LT1640AHIN8#PBF [Linear]

暂无描述;
LT1640AHIN8#PBF
型号: LT1640AHIN8#PBF
厂家: Linear    Linear
描述:

暂无描述

控制器
文件: 总16页 (文件大小:317K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1640AL/LT1640AH  
Negative Voltage  
Hot Swap Controller  
U
FEATURES  
DESCRIPTIO  
The LT®1640AL/LT1640AH are 8-pin, negative voltage  
Hot SwapTM controllers that allow a board to be safely  
inserted and removed from a live backplane. Inrush cur-  
rent is limited to a programmable value by controlling the  
gate voltage of an external N-channel pass transistor. The  
pass transistor is turned off if the input voltage is less than  
the programmable undervoltage threshold or greater than  
the overvoltage threshold. A programmable electronic  
circuit breaker protects the system against shorts. The  
PWRGD (LT1640AL) or PWRGD (LT1640AH) signal can  
be used to directly enable a power module. The LT1640AL  
is designed for modules with a low enable input and the  
LT1640AH for modules with a high enable input.  
Allows Safe Board Insertion and Removal  
from a Live 48V Backplane  
Operates from –10V to 80V  
Programmable Inrush Current  
Allows 50mA of Reverse Drain Pin Current  
Programmable Electronic Circuit Breaker  
Programmable Overvoltage Protection  
Programmable Undervoltage Lockout  
Power Good Control Output  
U
APPLICATIO S  
Central Office Switching  
48V Distributed Power Systems  
The LT1640AL/LT1640AH are available in 8-pin PDIP and  
SO packages.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Hot Swap is a trademark of Linear Technology Corporation.  
Negative Power Supply Control  
U
TYPICAL APPLICATIO  
(SHORT PIN)  
GND  
Input Inrush Current  
GND  
R4†  
8
562k  
V
DD  
CONTACT  
BOUNCE  
1%  
3
2
UV = 37V  
OV = 71V  
UV  
OV  
R5†  
9.09k  
1%  
1
LT1640AL  
PWRGD  
R6†  
10k  
1%  
V
SENSE  
5
GATE  
6
DRAIN  
7
EE  
4
*
C1†  
150nF  
25V  
R3†  
18k  
5%  
R2  
10Ω  
5%  
C2†  
3.3nF  
100V  
R1†  
0.02Ω  
5%  
3
4
48V  
2
1
2
Q1  
IRF530  
ON/OFF  
1
9
8
+
+
+
5V  
V
V
V
IN  
OUT  
SENSE  
* DIODES INC. SMAT70A  
C3  
+
C4  
+
C5  
THESE COMPONENTS ARE APPLICATION  
SPECIFIC AND MUST BE SELECTED BASED  
7
6
5
0.1µF  
100µF  
TRIM  
100µF  
16V  
100V  
100V  
UPON OPERATING CONDITIONS AND DESIRED  
PERFORMANCE. SEE APPLICATIONS  
INFORMATION.  
SENSE  
4
V
IN  
OUT  
1640A F07b  
1640A TA01  
LUCENT  
JW050A1-E  
1
LT1640AL/LT1640AH  
W W  
U W  
ABSOLUTE MAXIMUM RATINGS  
(Note 1), All Voltages Referred to VEE  
Supply Voltage (VDD – VEE) .................... 0.3V to 100V  
PWRGD, PWRGD Pins ........................... 0.3V to 100V  
DRAIN Pin ................................................. 2V to 100V  
SENSE, GATE Pins.................................... 0.3V to 20V  
UV, OV Pins .............................................. 0.3V to 60V  
Maximum Junction Temperature ......................... 125°C  
Operating Temperature Range  
LT1640ALC/LT1640AHC ........................ 0°C to 70°C  
LT1640ALI/LT1640AHI...................... 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
W
U
/O  
PACKAGE RDER I FOR ATIO  
ORDER PART  
ORDER PART  
NUMBER  
NUMBER  
TOP VIEW  
TOP VIEW  
PWRGD  
OV  
1
2
3
4
8
7
6
5
V
DD  
PWRGD  
OV  
1
2
3
4
8
7
6
5
V
DD  
LT1640ALCN8  
LT1640ALCS8  
LT1640ALIN8  
LT1640ALIS8  
LT1640AHCN8  
LT1640AHCS8  
LT1640AHIN8  
LT1640AHIS8  
DRAIN  
GATE  
DRAIN  
GATE  
UV  
UV  
V
SENSE  
V
SENSE  
EE  
EE  
N8 PACKAGE  
8-LEAD PDIP  
S8 PACKAGE  
N8 PACKAGE  
8-LEAD PDIP  
S8 PACKAGE  
8-LEAD PLASTIC SO  
8-LEAD PLASTIC SO  
S8 PART MARKING  
S8 PART MARKING  
TJMAX = 125°C, θJA = 120°C/W (N8)  
JMAX = 125°C, θJA = 150°C/W (S8)  
TJMAX = 125°C, θJA = 120°C/W (N8)  
TJMAX = 125°C, θJA = 150°C/W (S8)  
T
1640AL  
640ALI  
1640AH  
640AHI  
Consult factory for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 2), VDD = 48V, VEE = 0V unless otherwise noted.  
SYMBOL PARAMETER  
DC  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Supply Operating Range  
Supply Current  
10  
80  
5
V
mA  
mV  
µA  
DD  
I
UV = 3V, OV = V , SENSE = V  
EE  
1.3  
50  
DD  
EE  
V
Circuit Breaker Trip Voltage  
GATE Pin Pull-Up Current  
GATE Pin Pull-Down Current  
SENSE Pin Current  
V
= (V  
– V )  
40  
30  
24  
60  
60  
70  
CB  
CB  
SENSE  
EE  
I
I
I
Gate Drive On, V  
= V  
EE  
45  
50  
PU  
GATE  
Any Fault Condition  
= 50mV  
mA  
µA  
PD  
V
20  
SENSE  
SENSE  
V  
GATE  
External Gate Drive  
(V  
GATE  
(V  
GATE  
– V ), 15V V 80V  
10  
6
13.5  
8
18  
15  
V
V
EE  
DD  
– V ), 10V V < 15V  
EE  
DD  
V
V
V
UV Pin High Threshold Voltage  
UV Pin Low Threshold Voltage  
UV Pin Hysteresis  
UV Low to High Transition  
UV High to Low Transition  
1.213  
1.198  
1.243  
1.223  
20  
1.272  
1.247  
V
V
UVH  
UVL  
UVHY  
INUV  
mV  
µA  
V
I
UV Pin Input Current  
V
= V  
0.02  
1.223  
1.203  
20  
0.5  
1.247  
1.232  
UV  
EE  
V
V
V
OV Pin High Threshold Voltage  
OV Pin Low Threshold Voltage  
OV Pin Hysteresis  
OV Low to High Transition  
OV High to Low Transition  
1.198  
1.165  
OVH  
OVL  
V
mV  
µA  
OVHY  
INOV  
I
OV Pin Input Current  
V
= V  
–0.03  
0.5  
OV  
EE  
2
LT1640AL/LT1640AH  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 2), VDD = 48V, VEE = 0V unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
1.4  
0.4  
50  
MAX  
UNITS  
V
V
Power Good Threshold  
V
– V , High to Low Transition  
1.1  
2.0  
V
V
PG  
DRAIN  
DRAIN  
EE  
Power Good Threshold Hysteresis  
Drain Input Bias Current  
PGHY  
DRAIN  
I
V
= 48V  
10  
500  
µA  
V
PWRGD Output Low Voltage  
PWRGD (LT1640AL), (V  
– V ) < V  
OL  
DRAIN  
EE  
PG  
I
I
= 1mA  
= 5mA  
0.48  
1.50  
0.8  
3.0  
V
V
OUT  
OUT  
PWRGD Output Low Voltage  
(PWRGD – DRAIN)  
PWRGD (LT1640AH), V  
= 5V  
DRAIN  
I
= 1mA  
0.75  
0.05  
1.0  
10  
V
OUT  
I
Output Leakage  
PWRGD (LT1640AL), V  
= 80V  
=48V,  
µA  
OH  
DRAIN  
V
PWRGD  
R
Power Good Output Impedance  
(PWRGD to DRAIN)  
PWRGD (LT1640AH), (V  
– V ) < V  
PG  
2
2
6.5  
kΩ  
OUT  
DRAIN  
EE  
AC  
t
t
t
t
t
t
OV High to GATE Low  
UV Low to GATE Low  
OV Low to GATE High  
UV High to GATE High  
SENSE High to Gate Low  
Figures 1, 2  
Figures 1, 3  
Figures 1, 2  
Figures 1, 3  
Figures 1, 4  
1.7  
1.5  
5.5  
6.5  
3
µs  
µs  
µs  
µs  
µs  
PHLOV  
PHLUV  
PLHOV  
PLHUV  
PHLSENSE  
PHLPG  
4
DRAIN Low to PWRGD Low  
DRAIN Low to (PWRGD – DRAIN) High  
(LT1640AL) Figures 1, 5  
(LT1640AH) Figures 1, 5  
0.5  
0.5  
µs  
µs  
t
DRAIN High to PWRGD High  
DRAIN High to (PWRGD – DRAIN) Low  
(LT1640AL) Figures 1, 5  
(LT1640AH) Figures 1, 5  
0.5  
0.5  
µs  
µs  
PLHPG  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: All currents into device pins are positive; all currents out of device  
pins are negative. All voltages are referenced to V unless otherwise  
EE  
specified.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Supply Current vs Supply Voltage  
Supply Current vs Temperature  
Gate Voltage vs Supply Voltage  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
15  
14  
13  
12  
11  
10  
9
1.8  
1.7  
1.6  
1.5  
V
= 48V  
T
= 25°C  
DD  
T
= 25°C  
A
A
1.4  
1.3  
1.2  
1.1  
0
8
7
6
50 25  
0
25  
50  
75  
100  
20  
40  
SUPPLY VOLTAGE (V)  
80  
0
20  
60  
SUPPLY VOLTAGE (V)  
80  
100  
0
100  
40  
60  
TEMPERATURE (°C)  
1640A G02  
1640A G03  
1640A G01  
3
LT1640AL/LT1640AH  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Circuit Breaker Trip Voltage  
Gate Pull-Up Current  
vs Temperature  
Gate Voltage vs Temperature  
vs Temperature  
15.0  
14.5  
48  
47  
46  
45  
44  
43  
42  
41  
40  
55  
54  
V
= 48V  
DD  
V
= 0V  
GATE  
53  
14.0  
13.5  
52  
51  
50  
49  
13.0  
12.5  
12.0  
48  
50 25  
0
25  
50  
75  
100  
50  
0
25  
50  
75  
100  
25  
75  
50  
25  
0
25  
50  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1640A G04  
1640A G05  
1640A G06  
Gate Pull-Down Current  
vs Temperature  
PWRGD Output Impedance  
vs Temperature (LT1640AH)  
PWRGD Output Low Voltage  
vs Temperature (LT1640AL)  
8
7
55  
52  
49  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
– V > 2.4V  
EE  
V
= 2V  
I
= 1mA  
DRAIN  
GATE  
OUT  
6
5
46  
43  
40  
4
3
2
50 25  
0
25  
50  
75  
100  
50 25  
0
25  
50  
75  
100  
50 25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1640A G09  
1640A G07  
1640A G08  
U
U
U
PI FU CTIO S  
PWRGD/PWRGD(Pin1):PowerGoodOutputPin.Thispin  
will toggle when VDRAIN is within VPG of VEE. This pin can  
be connected directly to the enable pin of a power module.  
When the DRAIN pin of the LT1640AH is above VEE by  
more than VPG, the PWRGD pin will sink current to the  
DRAIN pin which pulls the module’s enable pin low,  
forcing it off. When VDRAIN drops below VPG, the PWRGD  
sink current is turned off and a 6.5k resistor is connected  
between PWRGD and DRAIN, allowing the module’s pull-  
up current to pull the enable pin high and turn on the  
module.  
When the DRAIN pin of the LT1640AL is above VEE by  
more than VPG, the PWRGD pin will be high impedance,  
allowing the pull-up current of the module’s enable pin to  
pull the pin high and turn the module off. When VDRAIN  
drops below VPG, the PWRGD pin sinks current to VEE,  
pulling the enable pin low and turning on the module.  
4
LT1640AL/LT1640AH  
U
U
U
PIN FUNCTIONS  
OV (Pin 2): Analog Overvoltage Input. When OV is pulled If the circuit breaker trip current is set to twice the normal  
above the 1.223V low-to-high threshold, an overvoltage operating current, only 25mV is dropped across the  
conditionisdetectedandtheGATEpinwillbeimmediately sense resistor during normal operation. To disable the  
pulled low. The GATE pin will remain low until OV drops circuit breaker, VEE and SENSE can be shorted together.  
below the 1.203V high-to-low threshold.  
GATE (Pin 6): Gate Drive Output for the External  
UV (Pin 3): Analog Undervoltage Input. When UV is N-Channel. The GATE pin will go high when the following  
pulled below the 1.223V high to low threshold, an under- start-upconditionsaremet:theUVpinishigh, theOVpin  
voltage condition is detected and the GATE pin will be is low and (VSENSE – VEE) < 50mV. The GATE pin is pulled  
immediately pulled low. The GATE pin will remain low high by a 45µA current source and pulled low with a  
until UV rises above the 1.243 low-to-high threshold.  
50mA current source.  
The UV pin is also used to reset the electronic circuit DRAIN (Pin 7): Analog Drain Sense Input. Connect this  
breaker. If the UV pin is cycled low and high following the pin to the drain of the external N-channel and the Vpin  
trip of the circuit breaker, the circuit breaker is reset and of the power module. When the DRAIN pin is below VPG,  
a normal power-up sequence will occur.  
the PWRGD or PWRGD pin will toggle. In some condi-  
tions, the DRAIN pin is pulled below VEE. The part is not  
damaged if the reverse DRAIN pin current is limited to  
50mA.  
VEE (Pin 4): Negative Supply Voltage Input. Connect to  
the lower potential of the power supply.  
SENSE (Pin 5): Circuit Breaker Sense Pin. With a sense  
resistor placed in the supply path between VEE and  
SENSE, the circuit breaker will trip when the voltage  
across the resistor exceeds 50mV. Noise spikes of less  
than 2µs are filtered out and will not trip the circuit  
breaker.  
VDD (Pin 8): Positive Supply Voltage Input. Connect this  
pin to the higher potential of the power supply inputs and  
the V+ pin of the power module. The input supply voltage  
ranges from 10V to 80V.  
W
BLOCK DIAGRA  
V
DD  
UV  
V
CC  
V
AND  
CC  
REFERENCE  
GENERATOR  
REF  
+
OUTPUT  
DRIVE  
PWRGD/PWRGD  
REF  
LOGIC  
AND  
GATE DRIVE  
+
50mV  
OV  
+
+
+
+
V
PG  
V
EE  
1640A BD  
V
EE  
SENSE  
GATE  
DRAIN  
5
LT1640AL/LT1640AH  
TEST CIRCUIT  
R
5k  
+
V
PWRGD/PWRGD  
OV  
V
DD  
5V  
+
48V  
DRAIN  
V
OV  
V
V
DRAIN  
LT1640AL/LT1640AH  
UV  
GATE  
V
UV  
V
SENSE  
EE  
SENSE  
1640A F01  
Figure 1. Test Circuit  
W U  
W
TIMING DIAGRAMS  
2V  
1.223V  
OV  
2V  
1.203V  
1.223V  
1.243V  
UV  
0V  
0V  
t
t
PLHOV  
t
t
PHLOV  
PHLUV  
PLHUV  
1V  
GATE  
GATE  
1V  
1V  
1V  
1640A F02  
1640A F03  
Figure 2. OV to GATE Timing  
Figure 3. UV to GATE Timing  
1.8V  
1.4V  
50mV  
DRAIN  
SENSE  
GATE  
V
EE  
t
t
PLHPG  
PHLPG  
1V  
t
PHLSENSE  
1V  
PWRGD  
DRAIN  
1V  
V
EE  
1640A F04  
1.8V  
0V  
Figure 4. SENSE to GATE Timing  
1.4V  
t
t
PLHPG  
1V  
PHLPG  
1V  
PWRGD  
1640A F05  
V
– V  
DRAIN  
= 0V  
PWRGD  
Figure 5. DRAIN to PWRGD/PWRGD Timing  
6
LT1640AL/LT1640AH  
W U U  
U
APPLICATIO S I FOR ATIO  
Hot Circuit Insertion  
Power Supply Ramping  
Whencircuitboardsareinsertedintoalive 48Vbackplane,  
the bypass capacitors at the input of the board’s power  
module or switching power supply can draw huge tran-  
sient currents as they charge up. The transient currents  
can cause permanent damage to the board’s components  
and cause glitches on the system power supply.  
The input to the power module on a board is controlled by  
placing an external N-channel pass transistor (Q1) in the  
power path (Figure 6a, all waveforms are with respect to  
the VEE pin of the LT1640A). R1 provides current fault  
detection and R2 prevents high frequency oscillations.  
Resistors R4, R5 and R6 provide undervoltage and over-  
voltage sensing. By ramping the gate of Q1 up at a slow  
rate, the surge current charging load capacitors C3 and C4  
can be limited to a safe value when the board makes  
connection.  
The LT1640A is designed to turn on a board’s supply  
voltage in a controlled manner, allowing the board to be  
safely inserted or removed from a live backplane. The chip  
also provides undervoltage, overvoltage and overcurrent  
protection while keeping the power module off until its  
input voltage is stable and within tolerance.  
Resistor R3 and capacitor C2 act as a feedback network to  
accurately control the inrush current. The inrush current  
can be calculated with the following equation:  
IINRUSH = (45µA • CL)/C2  
where CL is the total load capacitance equal to C3 + C4 +  
module input capacitance.  
(SHORT PIN)  
GND  
GND  
VICOR  
8
R4  
562k  
1%  
VI-J3D-CY  
C3  
0.1µF  
100V  
C4  
100µF  
100V  
+
V
+
+
DD  
5V  
V
V
IN  
OUT  
3
2
UV = 37V  
OV = 71V  
UV  
OV  
+
C5  
R5  
9.09k  
1%  
1
LT1640AH  
PWRGD  
GATE IN  
100µF  
16V  
V
V
R6  
10k  
1%  
IN  
OUT  
V
SENSE  
5
GATE  
6
DRAIN  
7
EE  
4
R2  
10Ω  
5%  
C1  
150nF  
25V  
R3  
18k  
5%  
*
C2  
3.3nF  
100V  
R1  
0.02Ω  
5%  
3
4
1640A F06a  
48V  
* DIODES INC. SMAT70A  
1
2
Q1  
IRF530  
Figure 6a. Inrush Control Circuitry  
7
LT1640AL/LT1640AH  
W U U  
U
APPLICATIO S I FOR ATIO  
Capacitor C1 and resistor R3 prevent Q1 from momen-  
tarily turning on when the power pins first make contact.  
Without C1 and R3, capacitor C2 would pull the gate of Q1  
up to a voltage roughly equal to VEE • C2/CGS(Q1) before  
the LT1640A could power up and actively pull the gate  
low. By placing capacitor C1 in parallel with the gate  
capacitance of Q1 and isolating them from C2 using  
resistor R3, the problem is solved. The value of C1 should  
be:  
R3’svalueisnotcriticalandisgivenby(VINMAX +VGATE)/  
5mA.  
The waveforms are shown in Figure 6b. When the power  
pins make contact, they bounce several times. While the  
contacts are bouncing, the LT1640A senses an  
undervoltage condition and the GATE is immediately  
pulled low when the power pins are disconnected.  
Once the power pins stop bouncing, the GATE pin starts to  
ramp up. When Q1 turns on, the GATE voltage is held  
constant by the feedback network of R3 and C2. When the  
DRAIN voltage has finished ramping, the GATE pin then  
ramps to its final value.  
V
INMAX VTH  
C2 + C  
(
)
GD  
VTH  
where VTH is the MOSFET’s minimum gate threshold and  
VINMAX is the maximum operating input voltage.  
CONTACT  
BOUNCE  
Figure 6b. Inrush Control Waveforms  
8
LT1640AL/LT1640AH  
W U U  
U
APPLICATIO S I FOR ATIO  
Electronic Circuit Breaker  
on R7. This voltage will be counted into the circuit breaker  
trip voltage just as the voltage across the sense resistor.  
A small resistor is recommended for R7. A 100for R7  
willcausea2mVerror.Thefollowingequationcanbeused  
to estimate the delay time at the SENSE pin:  
The LT1640A features an electronic circuit breaker func-  
tion that protects against short circuits or excessive sup-  
ply currents. By placing a sense resistor between the VEE  
and SENSE pin, the circuit breaker will be tripped when-  
ever the voltage across the sense resistor is greater than  
50mV for more than 3µs as shown in Figure 7.  
V(t)V(tO)  
t = –R C •In 1–  
V – V(tO)  
i
Note that the circuit breaker threshold should be set  
sufficiently high to account for the sum of the load current  
andtheinrushcurrent.Iftheloadcurrentcanbecontrolled  
bythePWRGD/PWRGDpin(asinFigure6a),thethreshold  
can be set lower, since it will never need to accommodate  
inrush current and load current simultaneously.  
Where V(t) is the circuit breaker trip voltage, typically  
50mV. V(tO) is the voltage drop across the sense resistor  
before the short or overcurrent condition occurs. Vi is the  
voltage across the sense resistor when the short current  
or overcurrent is applied on it.  
Whenthecircuitbreakertrips,theGATEpinisimmediately  
pulled to VEE and the external N-channel turns off. The  
GATE pin will remain low until the circuit breaker is reset  
by pulling UV low, then high or cycling power to the part.  
Example: A system has a 1A current load and a 0.02Ω  
sense resistor is used. An extended delay circuit needs to  
be designed for a 50µs delay time after the load jumps to  
5A. In this case:  
If more than 3µs deglitching time is needed to reject  
current noise, an external resistor and capacitor can be  
added to the sense circuit as shown in Figure 8. R7 and C3  
act as a lowpass filter that will slow down the SENSE pin  
voltage from rising too fast. Since the SENSE pin will  
source current, typically 20µA, there will be a voltage drop  
V(t) = 50mV  
V(tO) = 20mV  
Vi = 5A • 0.02= 100mV  
If we choose R = 100, we will get C = 1µF.  
(SHORT PIN)  
GND  
GND  
8
R4  
562k  
V
DD  
1%  
3
2
UV  
OV  
UV = 37V  
OV = 71V  
R5  
9.09k  
1%  
1
LT1640AL  
PWRGD  
+
C
L
100µF  
R6  
10k  
1%  
100V  
V
EE  
SENSE  
5
GATE  
6
DRAIN  
7
4
C3  
*
R7  
R2  
10Ω  
5%  
C1  
150nF  
25V  
R3  
18k  
5%  
C2  
3.3nF  
100V  
R1  
0.02Ω  
5%  
3
4
48V  
1640A F08  
1
2
Q1  
IRF530  
1640A F07  
* DIODES INC. SMAT70A  
Figure 7. Short-Circuit Protection Waveforms  
Figure 8. Extending the Short-Circuit Protection Delay  
9
LT1640AL/LT1640AH  
W U U  
U
APPLICATIO S I FOR ATIO  
Under some conditions, a short circuit at the output can  
cause the input supply to dip below the UV threshold,  
resetting the circuit breaker immediately.  
Transistors Q2 and Q3 along with R7, R8, C4 and D1 form  
a programmable one-shot circuit. Before a short occurs,  
the GATE pin is pulled high and Q3 is turned on, pulling  
node 2 to VEE. Resistor R8 turns off Q2. When a short  
occurs, the GATE pin is pulled low and Q3 turns off. Node  
2 starts to charge C4 and Q2 turns on, pulling the UV pin  
low and resetting the circuit breaker. As soon as C4 is fully  
charged, R8 turns off Q2, UV goes high and the GATE  
starts to ramp up. Q3 turns back on and quickly pulls node  
2 back to VEE. Diode D1 clamps node 3 one diode drop  
below VEE. The duty cycle is set to 10% to prevent Q1 from  
overheating.  
The LT1640A then cycles on and off repeatedly until the  
short is removed. This can be minimized by adding a  
deglitching delay to the UV pin with a capacitor from UV to  
VEE. This capacitor forms an RC time constant with the  
resistorsatUV, allowingtheinputsupplytorecoverbefore  
the UV pin resets the circuit breaker.  
A circuit that automatically resets the circuit breaker after  
a current fault is shown in Figure 9.  
(SHORT PIN)  
GND  
GND  
8
R7  
1M  
5%  
R4  
562k  
1%  
V
DD  
2
3
2
UV  
OV  
C4  
R5  
9.09k  
1%  
1
1µF  
LT1640AL  
PWRGD  
C3  
100µF  
100V  
+
100V  
R6  
10k  
1%  
V
SENSE  
5
GATE  
6
DRAIN  
7
EE  
Q2  
3
4
2N2222  
*
Q3  
ZVN3310  
R2  
10Ω  
5%  
C1  
R3  
18k  
5%  
C2  
3.3nF  
100V  
150nF  
25V  
R8  
510k  
5%  
R1  
0.02Ω  
5%  
D1  
1N4148  
3
4
48V  
* DIODES INC. SMAT70A  
1640A F09a  
1
2
Q1  
IRF530  
1640A F09b  
Figure 9. Automatic Restart After Current Fault  
10  
LT1640AL/LT1640AH  
W U U  
U
APPLICATIO S I FOR ATIO  
Undervoltage and Overvoltage Detection  
Figure 10a. With R4 = 562k, R5 = 9.09k and R6 = 10k, the  
undervoltage threshold is set to 37V and the overvoltage  
threshold is set to 71V. The resistor divider will also  
amplify the 20mV hysteresis at the UV pin and OV pin to  
0.6V and 1.2V at the input, respectively.  
The UV (Pin 3) and OV (Pin 2) pins can be used to detect  
undervoltage and overvoltage conditions at the power  
supply input. The UV and OV pins are internally connected  
toanalogcomparatorswith20mVofhysteresis. Whenthe  
UV pin falls below its threshold or the OV pin rises above  
its threshold, the GATE pin is immediately pulled low. The  
GATE pin will be held low until UV is high and OV is low.  
More hysteresis can be added to the UV threshold by  
connecting resistor R3 between the UV pin and the GATE  
pin as shown in Figure 10b.  
The undervoltage and overvoltage trip voltages can be  
programmed using a three resistor divider as shown in  
(SHORT PIN)  
GND  
GND  
8
R4  
R5  
R6  
V
DD  
3
2
R4 + R5+ R6  
V
V
= 1.223  
= 1.223  
UV  
OV  
UV  
OV  
(
(
)
)
R5 + R6  
LT1640AL  
LT1640AH  
R4 + R5+ R6  
R6  
V
EE  
4
48V  
1640A F10a  
Figure 10a. Undervoltage and Overvoltage Sensing  
(SHORT PIN)  
GND  
GND  
8
R4  
506k  
1%  
V
DD  
2
3
OV  
UV = 37.6V  
UV = 43V  
OV = 71V  
R1  
562k  
1%  
LT1640AL/LT1640AH  
UV  
R5  
R2  
R3  
V
3
SENSE  
GATE  
6
EE  
8.87k 16.9k 1.62M  
1%  
1%  
1%  
4
5
R6  
C1  
10Ω  
150nF  
*
R1  
5%  
25V  
0.02Ω  
4
5%  
48V  
1640A F10b  
1
2
Q1  
* DIODES INC. SMAT70A  
IRF530  
Figure 10b. Programmable Hysteresis for Undervoltage Detection  
11  
LT1640AL/LT1640AH  
W U U  
U
APPLICATIO S I FOR ATIO  
Thenewthresholdvoltagewhentheinputmovesfromlow  
to high is:  
R4 + R5  
VOV = VOVH  
R5  
R2 R3 +R1R3 +R1R2  
With R4 = 506k, R5 = 8.87k and VOVH = 1.223V, the  
overvoltage threshold will be 71V.  
V
UV,LH = V  
UVH  
R2 R3  
where VUVH is typically 1.243V.  
PWRGD/PWRGD Output  
The new threshold voltage when the input moves from  
high to low is:  
The PWRGD/PWRGD output can be used to directly en-  
able a power module when the input voltage to the module  
is within tolerance. The LT1640AL has a PWRGD output  
for modules with an active low enable input, and the  
LT1640AH has a PWRGD output for modules with an  
active high enable input.  
R2 R3 +R1R3 +R1R2  
R1  
R3  
V
UV,HL = V  
VGATE  
UVL  
R2 R3  
where VUVL is typically 1.223V.  
The new hysteresis value will be:  
When the DRAIN voltage of the LT1640AH is high with  
respect to VEE (Figure 11), the internal transistor Q3 is  
turned off and R7 and Q2 clamp the PWRGD pin one diode  
drop (0.7V) above the DRAIN pin. Transistor Q2 sinks  
the module’s pull-up current and the module turns off.  
R2 R3 +R1R3 +R1R2  
R1  
R3  
V
= V  
+ VGATE  
HYS  
UVHY  
R2 R3  
WithR1=562k,R2=16.9kandR3=1.62M,VGATE =13.5V  
andVUVHY =20mV, theundervoltagethresholdwillbe43V  
(from low to high) and 37.6V (from high to low). The  
hysteresis is 5.4V. A separate resistor divider should be  
used to set the overvoltage threshold given by:  
WhentheDRAINvoltagedropsbelowVPG, Q3willturnon,  
shorting the bottom of R7 to DRAIN and turning Q2 off.  
The pull-up current in the module then flows through R7,  
pulling the PWRGD pin high and enabling the module.  
ACTIVE HIGH  
(SHORT PIN)  
GND  
ENABLE MODULE  
+
+
OUT  
GND  
V
IN  
V
8
LT1640AH  
V
DD  
PWRGD  
Q2  
1
7
R4  
R7  
6.5k  
+
ON/OFF  
3
2
UV  
C3  
+
+
R5  
R6  
Q3  
EE  
V
PG  
OV  
OUT  
V
IN  
V
V
DRAIN  
V
EE  
SENSE  
5
GATE  
6
4
*
R3  
C2  
C1  
R2  
3
4
R1  
1640A F11  
48V  
1
2
Q1  
* DIODES INC. SMAT70A  
Figure 11. Active High Enable Module  
12  
LT1640AL/LT1640AH  
W U U  
APPLICATIO S I FOR ATIO  
U
When the DRAIN voltage of the LT1640AL is high with  
respect to VEE, the internal pull-down transistor Q2 is off  
and the PWRGD pin is in a high impedance state (Fig-  
ure 12).ThePWRGDpinwillbepulledhighbythemodule’s  
internal pull-up current source, turning the module off.  
When the DRAIN voltage drops below VPG, Q2 will turn on  
and the PWRGD pin will pull low, enabling the module.  
than 6V. The gate voltage will be no greater than 18V for  
supply voltages up to 80V.  
Drain Pin Protection  
A unique feature of the LT1640A is the ruggedness of the  
DRAIN pin. The DRAIN is designed to withstand negative  
voltages (with respect to VEE) without requiring an exter-  
nal diode. A short circuit on the 48V backplane pulls up  
the VEE pin, but due to the storage capacitor C3 (Fig-  
ure 12), the DRAIN pin is held more negative than the VEE  
pin. The body diode of Q1, plus the I • R drop across R1 (if  
R1 is small), holds the DRAIN pin to less than 1.5V below  
VEE. A 1.5V reverse voltage gives rise to a 50mA reverse  
drain current, which is within the design capability of the  
LT1640A. A design with R1 larger than 0.1may require  
a resistor in series with the DRAIN pin to not exceed the  
50mA drain current maximum.  
The PWRGD signal can also be used to turn on an LED or  
optoisolator to indicate that the power is good as shown  
in Figure 13.  
Gate Pin Voltage Regulation  
When the supply voltage to the chip is more than 15.5V,  
theGATEpinvoltageisregulatedat13.5VaboveVEE. Ifthe  
supply voltage is less than 15.5V, the GATE voltage will be  
about 2V below the supply voltage. At the minimum 10V  
supplyvoltage,thegatevoltageisguaranteedtobegreater  
ACTIVE LOW  
(SHORT PIN)  
GND  
ENABLE MODULE  
+
+
GND  
V
V
OUT  
IN  
8
V
LT1640AL  
R4  
DD  
PWRGD  
Q2  
1
7
+
ON/OFF  
3
+
UV  
OV  
C3  
+
V
PG  
R5  
R6  
V
EE  
2
V
V
OUT  
IN  
DRAIN  
V
4
SENSE GATE  
EE  
5
6
*
R3  
C2  
C1  
R2  
3
4
R1  
1640A F12  
48V  
1
2
Q1  
* DIODES INC. SMAT70A  
Figure 12. Active Low Enable Module  
13  
LT1640AL/LT1640AH  
W U U  
U
APPLICATIO S I FOR ATIO  
(SHORT PIN)  
GND  
GND  
R7  
51k  
5%  
PWRGD  
8
R4  
562k  
+
C3  
100µF  
100V  
V
DD  
1%  
3
UV  
R5  
9.09k  
1%  
4N25  
1
LT1640AL  
PWRGD  
2
OV  
R6  
10k  
1%  
V
SENSE  
5
GATE  
6
DRAIN  
7
EE  
4
R2  
10Ω  
5%  
C1  
150nF  
25V  
*
R3  
18k  
5%  
C2  
3.3nF  
100V  
R1  
0.02Ω  
5%  
3
4
48V  
* DIODES INC. SMAT70A  
1640A F13  
1
2
Q1  
IRF530  
Figure 13. Using PWRGD to Drive an Optoisolator  
U
PACKAGE DESCRIPTIO  
Dimensions in inches (millimeters) unless otherwise noted.  
N8 Package  
8-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
0.400*  
(10.160)  
MAX  
8
7
6
5
4
0.255 ± 0.015*  
(6.477 ± 0.381)  
1
2
3
0.130 ± 0.005  
0.300 – 0.325  
0.045 – 0.065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
0.020  
(0.508)  
MIN  
(3.175)  
MIN  
+0.035  
0.325  
–0.015  
0.018 ± 0.003  
(0.457 ± 0.076)  
0.100  
(2.54)  
BSC  
+0.889  
8.255  
(
)
N8 1098  
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
14  
LT1640AL/LT1640AH  
U
PACKAGE DESCRIPTIO  
Dimensions in inches (millimeters) unless otherwise noted.  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
7
5
8
6
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
1
3
4
2
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.016 – 0.050  
(0.406 – 1.270)  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
TYP  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
SO8 1298  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT1640AL/LT1640AH  
U
TYPICAL APPLICATION  
Using an EMI Filter Module  
using the Lucent FLTR100V10 filter module is shown in  
Figure 14. When using a filter, an optoisolator is required  
to prevent common mode transients from destroying the  
PWRGD and ON/OFF pins.  
Many applications place an EMI filter module in the power  
path to prevent switching noise of the module from being  
injected back onto the power supply. A typical application  
R7  
51k  
5%  
(SHORT PIN)  
GND  
4N25  
LUCENT  
JW050A1-E  
GND  
1
2
9
8
7
8
1
+
+
+
R4  
562k  
1%  
5V  
V
V
IN  
OUT  
SENSE  
PWRGD  
V
DD  
+
C7  
7
6
3
2
+
+
V
V
ON/OFF  
TRIM  
100µF  
16V  
UV  
DRAIN  
IN  
OUT  
C2  
3.3nF  
100V  
R5  
9.09k  
1%  
C3  
0.1µF  
100V  
C4  
0.1µF  
100V  
C5  
100µF  
100V  
C6  
0.1µF  
100V  
+
6
5
LT1640AL  
LUCENT  
FLTR100V10  
SENSE  
R3  
18k  
5%  
OV  
V
GATE  
SENSE  
5
4
V
V
V
V
R6  
10k  
1%  
IN  
OUT  
CASE  
IN  
OUT  
EE  
CASE  
R2  
10Ω  
5%  
C1  
150nF  
25V  
4
3
R1  
0.02Ω  
5%  
1640A F14  
*
3
4
48V  
* DIODES INC. SMAT70A  
1
2
Q1  
IRF530  
Figure 14. Typical Application Using a Filter Module  
RELATED PARTS  
PART NUMBER  
LTC®1421  
LTC1422  
LT1641  
DESCRIPTION  
COMMENTS  
Operates from 3V to 12V  
Dual Channel, Hot Swap Controller  
Hot Swap Controller in SO-8  
System Reset Output with Programmable Delay, 3V to 12V  
Foldback Analog Current Limit  
Positive 48V Hot Swap Controller in SO-8  
Fault Protected Hot Swap Controller  
PCI Hot Swap Controller  
LTC1642  
LTC1643  
LTC1645  
LTC1646  
LTC1647  
Operates Up to 16.5V, Protected to 33V  
3.3V, 5V, 12V, 12V Supplies for PCI Bus  
Operates from 1.2V to 12V, Power Sequencing  
3.3V, 5V Supplies, 1V Precharge, Local PCI Reset Logic  
Dual ON Pins for Supplies from 3V to 15V  
Dual Hot Swap Controller  
CompactPCITM Hot Swap Controller  
Dual Hot Swap Controller  
CompactPCI is a trademark of the PCI Industrial Computer Manufacturers Group  
1640alahf LT/TP 0501 4K • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 2001  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY