY VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
18067 G06  
18067 G04  
18067 G05  
Output Saturation Voltage  
vs Load Current (Output Low)  
Output Saturation Voltage  
vs Load Current (Output High)  
Input Bias Current vs Temperature  
2
1
10  
1
10  
1
V
= p5V  
V
= p5V  
S
S
NPN ACTIVE  
0
V
= 5V, 0V  
S
V
= 5V  
CM  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
0.1  
0.1  
T
= 125°C  
PNP ACTIVE  
= 5V, 0V  
CM  
A
V
T
T
= 125°C  
S
A
A
T
= 25°C  
A
A
V
= 0V  
0.01  
0.001  
0.01  
0.001  
T
= –55°C  
T
= 25°C  
A
= –55°C  
–50 –35 –20 –5 10 25 40 55 70 85  
TEMPERATURE (°C)  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
18067 G08  
18067 G09  
18067 G07  
Output Short-Circuit Current  
vs Power Supply Voltage  
Supply Current  
Minimum Supply Voltage  
vs SHDN Pin Voltage  
1.0  
120  
100  
80  
18  
16  
14  
12  
10  
8
V
= 5V, 0V  
S
T
A
= –55°C  
= 125°C  
0.8  
0.6  
T
T
= 25°C  
T
= 125°C  
= –55°C  
A
A
A
60  
0.4  
“SINKING”  
40  
0.2  
T
= 25°C  
A
T
= 125°C  
20  
A
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–20  
–40  
–60  
–80  
–100  
6
“SOURCING”  
T
A
T
= 25°C  
A
4
T
A
= –55°C  
T
= –55°C  
A
T
= 125°C  
A
2
T
= 25°C  
2.0  
A
0
1.0  
3.0  
4.0 4.5  
1.5  
2.5 3.0 3.5  
4.0 4.5 5.0  
1.5 2.0 2.5  
3.5  
5.0  
0
4
5
1
2
3
TOTAL SUPPLY VOLTAGE (V)  
POWER SUPPLY VOLTAGE (pV)  
SHDN PIN VOLTAGE (V)  
18067 G10  
18067 G11  
18067 G12  
18067fc  
12  
LT1806/LT1807  
TYPICAL PERFORMANCE CHARACTERISTICS  
SHDN Pin Current  
vs SHDN Pin Voltage  
Open-Loop Gain  
Open-Loop Gain  
20  
0
500  
400  
500  
400  
V
= 3V, 0V  
TO GND  
V
= 5V, 0V  
R TO GND  
L
V
= 5V, 0V  
S
L
S
S
R
300  
300  
–20  
200  
200  
–40  
R
L
= 1k  
R = 1k  
L
T
= 125°C  
A
100  
100  
–60  
0
0
–80  
T
= 25°C  
A
–100  
–200  
–300  
–400  
–500  
–100  
–200  
–300  
–400  
–500  
–100  
–120  
–140  
–160  
–180  
R
= 100Ω  
R = 100Ω  
L
L
T
= –55°C  
A
0
0.5  
1.5  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
OUTPUT VOLTAGE (V)  
0
1
2
3
4
5
1.0  
OUTPUT VOLTAGE (V)  
SHDN PIN VOLTAGE (V)  
18067 G14  
18067 G15  
18067 G13  
Warm-Up Drift  
vs Time (LT1806S8)  
Open-Loop Gain  
Offset Voltage vs Output Current  
500  
400  
2.5  
2.0  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
= p5V  
V
= p5V  
S
S
T
A
= 125°C  
A
300  
1.5  
V
= p5V  
S
T
= 25°C  
200  
1.0  
R
= 1k  
L
100  
0.5  
0
0
T
= –55°C  
R
= 100Ω  
A
L
–100  
–200  
–300  
–400  
–500  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
V
= p2.5V  
= p1.5V  
S
S
V
0
–5 –4  
–2 –1  
0
1
2
3
4
5
–100 –80  
–40 –20  
0
20 40 60 80 100  
40  
TIME AFTER POWER-UP (SEC)  
–3  
–60  
0
20  
60 80 100 120 140 160  
OUTPUT VOLTAGE (V)  
OUTPUT CURRENT (mA)  
18067 G16  
18067 G17  
18067 G18  
0.1Hz to 10Hz  
Input Noise Voltage vs Frequency  
Input Noise Current vs Frequency  
Output Voltage Noise  
12  
10  
8
12  
10  
8
1000  
800  
V
= 5V, 0V  
V = 5V, 0V  
S
S
600  
400  
NPN ACTIVE  
= 4.5V  
200  
V
CM  
6
6
0
PNP ACTIVE  
= 2.5V  
–200  
–400  
–600  
–800  
–1000  
V
CM  
PNP ACTIVE  
= 2.5V  
4
4
V
CM  
2
2
NPN ACTIVE  
= 4.5V  
V
CM  
0
0
0.1  
1
10  
100  
0.1  
1
10  
100  
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
TIME (SEC)  
18067 G19  
18067 G19  
18067 G21  
18067fc  
13  
LT1806/LT1807  
TYPICAL PERFORMANCE CHARACTERISTICS  
Gain Bandwidth and Phase Margin  
vs Supply Voltage  
Gain Bandwidth and Phase Margin  
vs Temperature  
Slew Rate vs Temperature  
55  
50  
45  
40  
35  
30  
55  
50  
45  
40  
35  
30  
175  
150  
125  
100  
A
R
R
= –1  
G
= 1k  
T
= 25°C  
V
F
L
A
= R = 1k  
PHASE MARGIN  
PHASE MARGIN  
V
= p5V  
S
PHASE MARGIN  
= 3V  
V
S
V
= p5V  
S
GBW PRODUCT  
= p5V  
V = p2.5V  
S
400  
350  
300  
250  
200  
400  
350  
300  
250  
200  
V
S
GAIN BANDWIDTH PRODUCT  
GBW PRODUCT  
= 3V  
V
S
75  
–55 –35 –15  
5
25 45 65 85 105 125  
0
1
2
3
4
5
6
7
8
9
10  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
TOTAL SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
18067 G24  
18067 G22  
18067 G23  
Gain vs Frequency (AV = 2)  
Gain and Phase vs Frequency  
Gain vs Frequency (AV = 1)  
21  
70  
60  
225  
180  
135  
90  
30  
24  
C
= 10pF  
= 100Ω  
C
= 10pF  
= 100Ω  
L
L
18  
15  
12  
9
R
R
L
L
50  
18  
PHASE  
= p5V  
40  
12  
V
S
45  
30  
6
V
= p5V  
S
PHASE  
S
0
6
20  
0
V
= 3V  
V
= p5V  
S
–45  
–90  
–135  
–180  
–225  
3
10  
–6  
V
= 3V  
S
0
0
–12  
–18  
–24  
–36  
GAIN  
–3  
–6  
–9  
–10  
–20  
–30  
V
= p5V  
S
GAIN  
= 3V  
V = 3V  
S
C
= 5pF  
= 100Ω  
L
L
V
S
R
0.1  
1
10  
100  
500  
0.1  
1
10  
FREQUENCY (MHz)  
100  
500  
0.1  
1
10  
FREQUENCY (MHz)  
100  
500  
FREQUENCY (MHz)  
18067 G27  
18067 G25  
18067 G26  
Common Mode Rejection Ratio  
vs Frequency  
Power Supply Rejection Ratio  
vs Frequency  
Output Impedance vs Frequency  
600  
100  
100  
90  
100  
V
= 5V, 0V  
= 25°C  
V
= 5V, 0V  
V
= 5V, 0V  
S
S
A
S
90  
80  
70  
T
80  
70  
10  
1
A
V
= 2  
V
POSITIVE SUPPLY  
60  
50  
60  
50  
A
= 10  
NEGATIVE SUPPLY  
A
= 1  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
V
0.1  
0.01  
0.001  
0.01  
0.1  
1
10  
100 500  
0.001  
0.01  
0.1  
1
10  
100  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M 500M  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
18067 G28  
18067 G29  
18067 G30  
18067fc  
14  
LT1806/LT1807  
TYPICAL PERFORMANCE CHARACTERISTICS  
Series Output Resistor  
vs Capacitive Load  
Series Output Resistor  
vs Capacitive Load  
0.01% Settling Time  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
A
= 5V, 0V  
= 1  
V
S
A
V
= 5V, 0V  
= 2  
S
V
INPUT SIGNAL  
GENERATION  
(2V/DIV)  
R
= 10Ω  
OS  
OUTPUT  
SETTLING  
RESOLUTION  
(2mV/DIV)  
R
= 20Ω  
R
OS  
= 10Ω  
OS  
R
OS  
= 20Ω  
18067 G33  
V
V
= p5V  
OUT  
RL = 500Ω  
= 120ns (SETTLING TIME)  
20ns/DIV  
S
R
OS  
= R = 50Ω  
L
R
= R = 50Ω  
OS L  
= p4V  
0
0
t
S
10  
100  
CAPACITIVE LOAD (pF)  
1000  
10  
100  
1000  
CAPACITIVE LOAD (pF)  
18067 G31  
18067 G32  
Distortion vs Frequency  
Distortion vs Frequency  
Distortion vs Frequency  
–40  
–50  
–40  
–50  
–40  
–50  
A
V
V
= 1  
OUT  
= p5V  
A
V
V
= 1  
OUT  
= 5V, 0V  
A
V
V
= 2  
V
V
V
= 2V  
= 2V  
= 2V  
OUT P-P  
P-P  
P-P  
= p5V  
S
S
S
–60  
–60  
–60  
R
= 100Ω, 3RD  
L
R
= 100Ω, 3RD  
L
–70  
–70  
–70  
R
L
= 100Ω, 2ND  
R
= 1k, 2ND  
L
R
L
= 100Ω, 2ND  
R
= 100Ω, 2ND  
–80  
L
–80  
–80  
R
L
= 100Ω, 3RD  
R
= 1k, 3RD  
–90  
L
R
= 1k, 2ND  
L
R
= 1k, 3RD  
L
–90  
–90  
–100  
–110  
–120  
R
= 1k, 2ND  
L
R
= 1k, 3RD  
L
–100  
–100  
–110  
–110  
0.3  
1
10  
30  
0.3  
1
10  
30  
0.3  
1
10  
30  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
18067 G34  
18067 G35  
18067 G36  
Maximum Undistorted Output  
Signal vs Frequency  
Distortion vs Frequency  
–40  
–50  
4.6  
4.5  
4.4  
4.3  
4.2  
4.1  
4.0  
3.9  
A
V
V
= 2  
OUT  
= 5V, 0V  
V
= 5V, 0V  
V
S
= 2V  
P-P  
S
R
= 100Ω, 3RD  
A
= –1  
L
V
–60  
R
= 100Ω, 2ND  
L
–70  
R
= 1k, 2ND  
L
A
= 2  
V
–80  
R
= 1k, 3RD  
L
–90  
–100  
–110  
–120  
0.3  
1
10  
30  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
18067 G37  
18067 G38  
18067fc  
15  
LT1806/LT1807  
TYPICAL PERFORMANCE CHARACTERISTICS  
5V Large-Signal Response  
5V Small-Signal Response  
0V  
0V  
18067 G40  
18067 G39  
V
= p5V  
20ns/DIV  
V
= p5V  
40ns/DIV  
S
S
FREQ = 4.48MHz  
FREQ = 1.92MHz  
A
= 1  
= 1k  
A
R
= 1  
= 1k  
V
V
L
R
L
5V Large-Signal Response  
5V Small-Signal Response  
0V  
0.5V  
18067 G42  
18067 G41  
V
A
= 5V, 0V  
= 1  
= 1k  
10ns/DIV  
V
= 5V, 0V  
20ns/DIV  
S
V
L
S
FREQ = 5.29MHz  
R
A
R
= 1  
= 1k  
V
L
Output Overdriven Recovery  
Shutdown Response  
V
V
SHDN  
2V/DIV  
IN  
1V/DIV  
0V  
0V  
V
OUT  
V
OUT  
2V/DIV  
0V  
2V/DIV  
0V  
18067 G43  
18067 G44  
V
A
= 5V, 0V  
= 2  
= 1k  
100ns/DIV  
V
A
= 5V, 0V  
= 2  
= 100Ω  
20ns/DIV  
S
V
L
S
V
L
R
R
18067fc  
16  
LT1806/LT1807  
APPLICATIONS INFORMATION  
Rail-to-Rail Characteristics  
ApairofcomplementarycommonemitterstagesQ14/Q15  
that enable the output to swing from rail to rail constructs  
the output stage. The capacitors C1 and C2 form the  
local feedback loops that lower the output impedance at  
high frequency. These devices are fabricated on Linear  
Technology’s proprietary high speed complementary  
bipolar process.  
TheLT1806/LT1807haveinputandoutputsignalrangethat  
covers from negative power supply to positive power sup-  
ply.Figure1depictsasimplifiedschematicoftheamplifier.  
Theinputstageiscomprisedoftwodifferentialamplifiers,  
a PNP stage Q1/Q2 and a NPN stage Q3/Q4 that are active  
over different ranges of common mode input voltage. The  
PNP differential pair is active between the negative supply  
to approximately 1.5V below the positive supply. As the  
input voltage moves closer toward the positive supply, the  
Power Dissipation  
The LT1806/LT1807 amplifiers combine high speed with  
large output current in a small package, so there is a need  
to ensure that the die’s junction temperature does not  
exceed 150°C. The LT1806 is housed in an SO-8 package  
or a 6-lead SOT-23 package and the LT1807 is in an SO-8  
transistor Q5 will steer the tail current I to the current  
1
mirrorQ6/Q7,activatingtheNPNdifferentialpair.ThePNP  
pair becomes inactive for the rest of the input common  
mode range up to the positive supply.  
+
V
R6  
40k  
R3  
R4  
R5  
Q16  
Q17  
+
+
V
V
V
Q12  
+
ESDD5  
D9  
D1  
ESDD1  
+IN  
ESDD2  
Q11  
Q13  
Q15  
R7  
100k  
I
1
C2  
SHDN  
+
D6  
D5  
D8  
D7  
Q5  
V
BIAS  
I
2
D2  
ESDD6  
C
C
V
V
OUT  
–IN  
Q4 Q3  
Q1 Q2  
D3  
BUFFER  
AND  
ESDD4  
ESDD3  
OUTPUT BIAS  
Q10  
V
+
V
D4  
Q9  
R1  
Q8  
R2  
BIAS  
GENERATION  
C1  
Q14  
Q7  
Q6  
V
18067 F01  
Figure 1. LT1806 Simplified Schematic Diagram  
18067fc  
17  
LT1806/LT1807  
APPLICATIONS INFORMATION  
or 8-lead MSOP package. All packages have the V sup-  
ply pin fused to the lead frame to enhance the thermal  
conductance when connecting to a ground plane or a  
large metal trace. Metal trace and plated through-holes  
can be used to spread the heat generated by the device  
to the backside of the PC board. For example, on a 3/32"  
FR-4 board with 2oz copper, a total of 660 square mil-  
limeters connects to Pin 4 of LT1807 in an SO-8 package  
(330 square millimeters on each side of the PC board) will  
Table 3. LT1807 8-Lead MSOP Package  
COPPER AREA  
BOARD AREA  
THERMAL RESISTANCE  
(JUNCTION-TO-AMBIENT)  
TOPSIDE  
BACKSIDE  
2
2
2
(mm )  
(mm )  
(mm )  
540  
100  
100  
30  
540  
100  
0
2500  
2500  
2500  
2500  
2500  
110°C/W  
120°C/W  
130°C/W  
135°C/W  
140°C/W  
0
0
0
bringthethermalresistance,θ ,toabout85°C/W.Without  
JA  
Device is mounted on topside.  
extra metal trace beside the power line connecting to the  
Junction temperature T is calculated from the ambient  
V pintoprovideaheatsink, thethermalresistancewillbe  
J
temperature T and power dissipation P as follows:  
around 105°C/W. More information on thermal resistance  
for all packages with various metal areas connecting to  
A
D
T = T + (P • θ )  
J
A
D
JA  
the V pin is provided in Tables 1, 2 and 3.  
ThepowerdissipationintheICisthefunctionofthesupply  
voltage,outputvoltageandtheloadresistance.Foragiven  
Table 1. LT1806 6-Lead SOT-23 Package  
COPPER AREA  
BOARD AREA  
THERMAL RESISTANCE  
supply voltage, the worst-case power dissipation P  
D(MAX)  
2
2
(mm )  
(JUNCTION-TO-AMBIENT)  
TOPSIDE (mm )  
occurs at the maximum quiescent supply current and at  
the output voltage which is half of either supply voltage  
(or the maximum swing if it is less than 1/2 the supply  
270  
100  
20  
2500  
2500  
2500  
2500  
135°C/W  
145°C/W  
160°C/W  
200°C/W  
voltage). P  
is given by:  
D(MAX)  
0
P
= (V • I  
) + (V /2)2/R  
S(MAX) S L  
D(MAX)  
S
Device is mounted on topside.  
2
Example: An LT1807 in SO-8 mounted on a 2500mm  
Table 2. LT1806/LT1807 SO-8 Package  
COPPER AREA  
area of PC board without any extra heat spreading plane  
connected to its V pin has a thermal resistance of  
BOARD AREA  
THERMAL RESISTANCE  
(JUNCTION-TO-AMBIENT)  
TOPSIDE  
BACKSIDE  
105°C/W, θ . Operating on 5V supplies with both ampli-  
JA  
2
2
2
(mm )  
(mm )  
(mm )  
fiers simultaneously driving 50Ω loads, the worst-case  
1100  
330  
35  
1100  
330  
35  
0
2500  
2500  
2500  
2500  
2500  
65°C/W  
85°C/W  
95°C/W  
100°C/W  
105°C/W  
power dissipation is given by:  
2
P
= 2 • (10 • 14mA) + 2 • (2.5) /50  
= 0.28 + 0.25 = 0.53W  
D(MAX)  
35  
0
0
Device is mounted on topside.  
18067fc  
18  
LT1806/LT1807  
APPLICATIONS INFORMATION  
The maximum ambient temperature that the part is  
allowed to operate is:  
Output  
The LT1806/LT1807 can deliver a large output current, so  
theshort-circuitcurrentlimitissetaround85mAtoprevent  
damage to the device. Attention must be paid to keep the  
junctiontemperatureoftheICbelowtheabsolutemaximum  
rating of 150°C (refer to the Power Dissipation section)  
whentheoutputiscontinuouslyshortcircuited.Theoutput  
of the amplifier has reverse-biased diodes connected to  
each supply. If the output is forced beyond either supply,  
unlimited current will flow through these diodes. If the  
current is transient and limited to one hundred milliamps  
or less, no damage to the device will occur.  
T = T – (P • 105°C/W)  
D(MAX)  
A
J
= 150°C – (0.53W • 105°C/W) = 94°C  
To operate the device at higher ambient temperature,  
connectmoremetalareatotheV pintoreducethethermal  
resistance of the package as indicated in Table 2.  
Input Offset Voltage  
The offset voltage will change depending upon which  
input stage is active and the maximum offset voltage is  
guaranteed to less than 550μV. To maintain the precision  
Overdrive Protection  
characteristics of the amplifier, the change of V over the  
OS  
entire input common mode range (CMRR) is limited to be  
When the input voltage exceeds the power supplies, two  
pairs of crossing diodes D1 to D4 will prevent the output  
from reversing polarity. If the input voltage exceeds either  
power supply by 700mV, diode D1/D2 or D3/D4 will turn  
on to keep the output at the proper polarity. For the phase  
reversal protection to perform properly, the input current  
mustbelimitedtolessthan5mA.Iftheamplifierisseverely  
overdriven, an external resistor should be used to limit  
the overdrive current.  
less than 550μV on a single 5V and 3V supply.  
Input Bias Current  
The input bias current polarity depends on a given input  
common voltage at which the input stage is operating.  
WhenthePNPinputstageisactive, theinputbiascurrents  
flow out of the input pins. When the NPN input stage is  
activated, the input bias current flows into the input pins.  
Because the input offset current is less than the input bias  
current, matching the source resistances at the input pins  
will reduce total offset error.  
18067fc  
19  
LT1806/LT1807  
APPLICATIONS INFORMATION  
The LT1806/LT1807’s input stages are also protected  
against large differential input voltages of 1.4V or higher  
by a pair of back-to-back diodes, D5/D8, that prevent  
the emitter-base breakdown of the input transistors. The  
currentinthesediodesshouldbelimitedtolessthan10mA  
when they are active. The worst-case differential input  
voltage usually occurs when the input is driven while the  
output is shorted to ground in a unity gain configuration.  
In addition, the amplifier is protected against ESD strikes  
up to 3kV on all pins by a pair of protection diodes, ESDD1  
to ESDD6, on each pin that are connected to the power  
supplies as shown in Figure 1.  
Feedback Components  
Whenfeedbackresistorsareusedtosetupgain,caremust  
be taken to ensure that the pole formed by the feedback  
resistors and the total capacitance at the inverting input  
doesnotdegradestability.Forinstance,theLT1806/LT1807  
in a noninverting gain of 2, set up with two 1k resistors  
andacapacitanceof3pF(partplusPCboard)willprobably  
ring in transient response. The pole is formed at 106MHz  
that will reduce phase margin by 34 degrees when the  
crossover frequency of the amplifier is around 70MHz. A  
capacitor of 3pF or higher connected across the feedback  
resistor will eliminate any ringing or oscillation.  
Capacitive Load  
SHDN Pin  
The LT1806/LT1807 are optimized for high bandwidth and  
low distortion applications. They can drive a capacitive  
load of about 20pF in a unity-gain configuration, and more  
for higher gain. When driving a larger capacitive load, a  
resistor of 10Ω to 50Ω should be connected between the  
output and the capacitive load to avoid ringing or oscilla-  
tion. The feedback should still be taken from the output so  
that the resistor will isolate the capacitive load to ensure  
stability. Graphs on capacitive loads indicate the transient  
response of the amplifier when driving the capacitive load  
with a specified series resistor.  
The LT1806 has a SHDN pin to reduce the supply current  
to less than 0.9mA. When the SHDN pin is pulled low, it  
will generate a signal to power down the device. If the pin  
is left unconnected, an internal pull-up resistor of 40k will  
keep the part fully operating as shown in Figure 1. The  
output will be high impedance during shutdown, and the  
turn-on and turn-off time is less than 100ns. Because  
the input is protected by a pair of back-to-back diodes,  
the input signal will feed through to the output during  
shutdown mode if the amplitude of signal between the  
inputs is larger than 1.4V.  
18067fc  
20  
LT1806/LT1807  
TYPICAL APPLICATIONS  
Driving A/D Converter  
noiseordistortionproductsthatmightcomefromtheinput  
signal. High quality capacitors and resistors, NPO chip  
capacitor and metal film surface mount resistors, should  
be used since these components can add to distortion.  
The voltage glitch of the converter, due to its sampling  
nature is buffered by the LT1807, and the ability of the  
amplifier to settle it quickly will affect the spurious free  
dynamic range of the system. Figure 2 depicts the LT1806  
driving LTC1420 at noninverting gain of 2 configuration.  
The FFT responses show a better than 92dB of spurious  
free dynamic range, SFDR.  
The LT1806/LT1807 have 60ns settling time to 0.01% on  
a 2V step signal, and 20Ω output impedance at 100MHz,  
that makes them ideal for driving high speed A/D convert-  
ers. With the rail-to-rail input and output, and low supply  
voltage operation, the LT1806/LT1807 are also desirable  
for single supply applications. As shown in the application  
on the front page of this data sheet, the LT1807 drives a  
10Msps, 12-bit, LTC1420 ADC in a gain of 20. Driving the  
LTC1420 differentially will optimize the signal-to-noise  
ratio, SNR, and the total harmonic distortion, THD, of the  
A/D converter. The lowpass filter, R5, R6 and C3 reduce  
0
V
A
= p5V  
S
V
= 2  
–20  
f
f
= 10Msps  
= 1.4086MHz  
SAMPLE  
IN  
SFDR = 92.5dB  
5V  
–40  
–60  
5V  
V
P-P  
IN  
R3  
49.9Ω  
+
1.5V  
LTC1420  
PGA GAIN = 1  
REF = 2.048V  
12 BITS  
10Msps  
LT1806  
–5V  
+A  
IN  
–80  
–100  
–120  
C1  
470pF  
–A  
IN  
R2  
1k  
18067 F02  
–5V  
R1  
1k  
0
1
2
3
4
5
FREQUENCY (MHz)  
18067 F03  
Figure 2. Noninverting A/D Driver  
Figure 3. 4096 Point FFT Response  
18067fc  
21  
LT1806/LT1807  
TYPICAL APPLICATIONS  
Single Supply Video Line Driver  
R5. The back termination will eliminate any reflection of  
the signal that comes from the load. The input termination  
TheLT1806/LT1807arewidebandrail-to-railopampswith  
largeoutputcurrentthatallowsthemtodrivevideosignals  
inlowsupplyapplications. Figure4depictsasinglesupply  
video line driver with AC coupling to minimize the quies-  
cent power dissipation. Resistors R1 and R2 are used to  
level-shifttheinputandoutputtoprovidethelargestsignal  
swing. The gain of 2 is set up with R3 and R4 to restore  
resistor, R , is optional—it is used only if matching of  
T
the incoming line is necessary. The values of C1, C2 and  
C3 are selected to minimize the droop of the luminance  
signal. In some less stringent requirements, the value of  
capacitors could be reduced. The –3dB bandwidth of the  
driver is about 90MHz on 5V supply, and the amount of  
peaking will vary upon the value of capacitor C4.  
the signal at V , which is attenuated by 6dB due to the  
OUT  
matchingofthe75Ωlinewiththeback-terminatedresistor,  
5V  
C1  
R1  
33μF  
5k  
C3  
3
2
7
LT1806  
4
75W  
R5  
V
+
1000μF  
COAX CABLE  
75Ω  
IN  
6
R
R2  
5k  
T
V
OUT  
75Ω  
R
LOAD  
75Ω  
R4  
1k  
18067 F04  
C4  
3pF  
R3  
1k  
+
C2  
150μF  
Figure 4. 5V Single Supply Video Line Driver  
5
V
= 5V, 0V  
S
4
3
2
1
0
–1  
–2  
–3  
–4  
–5  
0.2  
1
10  
100  
FREQUENCY (MHz)  
18067 F05  
Figure 5. Video Line Driver Frequency Response  
18067fc  
22  
LT1806/LT1807  
TYPICAL APPLICATIONS  
Single 3V Supply, 4MHz, 4th Order Butterworth Filter  
On a 3V supply, the filter built with LT1807 has a passband  
of 4MHz with 2.5V signal and stopband that is greater  
P-P  
Benefiting from a low voltage supply operation, low  
distortion and rail-to-rail output of LT1806/LT1807, a low  
distortion filter that is suitable for antialiasing can be built  
as shown in Figure 6.  
than70dBtofrequencyof100MHz.Asanoptiontominimize  
theDCoffsetvoltageattheoutput,connectaseriesresistor  
of 365Ω and a bypass capacitor at the noninverting inputs  
of the amplifiers as shown in Figure 6.  
232Ω  
47pF  
274Ω  
22pF  
232Ω  
665Ω  
220pF  
V
IN  
274Ω  
562Ω  
470pF  
1/2 LT1807  
V
1/2 LT1807  
+
OUT  
365Ω  
(OPTIONAL)  
+
V
S
18067 F06  
2
4.7μF  
(OPTIONAL)  
Figure 6. Single 3V Supply, 4MHz, 4th Order Butterworth Filter  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
V
V
= 3V, 0V  
S
–80  
–90  
= 2.5V  
P-P  
IN  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
18067 F07  
Figure 7. Filter Frequency Response  
18067fc  
23  
LT1806/LT1807  
TYPICAL APPLICATIONS  
1MHz Series Resonant Crystal Oscillator with Square  
and Sinusoid Outputs  
edgeandthecrystalcapacitance(middletraceofFigure 9).  
Sinusoid amplitude stability is maintained by the fact that  
the sine wave is basically a filtered version of the square  
wave; the usual amplitude control loops associated with  
Figure 8 shows a classic 1MHz series resonant crystal  
oscillator. At series resonance, the crystal is a low imped-  
ance and the positive feedback connection is what brings  
about oscillation at the series resonance frequency. The  
RC feedback around the other path ensures that the circuit  
does not find a stable DC operating point and refuse to  
oscillate. The comparator output is a 1MHz square wave  
1
sinusoidal oscillators are not immediately necessary.  
One can make use of this sine wave by buffering and  
filtering it, and this is the combined task of the LT1806. It  
is configured as a bandpass filter with a Q of 5 and does  
a good job of cleaning up and buffering the sine wave.  
Distortion was measured at –70dBc and –60dBc on the  
second and third harmonics.  
with a measured jitter of 28ps  
with a 5V supply and  
RMS  
40ps  
with a 3V supply. On the other side of the crystal,  
RMS  
1
Amplitude will be a linear function of comparator output swing, which is supply dependent and  
however, is an excellent looking sine wave except for the  
fact of the small high frequency glitch caused by the fast  
therefore controllable. The important difference here is that any added amplitude stabilization loop  
will not be faced with the classical task of avoiding regions of nonoscillation versus clipping.  
C4  
100pF  
R5  
6.49k  
1k  
R7  
R6  
1MHZ  
100pF  
15.8k  
R4  
210Ω  
162Ω  
AT-CUT  
C3  
V
S
100pF  
V
S
2
3
7
V
S
+
R1  
1k  
6
R9  
2k  
LT1806  
4
SINE WAVE  
1
2
3
7
+
1 (NC)  
V
S
R2  
1k  
LT1713  
8
C2  
0.1μF  
SQUARE WAVE  
R8  
2k  
LE  
5
4
18067 F08  
6
R3  
1k  
V
= 2.7V TO 6V  
S
C1  
0.1μF  
Figure 8. LT1713 Comparator is Configured as a Series Resonant Crystal Oscillator.  
The LT1806 Op Amp is Configured in a Q = 5 Bandpass Filter with fC = 1MHz  
3V/DIV  
1V/DIV  
1V/DIV  
18067 F09  
200ns/DIV  
Figure 9. Oscillator Waveforms with VS = 3V. Top Trace is Comparator Output.  
Middle Trace is Crystal Feedback to Pin 2 at LT1713. Bottom Trace is Buffered,  
Inverted and Bandpass Filtered with a Q of 5 by the LT1806  
18067fc  
24  
LT1806/LT1807  
PACKAGE DESCRIPTION  
S6 Package  
6-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1636)  
2.90 BSC  
(NOTE 4)  
0.62  
MAX  
0.95  
REF  
1.22 REF  
1.4 MIN  
1.50 – 1.75  
2.80 BSC  
3.85 MAX 2.62 REF  
(NOTE 4)  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45  
6 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
S6 TSOT-23 0302 REV B  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
18067fc  
25  
LT1806/LT1807  
PACKAGE DESCRIPTION  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1660 Rev F)  
0.889 p 0.127  
(.035 p .005)  
5.23  
(.206)  
MIN  
3.20 – 3.45  
(.126 – .136)  
3.00 p 0.102  
(.118 p .004)  
(NOTE 3)  
0.52  
(.0205)  
REF  
0.65  
(.0256)  
BSC  
0.42 p 0.038  
(.0165 p .0015)  
TYP  
8
7 6  
5
RECOMMENDED SOLDER PAD LAYOUT  
3.00 p 0.102  
(.118 p .004)  
(NOTE 4)  
4.90 p 0.152  
(.193 p .006)  
DETAIL “A”  
0.254  
(.010)  
0o – 6o TYP  
GAUGE PLANE  
1
2
3
4
0.53 p 0.152  
(.021 p .006)  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.22 – 0.38  
0.1016 p 0.0508  
(.009 – .015)  
(.004 p .002)  
0.65  
(.0256)  
BSC  
TYP  
MSOP (MS8) 0307 REV F  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
18067fc  
26  
LT1806/LT1807  
PACKAGE DESCRIPTION  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 p .005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 p .005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 p .005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
s 45o  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0o– 8o TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
18067fc  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
27  
LT1806/LT1807  
TYPICAL APPLICATION  
FET Input, Fast, High Gain Photodiode Amplifier  
total output noise was below 1mV  
measured over a  
RMS  
10MHz bandwidth. Table 4 shows results achieved with  
Figure 10 shows a fast, high gain transimpedance  
amplifier applied to a photodiode. A JFET buffer is used  
for its extremely low input bias current and high speed.  
various values of R and Figure 11 shows the time domain  
F
response with R = 499k.  
F
The LT1097 and 2N3904 keep the JFET biased at I  
Table 4. Results Achieved for Various RF, 1.2V Output Step  
DSS  
10% to 90%  
RISE TIME  
–3dB  
BANDWIDTH  
6.8MHz  
4.6MHz  
3MHz  
for zero offset and lowest voltage noise. The JFET then  
R
F
drives the LT1806, with R closing the high speed loop  
F
100k  
200k  
499k  
1M  
64ns  
94ns  
back to the JFET input and setting the transimpedance  
gain. C4 helps improve the phase margin of the fast loop.  
Output voltage noise density was measured as 9nV/√Hz  
154ns  
263ns  
1.8MHz  
with R short circuited. With R varied from 100k to 1M,  
F
F
+
V
S
R
F
C4  
3pF  
2N5486  
*
SIEMENS/  
INFINEON  
+
R1  
V
S
R2  
10M  
SFH213FA  
1M  
PHOTODIODE  
7
2
+
V
S
49.9Ω  
C1  
6
+
LT1806  
V
OUT  
100mV/DIV  
V
100pF  
S
3
50W  
7
3
2
4
+
6
18067 F10  
V
S
LT1097  
R3  
10k  
4
C2  
2200pF  
18067 F11  
20ns/DIV  
2N3904  
*ADJUST PARASITIC CAPACITANCE AT  
FOR DESIRED RESPONSE  
V
S
R
F
R4  
2.4k  
C3  
0.1μF  
R5  
33Ω  
CHARACTERISTICS  
= p5V  
Figure 11. Step Response  
with RF = 499k  
V
S
V
S
Figure 10. Fast, High Gain Photodiode Amplifier  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LT1395  
LT1399  
400MHz Current Feedback Amplifier  
Triple 300MHz Current Feedback Amplifier  
800V/μs Slew Rate, Shutdown  
0.1dB Gain Flatness to 150MHz, Shutdown  
High DC Accuracy 1.35mV V , 70mA Output Current,  
LT1632/LT1633 Dual/Quad 45MHz, 45V/μs Rail-to-Rail Input and Output Amplifiers  
OS(MAX)  
Max Supply Current 5.2mA/Amp  
LT1809/LT1810 Single/Dual 180MHz Input and Output Rail-to-Rail Amplifiers  
LT1812/LT1813 3mA, 100MHz, 750V/μs Op Amp  
350V/μs Slew Rate, Shutdown, Low Distortion –90dBc at 5MHz  
High Slew Rate  
Ultrahigh Slew Rate  
Lowest Noise  
LT1818/LT1819 9mA, 400MHz, 2500V/μs Op Amp  
LT6200/LT6201 165MHz Rail-to-Rail Input and Output, 0.95nV/√Hz Low Noise  
Op Amp  
LT6202/LT6203 100MHz Rail-to-Rail Input and Output, 1.9nV/√Hz Op Amp  
I
= 2.5mA  
CC  
18067fc  
LT 0809 REV C • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
28  
© LINEAR TECHNOLOGY CORPORATION 2000  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT1633IS#TRPBF

LT1633 - 45MHz, 45V/us, Quad Rail-to-Rail Input and Output Precision Op Amps; Package: SO; Pins: 14; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1633_15

45MHz, 45V/s, Dual/Quad Rail-to-Rail Input and Output Precision Op Amps
Linear

LT1634

Micropower Precision Shunt Voltage Reference
Linear

LT1634ACS8-1.25

Micropower Precision Shunt Voltage Reference
Linear

LT1634ACS8-1.25#TR

LT1634 - Micropower Precision Shunt Voltage Reference; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1634ACS8-2.5

Micropower Precision Shunt Voltage Reference
Linear

LT1634ACS8-4.096

Micropower Precision Shunt Voltage Reference
Linear

LT1634ACS8-4.096#TRPBF

LT1634 - Micropower Precision Shunt Voltage Reference; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1634ACS8-5

Micropower Precision Shunt Voltage Reference
Linear

LT1634ACS8-5#PBF

LT1634 - Micropower Precision Shunt Voltage Reference; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1634ACS8-5#TR

LT1634 - Micropower Precision Shunt Voltage Reference; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1634ACS8-5#TRPBF

LT1634 - Micropower Precision Shunt Voltage Reference; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear