LT1638CS8#TR [Linear]

LT1638 - 1.2MHz, 0.4V/µs Over-The-Top Micropower Rail-to-Rail Input and Output Op Amps; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C;
LT1638CS8#TR
型号: LT1638CS8#TR
厂家: Linear    Linear
描述:

LT1638 - 1.2MHz, 0.4V/µs Over-The-Top Micropower Rail-to-Rail Input and Output Op Amps; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C

运算放大器
文件: 总16页 (文件大小:241K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1638/LT1639  
1.2MHz, 0.4V/μs  
Over-The-Top Micropower  
Rail-to-Rail Input and Output  
Op Amps  
U
FEATURES  
DESCRIPTIO  
The LT®1638 is a low power dual rail-to-rail input and output  
operationalamplifieravailableinthestandard8-pinPDIPand  
SO packages as well as the 8-lead MSOP package. The  
LT1639 is a low power quad rail-to-rail input and output  
operationalamplifierofferedinthestandard14-pinPDIPand  
surface mount packages. For space limited applications the  
LT1638 is available in a 3mm x 3mm x 0.8mm dual fine pitch  
leadless package (DFN).  
Operates with Inputs Above V+  
Rail-to-Rail Input and Output  
Low Power: 230μA per Amplifier Max  
Gain Bandwidth Product: 1.2MHz  
Slew Rate: 0.4V/μs  
High Output Current: 25mA Min  
Specified on 3V, 5V and 15V Supplies  
Reverse Battery Protection to 18V  
No Supply Sequencing Problems  
High Voltage Gain: 1500V/mV  
Single Supply Input Range: 0.4V to 44V  
High CMRR: 98dB  
No Phase Reversal  
Available in 14-Lead SO, 8-Lead MSOP and DFN  
Packages  
The LT1638/LT1639 op amps operate on all single and  
split supplies with a total voltage of 2.5V to 44V drawing  
only 170μA of quiescent current per amplifier. These  
amplifiers are reverse battery protected and draw no  
current for reverse supply up to 18V.  
The input range of the LT1638/LT1639 includes both  
supplies,andauniquefeatureofthisdeviceisitscapability  
to operate over the top with either or both of its inputs  
above V+. The inputs handle 44V, both differential and  
common mode, independent of supply voltage. The input  
stage incorporates phase reversal protection to prevent  
false outputs from occurring when the inputs are below  
the negative supply. Protective resistors are included in  
the input leads so that current does not become excessive  
when the inputs are forced below the negative supply. The  
LT1638/LT1639 can drive loads up to 25mA and still  
maintain rail-to-rail capability. The op amps are unity-gain  
stable and drive all capacitive loads up to 1000pF when  
optional output compensation is used.  
U
APPLICATIO S  
Battery- or Solar-Powered Systems  
Portable Instrumentation  
Sensor Conditioning  
Supply Current Sensing  
Battery Monitoring  
Micropower Active Filters  
4mA to 20mA Transmitters  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
Over-The-Top is a registered trademark of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
U
Output Voltage vs Input Voltage  
TYPICAL APPLICATIO  
Over-The-Top® Comparator with  
100mV Hysteresis Centered at 0mV  
5V  
V
CC  
10k  
1M  
V1  
V
CC  
V
CC  
1M  
+
+
A
B
V0  
1/2 LT1638  
1/2 LT1638  
1M  
0V  
10k  
1M  
1638/39 TA01  
V2  
1638/39 TA02  
V
CC  
= 5V, V  
CM  
= 0V TO 44V, t = 27μs  
PD  
20mV/DIV  
16389fd  
1
LT1638/LT1639  
W W  
U W  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
Total Supply Voltage (V+ to V) .............................. 44V  
Input Differential Voltage ......................................... 44V  
Input Current ...................................................... 25mA  
Output Short-Circuit Duration (Note 2).........Continuous  
Operating Temperature Range (Note 3)  
Specified Temperature Range (Note 4)  
LT1638C/LT1639C ............................. 40°C to 85°C  
LT1638I/LT1639I................................ 40°C to 85°C  
LT1638H/LT1639H ........................... 40°C to 125°C  
Junction Temperature........................................... 150°C  
DD Package ...................................................... 125°C  
Storage Temperature Range ................. 65°C to 150°C  
DD Package ...................................... 65°C to 125°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
LT1638C/LT1639C ............................. 40°C to 85°C  
LT1638I/LT1639I................................ 40°C to 85°C  
LT1638H/LT1639H ........................... 40°C to 125°C  
U
W U  
PACKAGE/ORDER INFORMATION  
ORDER  
PART NUMBER  
ORDER  
PART NUMBER  
TOP VIEW  
TOP VIEW  
LT1638CN8  
LT1638CMS8  
LT1638IMS8  
+
1
2
3
4
8
7
6
5
OUT A  
–IN A  
+IN A  
V
OUT A  
–IN A  
+IN A  
1
2
3
4
8 V+  
LT1638IN8  
LT1638CS8  
LT1638IS8  
LT1638HS8  
7 OUT B  
6 –IN B  
5 +IN B  
OUT B  
–IN B  
+IN B  
A
A
B
V
B
V
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
MS8 PART  
MARKING*  
S8 PACKAGE  
8-LEAD PLASTIC SO  
N8 PACKAGE  
8-LEAD PDIP  
TJMAX = 150°C, θJA = 300°C/W (MS8)  
S8 PART MARKING  
TJMAX = 150°C, θJA = 150°C/W (N8)  
TJMAX = 150°C, θJA = 190°C/W (S8)  
LTCY  
1638  
1638I  
1638H  
ORDER  
ORDER  
TOP VIEW  
PART NUMBER  
PART NUMBER  
OUT A  
–IN A  
+IN A  
1
2
3
4
5
6
7
14 OUT D  
13 –IN D  
TOP VIEW  
LT1639CN  
LT1639IN  
LT1639CS  
LT1639IS  
LT1639HS  
LT1638CDD  
LT1638IDD  
A
B
D
C
+
OUT A  
–IN A  
+IN A  
1
2
3
4
8
7
6
5
V
12 +IN D  
+
OUT B  
–IN B  
+IN B  
V
11  
V
A
+IN B  
–IN B  
OUT B  
10 +IN C  
B
V
9
8
– IN C  
OUT C  
DD PART MARKING*  
LAAL  
DD PACKAGE  
8-LEAD (3mm × 3mm) PLASTIC DFN  
TJMAX = 125°C, θJA = 160°C/W (NOTE 10)  
N PACKAGE  
S PACKAGE  
14-LEAD PDIP 14-LEAD PLASTIC SO  
UNDERSIDE METAL INTERNALLY CONNECTED TO V–  
TJMAX = 150°C, θJA = 130°C/W (N)  
TJMAX = 150°C, θJA = 160°C/W (S)  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
*The temperature grades are identified by a label on the shipping container. Consult LTC Marketing for parts specified with wider operating temperature ranges.  
16389fd  
2
LT1638/LT1639  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the specified temperature range, otherwise specifications are at TA = 25°C.  
VS = 3V, 0V; VS = 5V, 0V; VCM = VOUT = half supply, unless otherwise noted. (Note 4)  
LT1638C/LT1639C, LT1638I/LT1639I  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
LT1638 N, S Packages  
200  
600  
850  
950  
μV  
μV  
μV  
OS  
0°C T 70°C  
A
40°C T 85°C  
A
LT1639 N, S Packages  
300  
350  
400  
700  
950  
1050  
μV  
μV  
μV  
μV  
μV  
μV  
μV  
μV  
μV  
0°C T 70°C  
A
40°C T 85°C  
A
LT1638 MS8 Package  
900  
1150  
1450  
0°C T 70°C  
A
40°C T 85°C  
A
LT1638 DD Package  
1100  
1350  
1450  
0°C T 70°C  
A
40°C T 85°C  
A
Input Offset Voltage Drift  
(Note 9)  
LT1638/LT1639 N, S Packages  
LT1638MS8, LT1638DD  
2
2.5  
6
7
μV/°C  
μV/°C  
I
I
Input Offset Current  
1
6
2.5  
nA  
μA  
nA  
μA  
nA  
OS  
B
V
V
= 44V (Note 5)  
CM  
Input Bias Current  
20  
8
0.1  
50  
30  
= 44V (Note 5)  
CM  
V = 0V  
S
Input Noise Voltage  
0.1Hz to 10Hz  
f = 1kHz  
1
μV  
nV/Hz  
pA/Hz  
P-P  
e
i
Input Noise Voltage Density  
Input Noise Current Density  
Input Resistance  
20  
0.3  
n
f = 1kHz  
n
R
IN  
Differential  
Common Mode, V = 0V to 44V  
1
1.4  
2.5  
5.5  
MΩ  
MΩ  
CM  
C
Input Capacitance  
5
pF  
V
IN  
Input Voltage Range  
0
44  
CMRR  
Common Mode Rejection Ratio  
V
V
= 0V to V – 1V  
= 0V to 44V (Note 8)  
88  
80  
98  
88  
dB  
dB  
CM  
CM  
CC  
A
Large-Signal Voltage Gain  
V = 3V, V = 500mV to 2.5V, R = 10k  
200  
133  
100  
1500  
V/mV  
V/mV  
V/mV  
VOL  
S
O
L
0°C T 70°C  
A
40°C T 85°C  
A
V = 5V, V = 500mV to 4.5V, R = 10k  
400  
250  
200  
1500  
V/mV  
V/mV  
V/mV  
S
O
L
0°C T 70°C  
A
40°C T 85°C  
A
V
V
Output Voltage Swing Low  
Output Voltage Swing High  
Short-Circuit Current (Note 2)  
V = 3V, No Load  
3
250  
8
450  
mV  
mV  
OL  
OH  
S
V = 3V, I  
= 5mA  
S
SINK  
V = 5V, No Load  
3
500  
8
700  
mV  
mV  
S
V = 5V, I  
S
= 10mA  
SINK  
V = 3V, No Load  
2.94  
2.25  
2.98  
2.40  
V
V
S
V = 3V, I  
= 5mA  
S
SOURCE  
V = 5V, No Load  
4.94  
3.8  
4.98  
4.0  
V
V
S
V = 5V, I  
= 10mA  
S
SOURCE  
I
V = 3V, Short to GND  
10  
15  
15  
25  
mA  
mA  
SC  
S
V = 3V, Short to V  
S
CC  
V = 5V, Short to GND  
15  
15  
20  
25  
mA  
mA  
S
V = 5V, Short to V  
S
CC  
16389fd  
3
LT1638/LT1639  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the specified temperature range, otherwise specifications are at TA = 25°C.  
VS = 3V, 0V; VS = 5V, 0V; VCM = VOUT = half supply, unless otherwise noted. (Note 4)  
LT1638C/LT1639C, LT1638I/LT1639I  
SYMBOL  
PARAMETER  
CONDITIONS  
V = 3V to 12.5V, V = V = 1V  
MIN  
TYP  
100  
27  
MAX  
UNITS  
PSRR  
Power Supply Rejection Ratio  
Reverse Supply Voltage  
Minimum Operating Supply Voltage  
90  
dB  
V
S
CM  
O
I = 100μA per Amplifier  
S
18  
2.4  
170  
2.7  
V
I
Supply Current per Amplifier  
(Note 6)  
230  
275  
μA  
μA  
S
GBW  
SR  
Gain Bandwidth Product  
(Note 5)  
f = 5kHz  
650  
550  
500  
1075  
0.38  
kHz  
kHz  
kHz  
0°C T 70°C  
A
40°C T 85°C  
A
Slew Rate  
(Note 7)  
A = 1, R = ∞  
0.210  
0.185  
0.170  
V/μs  
V/μs  
V/μs  
V
L
0°C T 70°C  
A
40°C T 85°C  
A
The denotes the specifications which apply over the specified temperature range, otherwise specifications are at TA = 25°C.  
VS = 15V, VCM = 0V, VOUT = 0V, unless otherwise noted. (Note 4)  
LT1638C/LT1639C, LT1638I/LT1639I  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
LT1638 N, S Packages  
250  
800  
1000  
1100  
μV  
μV  
μV  
OS  
0°C T 70°C  
A
40°C T 85°C  
A
LT1639 N, S Packages  
350  
400  
450  
900  
1100  
1200  
μV  
μV  
μV  
μV  
μV  
μV  
μV  
μV  
μV  
0°C T 70°C  
A
40°C T 85°C  
A
LT1638 MS8 Package  
1050  
1250  
1550  
0°C T 70°C  
A
40°C T 85°C  
A
LT1638 DDPackage  
1250  
1450  
1550  
0°C T 70°C  
A
40°C T 85°C  
A
Input Offset Voltage Drift  
(Note 9)  
LT1638/LT1639 N, S Packages  
LT1638MS8, LT1638DD  
2
2.5  
6
7
μV/°C  
μV/°C  
I
I
Input Offset Current  
Input Bias Current  
1
20  
1
6
nA  
nA  
OS  
B
50  
Input Noise Voltage  
Input Noise Voltage Density  
Input Noise Current Density  
Input Resistance  
0.1Hz to 10Hz  
f = 1kHz  
μV  
P-P  
e
i
20  
0.3  
nV/Hz  
pA/Hz  
n
f = 1kHz  
n
R
Differential  
Common Mode, V = 15V to 14V  
1
2.5  
500  
MΩ  
MΩ  
IN  
CM  
C
Input Capacitance  
4.5  
pF  
V
IN  
Input Voltage Range  
15  
80  
29  
CMRR  
Common Mode Rejection Ratio  
Large-Signal Voltage Gain  
V
= –15V to 29V  
88  
dB  
CM  
A
V = 14V, R = 10k  
0°C T 70°C  
40°C T 85°C  
200  
125  
100  
500  
V/mV  
V/mV  
V/mV  
VOL  
O
L
A
A
V
Output Voltage Swing  
No Load  
14.9  
13.7  
14.95  
14.0  
V
V
O
I
= 10mA  
OUT  
16389fd  
4
LT1638/LT1639  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the specified temperature  
range, otherwise specifications are at TA = 25°C. VS = 15V, VCM = 0V, VOUT = 0V, unless otherwise noted. (Note 4)  
LT1638C/LT1639C, LT1638I/LT1639I  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Short-Circuit Current (Note 2)  
Short to GND  
25  
20  
15  
40  
mA  
mA  
mA  
SC  
0°C T 70°C  
A
40°C T 85°C  
A
PSRR  
Power Supply Rejection Ratio  
Supply Current per Amplifier  
V = 1.5V to 22V  
S
90  
100  
205  
dB  
I
280  
350  
μA  
μA  
S
GBW  
SR  
Gain Bandwidth Product  
Slew Rate  
f = 5kHz  
750  
650  
600  
1200  
0.4  
kHz  
kHz  
kHz  
0°C T 70°C  
A
40°C T 85°C  
A
A = 1, R = ∞, V = 10V,  
0.225  
0.2  
0.18  
V/μs  
V/μs  
V/μs  
V
L
O
0°C T 70°C  
A
40°C T 85°C  
A
The denotes the specifications which apply over the full operating temperature range of –40°C TA 125°C.  
VS = 3V, 0V; VS = 5V, 0V; VCM = VOUT = Half Supply unless otherwise specified. (Note 4)  
LT1638H/LT1639H  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
LT1638S8  
200  
650  
3
μV  
mV  
OS  
LT1639S  
300  
750  
3.2  
μV  
mV  
Input Offset Voltage Drift (Note 9)  
Input Offset Current  
15  
μV/°C  
I
I
15  
10  
nA  
μA  
nA  
μA  
OS  
B
V
V
= 44V (Note 5)  
CM  
CM  
Input Bias Current  
150  
100  
= 44V (Note 5)  
Input Voltage Range  
0.3  
44  
V
CMRR  
Common Mode Rejection Ratio  
V
V
= 0.3V to V – 1V  
= 0.3V to 44V  
76  
72  
dB  
dB  
CM  
CM  
CC  
A
Large-Signal Voltage Gain  
V = 3V, V = 500mV to 2.5V, R = 10k  
200  
20  
1500  
1500  
V/mV  
V/mV  
VOL  
S
O
L
V = 5V, V = 500mV to 4.5V, R = 10k  
400  
35  
V/mV  
V/mV  
S
O
L
V
V
Output Voltage Swing Low  
Output Voltage Swing High  
No Load  
15  
900  
1500  
mV  
mV  
mV  
OL  
OH  
I
= 5mA  
SINK  
V = 5V, I  
S
= 10mA  
SINK  
V = 3V, No Load  
2.9  
2
V
V
S
V = 3V, I  
S
= 5mA  
SOURCE  
V = 5V, No Load  
4.9  
3.5  
V
V
S
V = 5V, I  
= 10mA  
S
SOURCE  
PSRR  
Power Supply Rejection Ratio  
Minimum Supply Voltage  
Reverse Supply Voltage  
V = 3V to 12.5V, V = V = 1V  
80  
2.7  
18  
dB  
V
S
CM  
O
I = 100μA  
S
V
I
Supply Current  
(Note 6)  
170  
1075  
0.38  
230  
450  
μA  
μA  
kHz  
kHz  
S
GBW  
SR  
Gain Bandwidth Product  
(Note 5)  
f = 5kHz  
650  
350  
Slew Rate  
(Note 7)  
A = 1, R = ∞  
V
0.21  
0.1  
V/μs  
V/μs  
L
16389fd  
5
LT1638/LT1639  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating temperature range of –40°C TA 125°C, otherwise  
specifications are at TA = 25°C. VS = 15V, VCM = 0V, VOUT = 0V, VSHDN = Vunless otherwise specified. (Note 4)  
LT1638H/LT1639H  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
LT1638S8  
250  
850  
3.4  
μV  
mV  
OS  
LT1639S  
350  
950  
3.6  
μV  
mV  
Input Offset Voltage Drift (Note 9)  
Input Offset Current  
15  
25  
μV/°C  
nA  
I
I
OS  
B
Input Bias Current  
250  
nA  
CMRR  
Common Mode Rejection Ratio  
Large-Signal Voltage Gain  
V
= –14.7V to 29V  
72  
dB  
CM  
A
V = 14V, R = 10k  
200  
15  
500  
V/mV  
V/mV  
VOL  
O
L
V
Output Voltage Swing  
No Load  
14.8  
14  
13.4  
V
V
V
O
I
I
=
=
5mA  
10mA  
OUT  
OUT  
PSRR  
Power Supply Rejection Ratio  
Minimum Supply Voltage  
Supply Current  
V = 1.5V to 22V  
84  
dB  
V
S
1.35  
I
205  
1200  
0.4  
280  
550  
μA  
μA  
kHz  
kHz  
S
GBW  
SR  
Gain Bandwidth Product  
Slew Rate  
f = 5kHz  
750  
400  
A = 1, R = , V = 10V,  
0.225  
0.1  
V/μs  
V/μs  
V
L
O
Measure at V = 5V  
O
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 5: V = 5V limits are guaranteed by correlation to V = 3V and  
S
S
V = 15V or V = 22V tests.  
S
S
Note 6: V = 3V limits are guaranteed by correlation to V = 5V and  
S
S
V = 15V or V = 22V tests.  
S
S
Note 2: A heat sink may be required to keep the junction temperature  
below absolute maximum. This depends on the power supply voltage  
and how many amplifiers are shorted.  
Note 3: The LT1638C/LT1639C and LT1638I/LT1639I are guaranteed  
functional over the operating temperature range of –40°C to 85°C. The  
LT1638H/LT1639H are guaranteed functional over the operating  
temperature range of 40°C to 125°C.  
Note 4: The LT1638C/LT1639C are guaranteed to meet specified  
performance from 0°C to 70°C and are designed, characterized and  
expected to meet specified performance from –40°C to 85°C but not  
tested or QA sampled at these temperatures. The LT1638I/LT1639I are  
guaranteed to meet specified performance from –40°C to 85°C. The  
LT1638H/LT1639H are guaranteed to meet specified performance from  
–40°C to 125°C.  
Note 7: Guaranteed by correlation to slew rate at V = 15V, and GBW at  
S
V = 3V and V = 15V tests.  
S
S
Note 8: This specification implies a typical input offset voltage of 2mV at  
= 44V and a maximum input offset voltage of 5mV at V = 44V.  
V
CM  
CM  
Note 9: This parameter is not 100% tested.  
Note 10: The θ specified for the DD package is with minimal PCB heat  
JA  
spreading metal. Using expanded metal area on all layers of a board  
reduces this value.  
16389fd  
6
LT1638/LT1639  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Input Bias Current vs  
Common Mode Voltage  
Supply Current vs Supply Voltage  
Minimum Supply Voltage  
400  
300  
300  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
10000  
8000  
6000  
V
S
= 5V, 0V  
T
= 125°C  
A
200  
100  
T
= 25°C  
A
T
= –55°C  
A
60  
40  
0
T
= 25°C  
A
–100  
T
= –55°C  
20  
A
T
A
= –55°C  
T
= 125°C  
T
A
= 125°C  
A
–200  
–300  
T
= 25°C  
0
A
–20  
–40  
400  
0
1
2
3
4
5
0
5
10 15 20 25 30 35 40 45  
SUPPLY VOLTAGE (V)  
4.0  
4.4  
4.8  
5.2  
5.6  
44  
TOTAL SUPPLY VOLTAGE (V)  
COMMON MODE VOLTAGE (V)  
1638/39 G02  
1638/39 G01  
1638/39 G03  
Output Saturation Voltage vs  
Load Current (Output High)  
Output Saturation Voltage vs  
Load Current (Output Low)  
Output Saturation Voltage vs  
Input Overdrive  
1
1
100  
10  
1
V
=
2.5V  
V
V
=
OD  
2.5V  
= 30mV  
V
V
=
S
OD  
2.5V  
= 30mV  
S
S
NO LOAD  
T
= 125°C  
OUTPUT HIGH  
A
0.1  
T
= 125°C  
A
T
= 25°C  
A
T
= 25°C  
0.1  
A
0.01  
OUTPUT LOW  
T
= –55°C  
A
T
= –55°C  
A
0.01  
0.001  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
10 20  
40  
60 70 80  
100  
90  
0
30  
50  
SOURCING LOAD CURRENT (mA)  
SINKING LOAD CURRENT (mA)  
INPUT OVERDRIVE (mV)  
1638/39 G04  
1638/39 G05  
1638/39 G06  
Noise Voltage Density vs  
Frequency  
Input Noise Current Density  
vs Frequency  
0.1Hz to 10Hz Noise Voltage  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
70  
60  
50  
40  
30  
20  
10  
0
V
= 2.5  
S
0
1
2
3
4
5
6
7
8
9
10  
1
10  
100  
1k  
1
10  
100  
1k  
TIME (SEC)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1638/39 G08  
1638/39 G09  
1638/39 G07  
16389fd  
7
LT1638/LT1639  
TYPICAL PERFORMANCE CHARACTERISTICS  
W
U
Gain and Phase Shift vs  
Frequency  
Gain Bandwidth Product vs  
Temperature  
Slew Rate vs Temperature  
100  
90  
80  
70  
60  
50  
40  
1500  
1400  
1300  
1200  
1100  
1000  
900  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
f = 1kHz  
V
= 2.5V  
S
RISING, V  
=
=
15V  
80  
S
PHASE  
70  
V
S
=
15V  
RISING, V  
2.5V  
S
60  
50  
30  
20  
GAIN  
40  
30  
20  
10  
0
FALLING, V  
=
2.5V  
S
10  
0
FALLING, V  
=
15V  
V
=
2.5V  
50  
S
S
–10  
–20  
800  
1
10  
100  
1000  
–50  
0
25  
50  
75 100 125  
–50  
0
25  
75 100 125  
–25  
–25  
FREQUENCY (kHz)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1638/39 G12  
1638/39 G13  
1638/39 G14  
Gain Bandwidth Product and  
Phase Margin vs Supply Voltage  
Gain Bandwidth Product and  
Phase Margin vs Load Resistance  
PSRR vs Frequency  
1500  
1400  
1300  
1200  
1100  
1000  
60  
50  
40  
30  
20  
10  
1500  
1400  
1300  
1200  
1100  
1000  
900  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
A
=
2.5V  
= –1  
= R = 100k  
V
=
2.5V  
S
V
F
S
R
G
f = 1kHz  
PHASE MARGIN  
PHASE MARGIN  
POSITIVE SUPPLY  
GAIN BANDWIDTH  
NEGATIVE SUPPLY  
GAIN BANDWIDTH  
PRODUCT  
800  
–10  
100  
–10  
1
10  
LOAD RESISTANCE (kΩ)  
0
5
10 15 20 25 30  
35 40  
TOTAL SUPPLY VOLTAGE (V)  
45  
1
10  
100  
1000  
FREQUENCY (kHz)  
1638/39 G17  
1638/39 G16  
1638/39 G15  
CMRR vs Frequency  
Channel Separation vs Frequency  
Output Impedance vs Frequency  
120  
110  
100  
90  
130  
120  
110  
100  
90  
10k  
1k  
V
S
= 15V  
V
=
2.5V  
V
S
= 15V  
S
A
= 10  
V
80  
100  
10  
A
= 100  
V
70  
60  
50  
A
= 1  
V
80  
40  
1
70  
30  
60  
0.1  
20  
0.1  
0.1  
1
10  
100  
1000  
1
10  
100  
1
10  
FREQUENCY (kHz)  
100  
1000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1638/39 G20  
1638/39 G18  
1638/39 G19  
16389fd  
8
LT1638/LT1639  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Settling Time to 0.1% vs  
Output Step  
Capacitive Load Handling,  
Undistorted Output Swing  
vs Frequency  
Overshoot vs Capacitive Load  
10  
8
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
35  
30  
25  
20  
15  
10  
5
V
= 15V  
V
V
= 5V, 0V  
DISTORTION 1%  
R = 20k  
L
S
S
V
=
15V  
S
= 2.5V  
CM  
A
= 1  
V
I
= 150μA  
SOURCE  
6
A
= –1  
V
4
2
0
A
V
= 5  
A
V
= 1  
–2  
–4  
–6  
–8  
–10  
A
= 10  
A
= –1  
25  
V
V
V
=
2.5V  
1
S
A
= 1  
V
0
0
20  
30  
35  
10  
100  
1000  
10000  
5
10  
15  
0.1  
10  
100  
CAPACITIVE LOAD (pF)  
SETTLING TIME (μs)  
FREQUENCY (kHz)  
1638/39 G22  
1638/39 G23  
1638/39 G21  
Total Harmonic Distortion + Noise  
vs Frequency  
Total Harmonic Distortion + Noise  
vs Load Resistance  
Total Harmonic Distortion + Noise  
vs Output Voltage  
10  
1
10  
1
10  
1
V
A
V
= 3V TOTAL  
= 1  
R
CM  
= 10k, f = 1kHz  
V
V
V
= 3V, 0V  
S
V
L
S
V
= HALF SUPPLY  
= 2V  
OUT  
P-P  
= 2V AT 1kHz  
A
V
A
V
A
V
A
V
= –1, V =  
1.5V  
= –1, V = 3V, 0V  
= 1.2V  
IN  
P-P  
S
CM  
R
= 20k  
S
L
= 1, V  
= 1.5V  
S
= 1, V = 3V, 0V  
V
V
=
IN  
1.5V  
1V  
S
S
=
0.1  
0.1  
0.1  
V
V
= 3V, 0V  
IN  
S
= 0.5V TO 2.5V  
0.01  
0.001  
0.01  
0.01  
A
= –1  
= 1  
V
V
V
= 3V, 0V  
= 0.2V TO 2.2V  
A
S
IN  
V
0.001  
0.001  
0
1
2
3
0.01  
0.1  
1
10  
100  
0.1  
1
10  
100  
OUTPUT VOLTAGE (V  
P-P  
)
FREQUENCY (Hz)  
LOAD RESISTANCE TO GROUND (kΩ)  
1638/39 G26  
1638/39 G24  
1638/39 G25  
Open-Loop Gain  
Large-Signal Response  
Small-Signal Response  
V
=
15V  
S
R
= 2k  
L
R
= 10k  
L
R
= 50k  
L
VS  
=
15V  
VS  
V = 1  
CL = 15pF  
=
15V  
1638/39 G29  
1638/39 G28  
A
V = 1  
A
–20V  
–10V  
0V  
10V  
20V  
OUTPUT VOLTAGE (5V/DIV)  
1638/39 G27  
16389fd  
9
LT1638/LT1639  
U
W U U  
APPLICATIONS INFORMATION  
Supply Voltage  
The inputs are protected against excursions of 2V below  
Vby an internal 1k resistor in series with each input and  
a diode from the input to the negative supply. If the inputs  
can go more than 2V below V, an additional external  
resistor is required. A 10k resistor will protect the input  
against excursions as much as 10V below V. The input  
stage of the LT1638/LT1639 incorporates phase reversal  
protection to prevent the output from phase reversing for  
inputs below V. There are no clamping diodes between  
the inputs and the maximum differential input voltage is  
44V.  
The positive supply pin of the LT1638/LT1639 should be  
bypassedwithasmallcapacitor(typically0.1μF)withinan  
inch of the pin. When driving heavy loads an additional  
4.7μF electrolytic capacitor should be used. When using  
split supplies, the same is true for the negative supply pin.  
The LT1638/LT1639 are protected against reverse battery  
voltagesupto18V. Intheeventareversebatterycondition  
occurs, the supply current is less than 1nA.  
The LT1638/LT1639 can be shut down by removing V+. In  
this condition the input bias current is less than 0.1nA,  
even if the inputs are 44V above the negative supply.  
Output  
The output of the LT1638/LT1639 can swing within 20mV  
of the positive rail with no load, and within 3mV of the  
negative rail with no load. When monitoring voltages  
within 20mV of the positive rail or within 3mV of the  
negative rail, gain should be taken to keep the output from  
clipping. The LT1638/LT1639 are capable of sinking and  
sourcing over 40mA on 15V supplies; sourcing current  
capability is reduced to 20mA at 5V total supplies as noted  
in the electrical characteristics.  
At temperatures greater than 70°C, when operating the  
LT1638/LT1639 on total supplies of 10V or more, the  
supply must not be brought up faster than 1V/μs. Increas-  
ing the bypass capacitor and/or adding a small resistor in  
series with the supply will limit the rise time.  
Inputs  
The LT1638/LT1639 have two input stages, NPN and PNP  
(see the Simplified Schematic), resulting in three distinct  
operating regions as shown in the Input Bias Current vs  
Common Mode typical performance curve.  
For input voltages about 0.8V or more below V+, the PNP  
input stage is active and the input bias current is typically  
20nA. When the input common mode voltage is within  
0.5Vofthepositiverail, theNPNstageisoperatingandthe  
input bias current is typically 40nA. Increases in tempera-  
ture will cause the voltage at which operation switches  
from the PNP input stage to the NPN input stage to move  
towards V+. The input offset voltage of the NPN stage is  
untrimmed and is typically 600μV.  
The LT1638/LT1639 are internally compensated to drive  
at least 200pF of capacitance under any output loading  
conditions. A 0.22μF capacitor in series with a 150Ω  
resistor between the output and ground will compensate  
these amplifiers for larger capacitive loads, up to 1000pF,  
at all output currents.  
Optional Output Compensation for  
Capacitive Loads Greater than 200pF  
V
+
IN  
LT1638  
1000pF  
A Schottky diode in the collector of each NPN transistor  
allow the LT1638/LT1639 to operate over the top, with  
either or both of its inputs above V+. At about 0.3V above  
V+ the NPN input transistor is fully saturated and the input  
bias current is typically 8μA at room temperature. The  
inputoffsetvoltageistypically2mVwhenoperatingabove  
V+. The LT1638/LT1639 will operate with its inputs 44V  
above Vregardless of V+.  
0.22μF  
150Ω  
Distortion  
There are two main contributors of distortion in op amps:  
output crossover distortion as the output transitions from  
sourcing to sinking current and distortion caused by  
16389fd  
10  
LT1638/LT1639  
U
W U U  
APPLICATIONS INFORMATION  
nonlinear common mode rejection. If the op amp is oper-  
ating inverting there is no common mode induced distor-  
tion. If the op amp is operating in the PNP input stage  
(input is not within 0.8V of V+), the CMRR is very good,  
typically 98dB. When the LT1638 switches between input  
stagesthereissignificantnonlinearityintheCMRR.Lower  
load resistance increases the output crossover distortion,  
but has no effect on the input stage transition distortion.  
For lowest distortion the LT1638/LT1639 should be oper-  
ated single supply, with the output always sourcing  
current and with the input voltage swing between ground  
and (V+ – 0.8V). See the Typical Performance Character-  
istics curves.  
Gain  
The open-loop gain is almost independent of load when  
the output is sourcing current. This optimizes perfor-  
mance in single supply applications where the load is  
returned to ground. The typical performance curve of  
Open-Loop Gain for various loads shows the details.  
U
V
CC  
TYPICAL APPLICATIONS  
R5  
With 1.2MHz bandwidth, Over-The-Top capability, re-  
verse-battery protection and rail-to-rail input and output  
features, the LT1638/LT1639 are ideal candidates for  
general purpose applications.  
100k  
+
1/4 LT1639  
LT1634-1.2V  
D1  
D2  
R3  
100k  
The lowpass slope limiting filter in Figure 1 limits the  
maximum dV/dT (not frequency) that it passes. When the  
input signal differs from the output by one forward diode  
drop, D1 or D2 will turn on. With a diode on, the voltage  
across R2 will be constant and a fixed current, VDIODE/R2,  
will flow through capacitor C1, charging it linearly instead  
of exponentially. The maximum slope that the circuit will  
pass is equal to VDIODE divided by (R2)(C1). No matter  
how fast the input changes the output will never change  
any faster than the dV/dT set by the diodes and (R2)(C).  
R1  
1k  
V
1/4 LT1639  
OUT  
R2  
V
+
IN  
C1  
R4  
100k  
LT1634-1.2V  
D4  
D3  
+
1/4 LT1639  
FOR R2 = 50k, C1 = 500pF,  
MAXIMUM SLOPE = 0.048V/μs  
D1  
R6  
100k  
d
dt  
1.2V  
V
=
OUT  
D2  
(R2)(C1)  
1638/39 F02  
D1 TO D4 = IN4148  
V
EE  
R1  
R2  
V
IN  
+
Response of Slope Limiting Filter  
C1  
V
d
V
D
1/2 LT1638  
OUT  
V
=
OUT(MAX)  
dt  
(R2)(C1)  
FOR R1 = 10k, R2 = 100k, C1 = 1000pF  
d
1638/39 F01  
V
= 0.006V/μs  
OUT(MAX)  
dt  
VOUT  
Figure 1. Lowpass Slope Limiting Filter  
A modification of this application is shown in Figure 2  
using references instead of diodes to set the maximum  
slope. By using references, the slope is independent of  
temperature. A scope photo shows a 1VP-P, 2kHz input  
signal with a 2V pulse added to the sine wave; the circuit  
passes the 2kHz signal but limits the slope of the pulse.  
VIN  
1638/39 TA02  
Figure 2. Lowpass Slope Limiting Filter with 0 TC  
16389fd  
11  
LT1638/LT1639  
U
TYPICAL APPLICATIONS  
The Figure 4 application uses the LT1638 in conjunction  
with the LT1634 micropower shunt reference. The supply  
current of the op amp also biases the reference. The drop  
across resistor R1 is fixed at 1.2V generating an output  
current equal to 1.2V/R1.  
The application in Figure 3 utilizes the Over-The-Top  
capabilities of the LT1638. The 0.2Ω resistor senses the  
load current while the op amp and NPN transistor form a  
closed loop making the collector current of Q1  
proportional to the load current. As a convenient monitor,  
the2kloadresistorconvertsthecurrentintoavoltage.The  
positive supply rail, V+, is not limited to the 5V supply of  
the op amp and could be as high as 44V.  
+
V
200Ω  
V
CC  
V
CC  
R1  
LT1634-1.2  
5V  
0.2Ω  
+
Q1  
1/2 LT1638  
2N3904  
+
200Ω  
1.2V  
R1  
0V TO 4.3V  
1/2 LT1638  
I
=
OUT  
2k  
I
LOAD  
LOAD  
I
OUT  
1638/39 F03  
V
= (2Ω)(I  
)
LOAD  
OUT  
1638/39 F04  
Figure 3. Positive Supply Rail Current Sense  
Figure 4. Current Source  
W
W
SI PLIFIED SCHE ATIC  
+
V
Q2  
Q1  
Q3  
Q22  
D1  
D2  
D3  
R1  
6k  
R2  
1k  
Q19  
Q4  
IN  
+IN  
Q17  
Q18  
Q20  
OUT  
Q7  
Q8  
Q11 Q12  
R3  
1k  
+
Q16  
10μA  
Q15  
Q9  
Q10  
Q13  
Q14  
Q21  
R4  
8k  
R5  
8k  
Q5  
Q6  
D4  
D5  
V
ONE AMPLIFIER  
1638/39 SS  
16389fd  
12  
LT1638/LT1639  
U
PACKAGE DESCRIPTION  
DD Package  
8-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698)  
R = 0.115  
0.38 0.10  
TYP  
5
8
0.675 0.05  
3.5 0.05  
2.15 0.05 (2 SIDES)  
1.65 0.05  
3.00 0.10  
(4 SIDES)  
1.65 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(NOTE 6)  
PACKAGE  
OUTLINE  
(DD) DFN 1203  
4
1
0.25 0.05  
0.75 0.05  
0.200 REF  
0.25 0.05  
0.50 BSC  
0.50  
BSC  
2.38 0.05  
(2 SIDES)  
2.38 0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON TOP AND BOTTOM OF PACKAGE  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1660)  
3.00 0.102  
0.52  
(.0205)  
REF  
(.118 .004)  
(NOTE 3)  
0.889 0.127  
(.035 .005)  
8
7 6  
5
3.00 0.102  
(.118 .004)  
(NOTE 4)  
5.23  
(.206)  
MIN  
4.90 0.152  
(.193 .006)  
3.20 – 3.45  
(.126 – .136)  
DETAIL “A”  
0° – 6° TYP  
0.254  
(.010)  
GAUGE PLANE  
0.65  
(.0256)  
BSC  
0.42 0.038  
(.0165 .0015)  
TYP  
1
2
3
4
0.53 0.152  
(.021 .006)  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
RECOMMENDED SOLDER PAD LAYOUT  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
NOTE:  
0.22 – 0.38  
(.009 – .015)  
TYP  
0.127 0.076  
(.005 .003)  
MSOP (MS8) 0204  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
0.65  
(.0256)  
BSC  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
16389fd  
13  
LT1638/LT1639  
U
PACKAGE DESCRIPTION  
N8 Package  
8-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510)  
.400*  
(10.160)  
MAX  
8
1
7
6
5
.130 .005  
.045 – .065  
.300 – .325  
(7.620 – 8.255)  
(3.302 0.127)  
(1.143 – 1.651)  
.255 .015*  
(6.477 0.381)  
.065  
(1.651)  
TYP  
2
4
3
.008 – .015  
(0.203 – 0.381)  
.120  
.020  
(0.508)  
MIN  
(3.048)  
MIN  
+.035  
–.015  
.325  
.018 .003  
(0.457 0.076)  
.100  
(2.54)  
BSC  
+0.889  
8.255  
(
)
N8 1002  
–0.381  
NOTE:  
INCHES  
1. DIMENSIONS ARE  
MILLIMETERS  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
NOTE 3  
.045 .005  
.050 BSC  
7
5
8
6
.245  
.160 .005  
MIN  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 .005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
×
45°  
.053 – .069  
(1.346 – 1.752)  
NOTE:  
1. DIMENSIONS IN  
INCHES  
(MILLIMETERS)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE  
MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL  
NOT EXCEED .006" (0.15mm)  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
SO8 0303  
16389fd  
14  
LT1638/LT1639  
U
PACKAGE DESCRIPTION  
N Package  
14-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510)  
.770*  
(19.558)  
MAX  
14  
13  
12  
11  
10  
9
8
.255 .015*  
(6.477 0.381)  
1
2
3
5
6
7
4
.300 – .325  
(7.620 – 8.255)  
.045 – .065  
(1.143 – 1.651)  
.130 .005  
(3.302 0.127)  
.020  
(0.508)  
MIN  
.065  
(1.651)  
TYP  
.008 – .015  
(0.203 – 0.381)  
+.035  
.325  
.005  
(0.127)  
MIN  
–.015  
.120  
(3.048)  
MIN  
.018 .003  
.100  
(2.54)  
BSC  
+0.889  
8.255  
(0.457 0.076)  
(
)
–0.381  
N14 1103  
NOTE:  
INCHES  
MILLIMETERS  
1. DIMENSIONS ARE  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
S Package  
14-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.337 – .344  
(8.560 – 8.738)  
NOTE 3  
.045 .005  
.050 BSC  
13  
12  
11  
10  
8
14  
N
9
N
1
.245  
MIN  
.160 .005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
2
3
N/2  
N/2  
7
.030 .005  
TYP  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
5
6
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
NOTE:  
1. DIMENSIONS IN  
INCHES  
(MILLIMETERS)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0° – 8° TYP  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE  
MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS  
SHALL NOT EXCEED .006" (0.15mm)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
.016 – .050  
(0.406 – 1.270)  
S14 0502  
16389fd  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT1638/LT1639  
U
TYPICAL APPLICATION  
The battery monitor in Figure 5 also demonstrates the  
LT1638’s ability to operate with its inputs above the  
positive rail. In this application, a conventional amplifier  
would be limited to a battery voltage between 5V and  
ground, but the LT1638 can handle battery voltages as  
high as 44V. When the battery is charging, Amp B senses  
the voltage drop across RS. The output of Amp B causes  
Q2 to drain sufficient current through RB to balance the  
input of Amp B. Likewise, Amp A and Q1 form a closed  
loopwhenthebatteryisdischarging. Thecurrentthrough  
Q1 or Q2 is proportional to the current in RS and this  
currentflowsintoRG andisconvertedintoavoltage. Amp  
D buffers and amplifies the voltage across RG. Amp C  
compares the output of Amp A and Amp B to determine  
the polarity of current through RS. The scale factor for  
V
OUT withS1openis1V/A. WithS1closedthescalefactor  
is 1V/100mA and currents as low as 500μA can be  
measured.  
R , 0.2Ω  
R , 2k  
S
A
Q1  
2N3904  
CHARGER  
VOLTAGE  
+
A
+
1/4 LT1639  
R 2k  
A',  
I
BATT  
C
LOGIC  
1/4 LT1639  
R , 2k  
B
Q2  
2N3904  
LOGIC HIGH (5V) = CHARGING  
+
LOGIC LOW (0V) = DISCHARGING  
B
1/4 LT1639  
R , 2k  
B'  
+
+
LOAD  
D
R
G
V
OUT  
1/4 LT1639  
V
BATT  
= 12V  
10k  
S1  
10k  
90.9k  
1638/39 F05  
V
V
OUT  
OUT  
(R )(R /R )(GAIN) GAIN  
S1 = OPEN, GAIN = 1  
S1 = CLOSED, GAIN = 10  
R
V
= R  
A
S
B
I
=
=
AMPS  
BATT  
= 5V, 0V  
S
G
A
Figure 5. Battery Monitor  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
Input/Output Common Mode Includes Ground, 70μV V  
and 2.5μV/°C Drift (Max), 200kHz GBW, 0.07V/μs Slew Rate  
LT1078/LT1079  
LT2078/LT2079  
Dual/Quad 55μA Max, Single Supply, Precision Op Amps  
Dual/Quad 17μA Max, Single Supply, Precison Op Amps  
Dual/Quad Precision, Rail-to-Rail Input and Output Op Amps  
OS(MAX)  
LT1178/LT1179  
LT2178/LT2179  
Input/Output Common Mode Includes Ground, 70μV V  
OS(MAX)  
and 4μV/°C Drift (Max), 85kHz GBW, 0.04V/μs Slew Rate  
475μV V , 500V/mV A , 400kHz GBW  
LT1366/LT1367  
LT1490/LT1491  
OS(MAX)  
VOL(MIN)  
Dual/Quad Over-The-Top Micropower, Rail-to-Rail Input and  
Output Op Amps  
Single Supply Input Range: 0.4V to 44V, Micropower 50μA  
per Amplifier, Rail-to-Rail Input and Output, 200kHz GBW  
LT1636  
Single Over-The-Top Micropower Rail-to-Rail Input and Output  
Op Amp  
55μA Supply Current, V  
Extends 44V above V ,  
CM EE  
Independent of V ; MSOP Package, Shutdown Function  
CC  
16389fd  
LT 0707 REV D • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 1998  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT1638CS8#TRPBF

LT1638 - 1.2MHz, 0.4V/µs Over-The-Top Micropower Rail-to-Rail Input and Output Op Amps; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LT1638HS8

1.2MHz, 0.4V/μs Over-The-Top Micropower Rail-to-Rail Input and Output Op Amps
Linear

LT1638HS8#PBF

LT1638 - 1.2MHz, 0.4V/µs Over-The-Top Micropower Rail-to-Rail Input and Output Op Amps; Package: SO; Pins: 8; Temperature Range: -40°C to 125°C
Linear

LT1638HS8#TR

LT1638 - 1.2MHz, 0.4V/µs Over-The-Top Micropower Rail-to-Rail Input and Output Op Amps; Package: SO; Pins: 8; Temperature Range: -40°C to 125°C
Linear

LT1638HS8#TRPBF

LT1638 - 1.2MHz, 0.4V/µs Over-The-Top Micropower Rail-to-Rail Input and Output Op Amps; Package: SO; Pins: 8; Temperature Range: -40°C to 125°C
Linear

LT1638IDD

1.2MHz, 0.4V/μs Over-The-Top Micropower Rail-to-Rail Input and Output Op Amps
Linear

LT1638IDD#TRPBF

LT1638 - 1.2MHz, 0.4V/µs Over-The-Top Micropower Rail-to-Rail Input and Output Op Amps; Package: DFN; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LT1638IMS8

1.2MHz, 0.4V/μs Over-The-Top Micropower Rail-to-Rail Input and Output Op Amps
Linear

LT1638IMS8#PBF

LT1638 - 1.2MHz, 0.4V/µs Over-The-Top Micropower Rail-to-Rail Input and Output Op Amps; Package: MSOP; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LT1638IMS8#TR

LT1638 - 1.2MHz, 0.4V/µs Over-The-Top Micropower Rail-to-Rail Input and Output Op Amps; Package: MSOP; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LT1638IMS8#TRPBF

LT1638 - 1.2MHz, 0.4V/µs Over-The-Top Micropower Rail-to-Rail Input and Output Op Amps; Package: MSOP; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LT1638IN8

1.2MHz, 0.4V/us Over-The-TopTM Micropower Rail-to-Rail Input and Output Op Amps
Linear