LT1636CN8 [Linear]

Over-The-Top Micropower Rail-to-Rail Input and Output Op Amp; 过度的顶级微功耗轨至轨输入和输出运算放大器
LT1636CN8
型号: LT1636CN8
厂家: Linear    Linear
描述:

Over-The-Top Micropower Rail-to-Rail Input and Output Op Amp
过度的顶级微功耗轨至轨输入和输出运算放大器

运算放大器
文件: 总12页 (文件大小:139K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1636  
Ove r-The -To p  
Mic ro p o we r Ra il-to -Ra il  
Inp ut a nd Outp ut Op Am p  
U
FEATURES  
DESCRIPTIO  
®
Rail-to-Rail Input and Output  
Micropower: 50  
TheLT 1636opampoperates onallsingleandsplitsupplies  
µA IQ, 44V Supply  
with a total voltage of 2.7V to 44V drawing less than 50µA of  
quiescentcurrent.TheLT1636canbeshutdown,makingthe  
outputhighimpedanceandreducingthequiescentcurrentto  
4µA. The LT1636 has a unique input stage that operates and  
remainshighimpedancewhenabovethepositivesupply.The  
inputs take 44V both differential and common mode, even  
when operating on a 3V supply. The output swings to both  
supplies. Unlike most micropower op amps, the LT1636 can  
drive heavy loads; its rail-to-rail output drives 18mA. The  
LT1636 is unity-gain stable into all capacitive loads up to  
10,000pF when a 0.22µF and 150compensation network  
is used.  
MSOP Package  
Over-The-TopTM: Input Common Mode Range  
Extends 44V Above V , Independent of V  
EE  
CC  
Low Input Offset Voltage: 225µV Max  
Specified on 3V, 5V and ±15V Supplies  
High Output Current: 18mA  
Output Shutdown  
Output Drives 10,000pF with Output Compensation  
Reverse Battery Protection to 27V  
High Voltage Gain: 2000V/mV  
High CMRR: 110dB  
220kHz Gain-Bandwidth Product  
The LT1636 is reverse supply protected: it draws no current  
for reverse supply up to 27V. Built-in resistors protect the  
inputs for faults below the negative supply up to 22V. There  
is no phase reversal of the output for inputs 5V below V or  
44V above V , independent of V .  
U
APPLICATIO S  
EE  
Battery- or Solar-Powered Systems  
EE  
CC  
Portable Instrumentation  
Sensor Conditioning  
Supply Current Sensing  
Battery Monitoring  
MUX Amplifiers  
TheLT1636opampis availableinthe8-pinMSOP, PDIPand  
SO packages.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Over-The-Top is a trademark of Linear Technology Corporation.  
4mA to 20mA Transmitters  
U
TYPICAL APPLICATIO  
Input Bias Current vs Common Mode Voltage  
5000  
Over-The-Top Current Source with Shutdown  
V = 5V, 0V  
S
3000  
1000  
4V TO  
44V  
LT1004-1.2  
R*  
1M  
R
40  
30  
+
LT1636  
J176  
T
A
= 55°C  
20  
1.2  
R
10  
I
=
OUT  
e.g., 10mA = 120Ω  
T
= 125°C  
A
I
0
OUT  
T
A
= 25°C  
–10  
SHDN  
*OPTIONAL FOR LOW OUTPUT CURRENTS  
1636 TA01  
4.0  
4.4  
4.8  
50  
5.2 10 20 30 40  
COMMON MODE VOLTAGE (V)  
1636 G03  
1
LT1636  
W W  
U W  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
Total Supply Voltage (V+ to V) .............................. 44V  
Input Differential Voltage ......................................... 44V  
Input Current ...................................................... ±25mA  
Shutdown Pin Voltage Above V............................. 32V  
Shutdown Pin Current ....................................... ±10mA  
Output Short-Circuit Duration (Note 2).........Continuous  
Operating Temperature Range ................ 40°C to 85°C  
Specified Temperature Range (Note 3).. 40°C to 85°C  
Junction Temperature........................................... 150°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
W U  
U
PACKAGE/ORDER INFORMATION  
ORDER PART  
ORDER PART  
TOP VIEW  
NUMBER  
NUMBER  
NULL  
IN  
1
2
3
4
NULL  
8
7
6
5
TOP VIEW  
+
V
LT1636CN8  
LT1636CS8  
LT1636IN8  
LT1636IS8  
1
2
8 NULL  
7 V  
NULL  
IN  
LT1636CMS8  
+
+IN  
OUT  
6 OUT  
5 SHDN  
+IN 3  
V
SHDN  
V
4
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
JMAX = 150°C, θJA = 250°C/ W  
N8 PACKAGE  
8-LEAD PLASTIC DIP  
MS8 PART MARKING  
LTCL  
T
S8 PACKAGE  
8-LEAD PLASTIC SO  
S8 PART MARKING  
T
JMAX = 150°C, θJA = 130°C/ W (N8)  
1636  
1636I  
TJMAX = 150°C, θJA = 190°C/ W (S8)  
Consult factory for Military grade parts.  
ELECTRICAL CHARACTERISTICS  
3V, 5V  
V = 3V, 0V; V = 5V, 0V; VCM = VOUT = half supply, Pin 5 = open or V , Pins 1 and 8 open, TA = 25°C unless otherwise noted. (Note 3)  
S
S
EE  
SYMBOL  
PARAMETER  
Input Offset Voltage  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
OS  
N8 Package  
50  
225  
400  
550  
µV  
µV  
µV  
0°C T 70°C  
A
40°C T 85°C  
A
S8 Package  
50  
50  
225  
600  
750  
µV  
µV  
µV  
0°C T 70°C  
A
40°C T 85°C  
A
MS8 Package  
225  
700  
850  
µV  
µV  
µV  
0°C T 70°C  
A
40°C T 85°C  
A
Input Offset Voltage Drift (Note 8)  
N8 Package, 40°C T 85°C  
1
2
2
5
8
10  
µV/°C  
µV/°C  
µV/°C  
A
S8 Package, 40°C T 85°C  
A
MS8 Package, 40°C T 85°C  
A
I
Input Offset Current  
Input Bias Current  
0.1  
0.8  
0.6  
nA  
µA  
OS  
V
= 44V (Note 4)  
CM  
I
B
5
3
0.1  
8
6
nA  
µA  
nA  
V
= 44V (Note 4)  
CM  
V = 0V  
S
Input Noise Voltage  
0.1Hz to 10Hz  
f = 1kHz  
0.7  
52  
µV  
P-P  
e
Input Noise Voltage Density  
Input Noise Current Density  
nV/Hz  
pA/Hz  
n
i
n
f = 1kHz  
0.035  
2
LT1636  
3V, 5V ELECTRICAL CHARACTERISTICS  
V = 3V, 0V; V = 5V, 0V; VCM = VOUT = half supply, Pin 5 = open or V , Pins 1 and 8 open, TA = 25°C unless otherwise noted. (Note 3)  
S
S
EE  
SYMBOL  
PARAMETER  
Input Resistance  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
R
IN  
Differential  
Common Mode, V = 0V to 44V  
6
7
10  
15  
MΩ  
MΩ  
CM  
C
IN  
Input Capacitance  
4
pF  
V
Input Voltage Range  
0
44  
CMRR  
Common Mode Rejection Ratio  
(Note 4)  
V
V
CM  
= 0V to V – 1V  
= 0V to 44V (Note 7)  
84  
86  
110  
98  
dB  
dB  
CM  
CC  
A
VOL  
Large-Signal Voltage Gain  
V = 3V, V = 500mV to 2.5V, R = 10k  
200  
133  
100  
1300  
V/mV  
V/mV  
V/mV  
S
O
L
V = 3V, 0°C T 70°C  
S
A
V = 3V, 40°C T 85°C  
S
A
V = 5V, V = 500mV to 4.5V, R = 10k  
400  
250  
200  
2000  
V/mV  
V/mV  
V/mV  
S
O
L
V = 5V, 0°C T 70°C  
S
A
V = 5V, 40°C T 85°C  
S
A
V
Output Voltage Swing LOW  
Output Voltage Swing HIGH  
No Load  
2
480  
860  
10  
875  
1600  
mV  
mV  
mV  
OL  
I
= 5mA  
SINK  
V = 5V, I  
S
= 10mA  
SINK  
V
OH  
V = 3V, No Load  
2.95  
2.55  
2.985  
2.8  
V
V
S
V = 3V, I  
S
= 5mA  
SOURCE  
V = 5V, No Load  
4.95  
4.30  
4.985  
4.75  
V
V
S
V = 5V, I  
= 10mA  
S
SOURCE  
I
SC  
Short-Circuit Current (Note 2)  
V = 3V, Short to GND  
7
20  
15  
42  
mA  
mA  
S
V = 3V, Short to V  
S
CC  
V = 5V, Short to GND  
12  
25  
25  
50  
mA  
mA  
S
V = 5V, Short to V  
S
CC  
PSRR  
Power Supply Rejection Ratio  
Reverse Supply Voltage  
Supply Current (Note 5)  
V = 2.7V to 12.5V, V = V = 1V  
90  
27  
103  
40  
dB  
V
S
CM  
O
I = 100µA  
S
I
S
42  
55  
60  
µA  
µA  
Supply Current, SHDN  
Shutdown Pin Current  
V
PIN5  
= 2V, No Load (Note 5)  
4
12  
µA  
I
SD  
V
V
PIN5  
= 0.3V, No Load (Note 5)  
= 2V, No Load (Note 4)  
0.5  
1.1  
15  
5
nA  
µA  
PIN5  
Output Leakage Current  
Maximum Shutdown Pin Current  
Turn-On Time  
V
= 2V, No Load (Note 5)  
= 32V, No Load (Note 4)  
0.05  
27  
1
µA  
µA  
µs  
PIN5  
V
PIN5  
150  
t
t
V
PIN5  
= 5V to 0V, R = 10k  
120  
2.5  
ON  
L
Turn-Off Time  
V
PIN5  
= 0V to 5V, R = 10k  
µs  
OFF  
L
GBW  
Gain Bandwidth Product  
(Note 4)  
f = 1kHz  
0°C T 70°C  
110  
100  
90  
200  
kHz  
kHz  
kHz  
A
40°C T 85°C  
A
SR  
Slew Rate  
(Note 6)  
A = 1, R =  
0.035  
0.031  
0.030  
0.07  
V/µs  
V/µs  
V/µs  
V
L
0°C T 70°C  
A
40°C T 85°C  
A
3
LT1636  
ELECTRICAL CHARACTERISTICS  
±15V  
V = ±15V, VCM = 0V, VOUT = 0V, Pin 5 = open or V , Pins 1 and 8 open, TA = 25°C unless otherwise noted. (Note 3)  
S
EE  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
OS  
Input Offset Voltage  
N8 Package  
100  
450  
550  
700  
µV  
µV  
µV  
0°C T 70°C  
A
40°C T 85°C  
A
S8 Package  
100  
100  
450  
750  
900  
µV  
µV  
µV  
0°C T 70°C  
A
40°C T 85°C  
A
MS8 Package  
450  
850  
1000  
µV  
µV  
µV  
0°C T 70°C  
A
40°C T 85°C  
A
Input Offset Voltage Drift (Note 8)  
N8 Package, 40°C T 85°C  
1
2
2
4
8
10  
µV/°C  
µV/°C  
µV/°C  
A
S8 Package, 40°C T 85°C  
A
MS8 Package, 40°C T 85°C  
A
I
Input Offset Current  
Input Bias Current  
0.2  
4
1.0  
10  
nA  
nA  
OS  
I
B
Input Noise Voltage  
0.1Hz to 10Hz  
f = 1kHz  
1
µV  
P-P  
e
Input Noise Voltage Density  
Input Noise Current Density  
Input Resistance  
52  
nV/Hz  
pA/Hz  
n
i
n
f = 1kHz  
0.035  
R
IN  
Differential  
Common Mode, V = 15V to 14V  
5.2  
13  
12000  
MΩ  
MΩ  
CM  
C
Input Capacitance  
4
pF  
V
IN  
Input Voltage Range  
15  
86  
29  
CMRR  
Common Mode Rejection Ratio  
Large-Signal Voltage Gain  
V
= 15V to 29V  
103  
500  
dB  
CM  
A
VOL  
V = ±14V, R = 10k  
100  
75  
50  
V/mV  
V/mV  
V/mV  
O
L
0°C T 70°C  
40°C T 85°C  
A
A
V
Output Voltage Swing LOW  
Output Voltage Swing HIGH  
Short-Circuit Current (Note 2)  
No Load  
14.997 14.95  
14.500 14.07  
14.125 13.35  
V
V
V
OL  
I
= 5mA  
SINK  
I
= 10mA  
SINK  
V
OH  
No Load  
14.9  
14.5  
14.3  
14.975  
14.750  
14.650  
V
V
V
I
= 5mA  
SOURCE  
I
= 10mA  
SOURCE  
I
SC  
Short to GND  
0°C T 70°C  
±18  
±15  
±10  
±30  
mA  
mA  
mA  
A
40°C T 85°C  
A
PSRR  
Power Supply Rejection Ratio  
Supply Current  
V = ±1.35V to ±22V  
90  
114  
dB  
S
I
S
50  
70  
85  
µA  
µA  
Positive Supply Current, SHDN  
Shutdown Pin Current  
V
PIN5  
= 20V, V = ±22V, No Load  
12  
30  
µA  
S
I
V
PIN5  
= 21.7V, V = ±22V, No Load  
0.7  
1.2  
15  
8
nA  
µA  
SHDN  
S
V
PIN5  
= 20V, V = ±22V, No Load  
S
Maximum Shutdown Pin Current  
Output Leakage Current  
V
= 32V, V = ±22V  
27  
0.1  
220  
150  
2
µA  
µA  
PIN5  
S
V
PIN5  
= 20V, V = ±22V, No Load  
S
GBW  
Gain Bandwidth Product  
f = 1kHz  
0°C T 70°C  
40°C T 85°C  
125  
110  
100  
kHz  
kHz  
kHz  
A
A
4
LT1636  
±15V ELECTRICAL CHARACTERISTICS  
V = ±15V, VCM = 0V, VOUT = 0V, Pin 5 = open or V , Pins 1 and 8 open, TA = 25°C unless otherwise noted. (Note 3)  
S
EE  
SYMBOL  
SR  
PARAMETER  
CONDITIONS  
A = 1, R =  
MIN  
TYP  
MAX  
UNITS  
Slew Rate  
, V = ±10V Measured at ±5V  
0.0375  
0.033  
0.030  
0.075  
V/µs  
V/µs  
V/µs  
V
L
O
0°C T 70°C  
A
40°C T 85°C  
A
The  
denotes specifications that apply over the full specified temperature  
Note 4: V = 5V limits are guaranteed by correlation to V = 3V, and  
S
S
range.  
V = ±15V or V = ±22V tests.  
S
S
Note 1: Absolute Maximum Ratings are those values beyond which the life  
Note 5: V = 3V limits are guaranteed by correlation to V = 5V, and  
S
S
of a device may be impaired.  
V = ±15V or V = ±22V tests.  
S
S
Note 2: A heat sink may be required to keep the junction temperature  
Note 6: Guaranteed by correlation to slew rate at V = ±15V, and GBW at  
S
below absolute maximum.  
V = 3V and V = ±15V tests.  
S
S
Note 3: The LT1636C is guaranteed to meet specified performance from  
0°C to 70°C and is designed, characterized and expected to meet these  
extended temperature limits, but is not tested at –40°C and 85°C. The  
LT1636I is guaranteed to meet the extended temperature limits.  
Note 7: This specification implies a typical input offset voltage of 600µV at  
= 44V and a maximum input offset voltage of 3mV at V = 44V.  
V
CM  
CM  
Note 8: This parameter is not 100% tested.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Input Bias Current  
Supply Current vs Supply Voltage  
vs Common Mode Voltage  
Minimum Supply Voltage  
300  
200  
5000  
3000  
1000  
80  
70  
60  
50  
40  
30  
20  
10  
0
V = 5V, 0V  
S
T = 25°C  
A
100  
40  
30  
0
T = 125°C  
A
T = 55°C  
A
–100  
–200  
–300  
T = 55°C  
A
20  
T = 125°C  
T = 55°C  
A
A
10  
T = 125°C  
A
T = 25°C  
A
0
T = 25°C  
A
–10  
0
5
10 15 20 25 30 35 40 45  
TOTAL SUPPLY VOLTAGE (V)  
1636 G01  
0
1
2
3
4
5
4.0  
4.4  
4.8  
50  
5.2 10 20 30 40  
TOTAL SUPPLY VOLTAGE (V)  
COMMON MODE VOLTAGE (V)  
1636 G02  
1636 G03  
Output Saturation Voltage  
vs Load Current (Output High)  
Output Saturation Voltage  
vs Load Current (Output Low)  
Output Saturation Voltage  
vs Input Overdrive  
10  
1
1
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V = 5V  
S
V = 5V  
S
V = ±2.5V  
NO LOAD  
S
V
OD  
= 30mV  
V
OD  
= 30mV  
0.1  
0.1  
T = 125°C  
A
T = 125°C  
A
T = 25°C  
A
T = 25°C  
A
0.01  
OUTPUT HIGH  
OUTPUT LOW  
T = 55°C  
A
T = 55°C  
A
0.001  
0.01  
0.0001 0.001 0.01  
0.1  
1
10  
100  
0
10 20 30 40 50 60 70 80 90 100  
INPUT OVERDRIVE (mV)  
1636 G06  
0.0001 0.001 0.01  
0.1  
1
10  
100  
SINKING LOAD CURRENT (mA)  
SOURCING LOAD CURRENT (mA)  
1636 G05  
1636 G04  
5
LT1636  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Noise Voltage Density  
vs Frequency  
0.1Hz to 10Hz Noise Voltage  
Input Noise Current vs Frequency  
80  
70  
60  
50  
40  
30  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
V = ±2.5V  
S
1
10  
100  
1000  
0
1
2
3
4
5
6
7
8
9
10  
1
10  
100  
1000  
TIME (SEC)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1635 G09  
1636 G08  
1636 G07  
Open-Loop Gain and Phase Shift  
vs Frequency  
Gain-Bandwidth Product  
vs Temperature  
Slew Rate vs Temperature  
70  
60  
50  
40  
100  
80  
260  
240  
220  
200  
0.12  
0.11  
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
V = ±2.5V  
S
f = 1kHZ  
RISING, V = ±1.5V  
S
60  
RISING, V = ±15V  
S
40  
V = ±15V  
S
PHASE  
30  
20  
20  
0
FALLING, V = ±15V  
S
GAIN  
V = ±1.5V  
S
10  
0
–20  
40  
60  
80  
–100  
180  
160  
140  
FALLING, V = ±1.5V  
S
–10  
–20  
–30  
1k  
10k  
100k  
1M  
50  
25  
50  
75  
100 125  
50 25  
0
25  
50  
75 100 125  
–25  
0
FREQUENCY (Hz)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1636 G10  
1636 G11  
1636 G12  
Gain-Bandwidth Product and  
Phase Margin vs Supply Voltage  
CMRR vs Frequency  
PSRR vs Frequency  
120  
110  
100  
90  
80  
70  
300  
280  
50  
40  
V = ±2.5V  
S
R
= 10k  
L
f = 1kHz  
60  
POSITIVE SUPPLY  
PHASE MARGIN  
50  
260  
V = ±15V  
S
80  
40  
70  
30  
240  
220  
V = ±1.5V  
S
60  
20  
GAIN BANDWIDTH  
NEGATIVE SUPPLY  
30  
20  
50  
10  
40  
0
200  
180  
30  
–10  
20  
20  
1K  
10K  
100K  
1k  
10k  
FREQUENCY (Hz)  
100k  
0
5
10 15 20 25 30 35 40 45  
TOTAL SUPPLY VOLTAGE (V)  
FREQUENCY (Hz)  
1636 G14  
1636 G15  
1636 G13  
6
LT1636  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Gain-Bandwidth Product and  
Phase Margin vs Load Resistance  
Undistorted Output Swing  
vs Frequency  
Output Impedance vs Frequency  
10k  
1k  
450  
400  
350  
300  
250  
200  
150  
100  
50  
80  
70  
60  
50  
40  
30  
20  
10  
0
35  
30  
25  
20  
15  
10  
5
V = ±2.5V  
V = ±2.5V  
DISTORTION 1%  
A = 1  
V
S
S
V = ±15V  
s
A = 100  
V
PHASE MARGIN  
100  
10  
A = 10  
V
A = 1  
V
1
V = ±2.5V  
s
GAIN BANDWIDTH  
0.1  
100  
0
100  
1k  
10k  
100k  
1k  
10k  
100k  
1k  
10k  
100k  
LOAD RESISTANCE ()  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1635 G17  
1635 G18  
1636 G16  
Capacitive Load Handling,  
Overshoot vs Capacitive Load  
Settling Time to 0.1%  
vs Output Step  
Total Harmonic Distortion + Noise  
vs Frequency  
100  
90  
10  
8
10  
1
V = ±2.5V  
V = ±15V  
S
V = 3V, 0V  
S
S
I
= 40µA  
V
OUT  
= 2V  
SOURCE  
NO OUTPUT COMPENSATION  
P-P  
A = 1  
V
V
CM  
= 1.2V  
80  
6
R = 50k  
L
A = 1  
V
70  
4
A = 1  
V
A = 2  
V
60  
50  
2
0
0.1  
40  
30  
20  
10  
0
–2  
–4  
–6  
–8  
–10  
A = 1  
V
0.01  
A = 5  
V
A = 10  
V
A = 1  
V
A = 1  
V
A = 1  
V
0.001  
10  
100  
1000  
10000  
100 160  
120 140  
0
80  
20 40 60  
10  
100  
1k  
10k  
FREQUENCY (Hz)  
SETTLING TIME (µs)  
CAPACITIVE LOAD (pF)  
1636 G20  
1636 G19  
1636 G21  
Total Harmonic Distortion + Noise  
vs Load Resistance  
Total Harmonic Distortion + Noise  
vs Output Voltage  
10  
1
10  
1
R = 10k  
V = 3V TOTAL  
L
S
V
CM  
= HALF SUPPLY  
A = 1  
V
V
IN  
f = 1kHz  
= 2V AT 1kHz  
P-P  
V = ±1.5V  
S
V
IN  
= ±1V  
A = –1  
V
A = 1  
V
V = ±1.5V  
S
V = ±1.5V  
S
V = 3V, 0V  
S
= 0.5V TO 2.5V  
0.1  
0.1  
V
IN  
A = –1  
V
V = 3V, 0V  
S
0.01  
V = 3V, 0V  
S
0.01  
V
IN  
= 0.2V TO 2.2V  
A = 1  
V
V = 3V, 0V  
S
0.001  
0.001  
0
1
2
3
100  
1k  
10k  
100k  
OUTPUT VOLTAGE (V  
)
P-P  
LOAD RESISTANCE TO GROUND ()  
1636 G23  
1636 G22  
7
LT1636  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Open-Loop Gain  
Large-Signal Response  
Small-Signal Response  
A
B
B
C
A: RL = 2k  
B: RL = 10k  
C: RL = 50k  
C
A
1636 G24  
1636 G25  
1636 G26  
0V  
10V  
V = ±15V –10V  
S
V = ±15V  
AV = –1  
V = ±15V  
AV = 1  
S
S
OUTPUT VOLTAGE (5V/DIV)  
U
W U U  
APPLICATIONS INFORMATION  
Supply Voltage  
cause the voltage at which operation switches from the  
PNPstagetotheNPNstagetomovetowards V+. Theinput  
offset voltage of the NPN stage is untrimmed and is  
typically 600µV.  
The positive supply pin of the LT1636 should be bypassed  
with a small capacitor (about 0.01µF) within an inch of the  
pin. When driving heavy loads an additional 4.7µF electro-  
lytic capacitor should be used. When using split supplies,  
the same is true for the negative supply pin.  
A Schottky diode in the collector of each NPN transistor of  
the NPN input stage allows the LT1636 to operate with  
either or both of its inputs above V+. At about 0.3V above  
V+ the NPN input transistor is fully saturated and the input  
bias current is typically 3µA at room temperature. The  
input offset voltage is typically 600µV when operating  
aboveV+.TheLT1636willoperatewithits input44Vabove  
Vregardless of V+.  
The LT1636 is protected against reverse battery voltages  
up to 27V. In the event a reverse battery condition occurs,  
the supply current is less than 1nA.  
When operating the LT1636 on total supplies of 20V or  
more, the supply must not be brought up faster than 1µs.  
This is especially true if low ESR bypass capacitors are  
used. A series RLC circuit is formed from the supply lead  
inductance and the bypass capacitor. 5of resistance in  
the supply or the bypass capacitor will dampen the tuned  
circuit enough to limit the rise time.  
The inputs are protected against excursions as much as  
22V below Vby an internal 1k resistor in series with each  
input and a diode from the input to the negative supply.  
Thereis nooutputphasereversalforinputs upto5Vbelow  
V. There are no clamping diodes between the inputs and  
the maximum differential input voltage is 44V.  
Inputs  
The LT1636 has two input stages, NPN and PNP (see  
Simplified Schematic), resulting in three distinct operat-  
ingregions as shownintheInputBias Currentvs Common  
Mode typical performance curve.  
For input voltages about 0.8V or more below V+, the PNP  
input stage is active and the input bias current is typically  
4nA. When the input voltage is about 0.5V or less from  
V+, the NPN input stage is operating and the input bias  
current is typically 10nA. Increases in temperature will  
Output  
The output voltage swing of the LT1636 is affected by in-  
put overdrive as shown in the typical performance curves.  
When monitoring voltages within 100mV of V+, gain  
should be taken to keep the output from clipping.  
The output of the LT1636 can be pulled up to 27V beyond  
V+ with less than 1nA of leakage current, provided that V+  
is less than 0.5V.  
8
LT1636  
U
W U U  
APPLICATIONS INFORMATION  
The normally reverse biased substrate diode from the  
outputtoVwillcauseunlimitedcurrents toflowwhenthe  
output is forced below V. If the current is transient and  
limited to 100mA, no damage will occur.  
returned to ground. The typical performance photo of  
Open-Loop Gain for various loads shows the details.  
Shutdown  
The LT1636 can be shut down two ways: using the  
shutdownpinorbringingV+ towithin0.5VofV.WhenV+  
is brought to within 0.5V of Vboth the supply current and  
output leakage current drop to less than 1nA. When the  
shutdown pin is brought 1.2V above V, the supply  
current drops to about 4µA and the output leakage current  
is less than1µA,independentofV+.Ineithercasetheinput  
bias current is less than 0.1nA (even if the inputs are 44V  
above the negative supply).  
The shutdown pin can be taken up to 32V above V. The  
shutdown pin can be driven below V, however the pin  
currentthroughthesubstratediodeshouldbelimitedwith  
an external resistor to less than 10mA.  
The LT1636 is internally compensated to drive at least  
200pF of capacitance under any output loading condi-  
tions. A 0.22µF capacitor in series with a 150resistor  
between the output and ground will compensate these  
amplifiers for larger capacitive loads, up to 10,000pF, at  
all output currents.  
Distortion  
There are two main contributors of distortion in op amps:  
output crossover distortion as the output transitions from  
sourcing to sinking current and distortion caused by  
nonlinear common mode rejection. Of course, if the op  
amp is operating inverting there is no common mode  
induced distortion. When the LT1636 switches between  
input stages there is significant nonlinearity in the CMRR.  
Lower load resistance increases the output crossover  
distortion, but has no effect on the input stage transition  
distortion. For lowest distortion the LT1636 should be  
operated single supply, with the output always sourcing  
current and with the input voltage swing between ground  
and (V+ – 0.8V). See the Typical Performance Character-  
istics curves.  
Input Offset Nulling  
The input offset voltage can be nulled by placing a 10k  
potentiometer between Pins 1 and 8 with its wiper to V–  
(see Figure 1). The null range will be at least ±1mV.  
LT1636  
8
1
10k  
Gain  
The open-loop gain is less sensitive to load resistance  
when the output is sourcing current. This optimizes per-  
formance in single supply applications where the load is  
V
1636 AI01  
Figure 1. Input Offset Nulling  
9
LT1636  
U
TYPICAL APPLICATIONS  
MUX Amplifier  
MUX Amplifier Waveforms  
5V  
+
V
IN1  
LT1636  
SHDN  
V
OUT  
5V  
+
V
IN2  
LT1636  
SHDN  
V = 5V  
S
V
IN1 = 1.2kHz AT 4VP-P, VIN2 = 2.4kHz AT 2V  
P-P  
INPUT SELECT = 120Hz AT 5V  
P-P  
INPUT  
1636 TA05  
SELECT  
74HC04  
Optional Output Compensation for  
Capacitive Loads Greater Than 200pF  
V
IN  
+
LT1636  
C 10,000pF  
L
0.22µF  
150Ω  
1636 TA09  
W
W
SI PLIFIED SCHEMATIC  
+
7
V
Q1  
Q13  
Q19  
Q20  
Q25  
D1  
D2  
Q23  
R3  
1k  
R2  
30k  
D3  
IN  
+IN  
2
3
Q21  
Q22  
Q24  
SHDN  
5
Q2  
2µA  
R4  
1k  
6
OUT  
Q9  
Q10  
Q14 Q15  
Q18  
R1  
1M  
Q11  
Q12  
Q16  
Q17  
Q26  
Q3  
Q4  
R5  
R6  
40k  
40k  
Q6  
Q8  
D4  
D5  
Q5  
Q7  
NULL  
1
8
NULL  
R7  
R8  
300Ω  
300Ω  
4
V
1636 SS  
10  
LT1636  
U
PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.  
MS8 Package  
8-Lead Plastic MSOP  
(LTC DWG # 05-08-1660)  
0.118 ± 0.004*  
(3.00 ± 0.102)  
8
7
6
5
0.040 ± 0.006  
(1.02 ± 0.15)  
0.034 ± 0.004  
(0.86 ± 0.102)  
0.007  
(0.18)  
0° – 6° TYP  
0.118 ± 0.004**  
(3.00 ± 0.102)  
SEATING  
PLANE  
0.192 ± 0.004  
(4.88 ± 0.10)  
0.012  
(0.30)  
REF  
0.021 ± 0.006  
(0.53 ± 0.015)  
0.006 ± 0.004  
(0.15 ± 0.102)  
0.0256  
(0.65)  
TYP  
MSOP (MS8) 1197  
1
2
3
4
* DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH,  
PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
N8 Package  
8-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
0.400*  
(10.160)  
MAX  
0.130 ± 0.005  
0.300 – 0.325  
0.045 – 0.065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
8
7
6
5
0.065  
(1.651)  
TYP  
0.255 ± 0.015*  
(6.477 ± 0.381)  
0.009 – 0.015  
0.125  
(0.229 – 0.381)  
0.020  
(3.175)  
MIN  
+0.035  
–0.015  
(0.508)  
MIN  
1
2
4
3
0.325  
N8 1197  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
+0.889  
–0.381  
8.255  
(
)
(0.457 ± 0.076)  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
0.010 – 0.020  
(0.254 – 0.508)  
7
5
8
6
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
SO8 0996  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1
3
4
2
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofits circuits as describedhereinwillnotinfringeonexistingpatentrights.  
11  
LT1636  
U
TYPICAL APPLICATIONS  
Over-The-Top Comparator with Hysteresis  
Self-Buffered Micropower Reference  
1M  
4V TO 44V  
3V TO 44V  
10k  
IN1  
(0V TO 44V)  
+
V
OUT  
= 1.25V  
V
OUT  
LT1636  
LT1636  
I
10mA  
OUT  
+
1M  
1N5711  
1M  
2N5087  
2N5210  
1M  
10k  
1M  
IN2  
(0V TO 44V)  
0.1µF  
LT1634-1.25  
V
100  
CC  
HYSTERESIS =  
1636 TA04  
1636 TA03  
Lamp Outage Detector  
Over-The-Top Current Sense  
0.1V TO 44V  
3V  
5V TO 44V  
1M  
R1  
200Ω  
LAMP  
ON/OFF  
100k  
5k  
5V  
R
0.2Ω  
S
+
0.5Ω  
OUT  
LT1636  
LT1636  
+
V
OUT  
(0V TO 4.3V)  
I
LOAD  
R2  
2k  
V
OUT = 0V FOR GOOD BULB  
3V FOR OPEN BULB  
OUT  
LOAD  
I
=
LOAD  
1636 TA08  
(R )(R2/R1)  
S
1636 TA07  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1460  
Micropower Precision Series Reference  
Accuracy: 0.075% Max, Drift: 10ppm/°C Max,  
2.5V, 5V, 10V Versions Available  
LT1466/LT1467  
LT1490/LT1491  
LT1495/LT1496  
75µA Dual/Quad Rail-to-Rail Input and Output Op Amps  
50µA Dual/Quad Rail-to-Rail Input and Output Op Amps  
390µV V  
, Gain Bandwidth = 120kHz  
, Gain Bandwidth = 200kHz  
, 1.5µA Supply Current Max  
OS(MAX)  
950µV V  
OS(MAX)  
1.5µA Max, Dual/Quad Precision Rail-to-Rail Input and Output  
375µV V  
OS(MAX)  
Op Amps  
LT2078/LT2079  
LT2178/LT2179  
55µA Dual/Quad Precision Single Supply Op Amps  
17µA Dual/Quad Precision Single Supply Op Amps  
120µV V  
, Gain Bandwidth = 200kHz  
, Gain Bandwidth = 60kHz  
OS(MAX)  
120µV V  
OS(MAX)  
1636f LT/TP 1098 4K • PRINTED IN USA  
12 Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  
LINEAR TECHNOLOGY CORPORATION 1998  

相关型号:

LT1636CN8#PBF

LT1636 - Over-The-Top Micropower Rail-to-Rail Input and Output Op Amp; Package: PDIP; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LT1636CS8

Over-The-Top Micropower Rail-to-Rail Input and Output Op Amp
Linear

LT1636CS8#TRPBF

LT1636 - Over-The-Top Micropower Rail-to-Rail Input and Output Op Amp; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LT1636HS8

Over-The-Top Micropower Rail-to-Rail Input and Output Op Amp
Linear

LT1636HS8#PBF

暂无描述
Linear

LT1636HS8#TR

暂无描述
Linear

LT1636HS8#TRPBF

LT1636 - Over-The-Top Micropower Rail-to-Rail Input and Output Op Amp; Package: SO; Pins: 8; Temperature Range: -40°C to 125°C
Linear

LT1636IDD

Over-The-Top Micropower Rail-to-Rail Input and Output Op Amp
Linear

LT1636IDD#PBF

LT1636 - Over-The-Top Micropower Rail-to-Rail Input and Output Op Amp; Package: DFN; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LT1636IDD#TR

LT1636 - Over-The-Top Micropower Rail-to-Rail Input and Output Op Amp; Package: DFN; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LT1636IMS8

Over-The-Top Micropower Rail-to-Rail Input and Output Op Amp
Linear

LT1636IMS8#PBF

LT1636 - Over-The-Top Micropower Rail-to-Rail Input and Output Op Amp; Package: MSOP; Pins: 8; Temperature Range: -40°C to 85°C
Linear