LT1640AH [Linear]

Negative 48V Hot Swap Controller; 负48V热插拔控制器
LT1640AH
型号: LT1640AH
厂家: Linear    Linear
描述:

Negative 48V Hot Swap Controller
负48V热插拔控制器

控制器
文件: 总12页 (文件大小:231K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT4250L/LT4250H  
Negative 48V  
Hot Swap Controller  
U
FEATURES  
DESCRIPTIO  
TheLT®4250L/LT4250Hare8-pin,negative48VHotSwapTM  
controllers that allow a board to be safely inserted and  
removedfromalivebackplane. Inrushcurrentislimitedto  
aprogrammablevaluebycontrollingthegatevoltageofan  
external N-channel pass transistor. The pass transistor is  
turned off if the input voltage is less than the program-  
mable undervoltage threshold or greater than the over-  
voltage threshold. A programmable current limit protects  
the system against shorts. After a 500µs timeout the  
current limit activates the electronic circuit breaker. The  
PWRGD (LT4250L) or PWRGD (LT4250H) signal can be  
used to directly enable a power module. The LT4250L is  
designed for modules with a low enable input and the  
LT4250H for modules with a high enable input.  
Allows Safe Board Insertion and Removal  
from a Live 48V Backplane  
Circuit Breaker Immunity to Voltage Steps and  
Current Spikes  
Programmable Inrush and  
Short-Circuit Current Limits  
Pin Compatible with LT1640L/LT1640H  
Operates from –20V to 80V  
Programmable Overvoltage Protection  
Programmable Undervoltage Lockout  
Power Good Control Output  
Bell-Core CompaUtible ON/OFF Threshold  
APPLICATIO S  
The LT4250L/LT4250H are available in 8-pin PDIP and SO  
packages.  
Central Office Switching  
48V Distributed Power Systems  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Negative Power Supply Control  
Hot Swap is a trademark of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
–48V RTN  
(SHORT PIN)  
–48V RTN  
R4†  
Voltage Step On Input Supply  
8
549k  
1%  
V
DD  
3
2
UV =  
UV  
OV  
R5†  
6.49k  
1%  
38.5V  
1
LT4250L  
PWRGD  
UV  
RELEASE  
AT 43V  
R6†  
10k  
1%  
OV =  
71V  
V
SENSE  
5
GATE  
6
DRAIN  
7
EE  
V
AND  
EE  
DRAIN  
20V/DIV  
4
R3†  
1k, 5%  
*
0.1µF  
10V  
C1†  
470nF  
25V  
R2  
10Ω  
5%  
C2†  
15nF  
100V  
–48V  
INPUT 1  
R1†  
0.02Ω  
5%  
I
(Q1)  
D
5A/DIV  
2
Q1  
IRF530  
ON/OFF  
1
9
8
+
+
+
–48V  
5V  
V
V
V
500µs/DIV  
IN  
OUT  
SENSE  
INPUT 2  
C3  
0.1µF  
100V  
C4  
+
C5  
+
7
6
5
* DIODES INC. SMAT70A  
100µF  
TRIM  
100µF  
16V  
THESE COMPONENTS ARE APPLICATION  
SPECIFIC AND MUST BE SELECTED BASED  
UPON OPERATING CONDITIONS AND DESIRED  
PERFORMANCE. SEE APPLICATIONS  
INFORMATION.  
100V  
SENSE  
4
V
IN  
OUT  
4250 TA01  
LUCENT  
JW050A1-E  
4250lhf  
1
LT4250L/LT4250H  
W W U W  
ABSOLUTE MAXIMUM RATINGS  
(Note 1), All Voltages Referred to VEE  
Supply Voltage (VDD – VEE) .................... 0.3V to 100V  
PWRGD, PWRGD Pins ........................... 0.3V to 100V  
SENSE, GATE Pins.................................... 0.3V to 20V  
UV, OV Pins .............................................. 0.3V to 60V  
DRAIN Pin .................................................. –2V to 100V  
Maximum Junction Temperature ......................... 125°C  
Operating Temperature Range  
LT4250LC/LT4250HC ............................. 0°C to 70°C  
LT4250LI/LT4250HI .......................... 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
W
U
/O  
PACKAGE RDER I FOR ATIO  
ORDER PART  
ORDER PART  
NUMBER  
NUMBER  
TOP VIEW  
TOP VIEW  
PWRGD  
OV  
1
2
3
4
8
7
6
5
V
DD  
PWRGD  
OV  
1
2
3
4
8
7
6
5
V
DD  
LT4250LCN8  
LT4250LCS8  
LT4250LIN8  
LT4250LIS8  
LT4250HCN8  
LT4250HCS8  
LT4250HIN8  
LT4250HIS8  
DRAIN  
GATE  
DRAIN  
GATE  
UV  
UV  
V
SENSE  
V
SENSE  
EE  
EE  
N8 PACKAGE  
8-LEAD PDIP  
S8 PACKAGE  
N8 PACKAGE  
8-LEAD PDIP  
S8 PACKAGE  
8-LEAD PLASTIC SO  
8-LEAD PLASTIC SO  
S8 PART MARKING  
S8 PART MARKING  
TJMAX = 125°C, θJA = 120°C/W (N8)  
JMAX = 125°C, θJA = 150°C/W (S8)  
TJMAX = 125°C, θJA = 120°C/W (N8)  
TJMAX = 125°C, θJA = 150°C/W (S8)  
T
4250L  
4250LI  
4250H  
4250HI  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
The denotes the specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 25°C. (Note 2), VDD = 48V, VEE = 0V unless otherwise noted.  
SYMBOL PARAMETER  
DC  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Supply Voltage Operating Range  
Supply Current  
20  
80  
5
V
mA  
V
DD  
I
UV = 3V, OV = V , SENSE = V  
EE  
1.6  
15.4  
50  
DD  
EE  
V
V
Undervoltage Lockout  
UVL  
CL  
Current Limit Trip Voltage  
GATE Pin Pull-Up Current  
GATE Pin Pull-Down Current  
SENSE Pin Current  
V
= (V  
– V )  
EE  
40  
30  
24  
60  
60  
70  
mV  
µA  
mA  
µA  
V
CL  
SENSE  
I
I
I
Gate Drive On, V  
Gate Drive OFF  
= V  
EE  
45  
PU  
GATE  
50  
PD  
V
= 50mV  
SENSE  
20  
SENSE  
V  
External Gate Drive  
(V  
GATE  
– V ), 20V V 80V  
10  
13.5  
1.255  
1.125  
130  
18  
GATE  
EE  
DD  
V
V
V
UV Pin High Threshold Voltage  
UV Pin Low Threshold Voltage  
UV Pin Hysteresis  
UV Increasing  
UV Decreasing  
1.240  
1.105  
1.270  
1.145  
V
UVH  
V
UVL  
UVHY  
INUV  
mV  
µA  
V
I
UV Pin Input Current  
V
= V  
0.02  
1.255  
1.235  
0.5  
1.275  
1.255  
UV  
EE  
V
V
OV Pin High Threshold Voltage  
OV Pin Low Threshold Voltage  
OV Increasing  
OV Decreasing  
1.235  
1.210  
OVH  
OVL  
V
4250lhf  
2
LT4250L/LT4250H  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 2), VDD = 48V, VEE = 0V unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
20  
MAX  
UNITS  
mV  
µA  
V
OV Pin Hysteresis  
OVHY  
INOV  
I
OV Pin Input Current  
DRAIN Low Threshold  
GATE High Threshold  
Drain Input Bias Current  
PWRGD Output Low Voltage  
V
V
= V  
–0.03  
1.6  
0.5  
2.3  
OV  
EE  
V
V
– V , DRAIN Decreasing  
1.1  
10  
V
DL  
DRAIN  
EE  
V  
GATE  
– V Decreasing  
GATE  
1.3  
V
GH  
I
V
= 48V  
80  
500  
µA  
DRAIN  
DRAIN  
V
PWRGD (LT4250L), (V  
– V ) < V  
OL  
DRAIN  
EE  
DL  
I
I
= 1mA  
= 5mA  
0.48  
1.2  
0.8  
3.0  
V
V
OUT  
OUT  
PWRGD Output Low Voltage  
(PWRGD – DRAIN)  
PWRGD (LT4250H), V  
= 1mA  
= 5V  
DRAIN  
I
0.75  
1.0  
V
OUT  
I
Output Leakage  
PWRGD (LT4250L), V  
PWRGD (LT4250H), V  
= 48V, V  
= 80V  
= 80V  
0.05  
0.05  
10  
10  
µA  
µA  
OH  
DRAIN  
DRAIN  
PWRGD  
= 0V, V  
PWRGD  
AC  
t
t
t
t
t
t
t
OV High to GATE Low  
UV Low to GATE Low  
Figures 1a, 2  
Figures 1a, 3  
Figures 1a, 2  
Figures 1a, 3  
Figures 1a, 4a  
Figures 1b, 4b  
1.7  
1.5  
5.5  
6.5  
1
µs  
µs  
µs  
µs  
µs  
µs  
PHLOV  
PHLUV  
PLHOV  
PLHUV  
PHLSENSE  
PHLCB  
PHLDL  
OV Low to GATE High  
UV High to GATE High  
SENSE High to Gate Low  
Current Limit to GATE Low  
DRAIN Low to PWRGD Low  
DRAIN Low to (PWRGD – DRAIN) High (LT4250H) Figures 1a, 5a  
GATE High to PWRGD Low (LT4250L) Figures 1a, 5b  
GATE High to (PWRGD – DRAIN) High (LT4250H) Figures 1a, 5b  
3
500  
(LT4250L) Figures 1a, 5a  
1
1
µs  
µs  
t
1.5  
1.5  
µs  
µs  
PHLGH  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: All currents into device pins are positive; all currents out of device  
pins are negative. All voltages are referenced to V unless otherwise  
EE  
specified.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Supply Current vs Supply Voltage  
Supply Current vs Temperature  
Gate Voltage vs Supply Voltage  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
15  
14  
13  
12  
11  
10  
9
1.8  
1.7  
1.6  
1.5  
T = 25°C  
A
T
A
= 25°C  
V
= 48V  
DD  
1.4  
1.3  
1.2  
1.1  
0
8
7
6
20  
40  
SUPPLY VOLTAGE (V)  
80  
0
100  
60  
50 25  
0
25  
50  
75  
100  
0
80  
100  
20  
40  
60  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
1640 G01  
1640 G02  
1640 G03  
4250lhf  
3
LT4250L/LT4250H  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Current Limit Trip Voltage  
Gate Pull-Up Current  
vs Temperature  
Gate Voltage vs Temperature  
vs Temperature  
15.0  
14.5  
48  
47  
46  
45  
44  
43  
42  
41  
40  
55  
54  
V
= 48V  
DD  
V
= 0V  
GATE  
53  
14.0  
13.5  
52  
51  
50  
49  
13.0  
12.5  
12.0  
48  
50 25  
0
25  
50  
75  
100  
50  
0
25  
50  
75  
100  
25  
75  
50  
25  
0
25  
50  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1640 G04  
1640 G05  
1640 G06  
Gate Pull-Down Current  
vs Temperature  
PWRGD Output Impedance  
vs Temperature (LT4250H)  
PWRGD Output Low Voltage  
vs Temperature (LT4250L)  
8
7
55  
52  
49  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
– V > 2.4V  
EE  
V
= 2V  
I
= 1mA  
DRAIN  
GATE  
OUT  
6
5
46  
43  
40  
4
3
2
50 25  
0
25  
50  
75  
100  
50 25  
0
25  
50  
75  
100  
50 25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1640 G09  
1640 G07  
1640 G08  
U
U
U
PIN FUNCTIONS  
PWRGD/PWRGD(Pin1):PowerGoodOutputPin.Thispin  
willlatchapowergoodindicationwhenVDRAIN iswithinVDL  
of VEE and VGATE is within VGH of VGATE. This pin can be  
connected directly to the enable pin of a power module.  
ThisconditionislatcheduntiltheGATEpinisturnedoffvia  
the UV, OV, UVLO or the electronic circuit breaker.  
When the DRAIN pin of the LT4250H is above VEE by more  
than VDL or VGATE is more than VGH from VGATE, the  
PWRGD pin will sink current to the DRAIN pin which pulls  
the module’s enable pin low, forcing it off. When VDRAIN  
drops below VDL and VGATE rises above VGH, the PWRGD  
sink current is turned off, allowing the module’s pull-up  
current to pull the enable pin high and turn on the module.  
ThisconditionislatcheduntiltheGATEpinisturnedoffvia  
the UV, OV, UVLO or the electronic circuit breaker.  
4250lhf  
When the DRAIN pin of the LT4250L is above VEE by more  
than VDL or VGATE is more than VGH from VGATE, the  
PWRGD pin will be high impedance, allowing the pull-up  
current of the module’s enable pin to pull the pin high and  
turn the module off. When VDRAIN drops below VDL and  
VGATE rises above VGH, the PWRGD pin sinks current to  
VEE, pulling the enable pin low and turning on the module.  
4
LT4250L/LT4250H  
U
U
U
PIN FUNCTIONS  
OV (Pin 2): Analog Overvoltage Input. When OV is pulled If the current limit value is set to twice the normal  
above the 1.255V threshold, an overvoltage condition is operating current, only 25mV is dropped across the  
detected and the GATE pin will be immediately pulled low. sense resistor during normal operation. To disable the  
The GATE pin will remain low until OV drops below the current limit feature, VEE and SENSE can be shorted  
1.235V threshold.  
together.  
UV (Pin 3): Analog Undervoltage Input. When UV is GATE (Pin 6): Gate Drive Output for the External  
pulled below the 1.125V threshold, an undervoltage N-Channel MOSFET. The GATE pin will go high when the  
condition is detected and the GATE pin will be immedi- following start-up conditions are met: the UV pin is high,  
ately pulled low. The GATE pin will remain low until UV the OV pin is low, (VSENSE – VEE) < 50mV and the VDD pin  
rises above the 1.255 threshold.  
is greater than VUVLOH. The GATE pin is pulled high by a  
45µA current source and pulled low with a 50mA current  
source. During current limit the GATE pin is pulled low  
using a 100mA current source.  
The UV pin is also used to reset the electronic circuit  
breaker. If the UV pin is cycled low and high following the  
trip of the circuit breaker, the circuit breaker is reset and  
a normal power-up sequence will occur. The response DRAIN (Pin 7): Analog Drain Sense Input. Connect this  
timeforthispinis1.5µs. Addanexternalcapacitortothis pintothedrainoftheexternalN-channelMOSFETandthe  
pin for additional filtering.  
Vpin of the power module. When the DRAIN pin is  
below VDL, the PWRGD/PWRGD pin will latch to indicate  
the switch is on.  
VEE (Pin 4): Negative Supply Voltage Input. Connect to  
the lower potential of the power supply.  
VDD (Pin 8): Positive Supply Voltage Input. Connect this  
pin to the higher potential of the power supply inputs and  
the V+ pin of the power module. An undervoltage lockout  
circuit disables the chip until the VDD pin is greater than  
the 16V VUVLOH threshold.  
SENSE (Pin 5): Circuit Breaker Sense Pin. With a sense  
resistor placed in the supply path between VEE and  
SENSE, the overcurrent condition will pull down the  
GATE pin and regulate the voltage across the resistor to  
be 50mV. If the overcurrent condition exists for more  
than500µstheelectroniccircuitbreakerwilltripandturn  
off the external MOSFET.  
W
BLOCK DIAGRA  
V
DD  
UV  
V
V
AND  
CC  
CC  
UVLO  
REFERENCE  
GENERATOR  
REF  
+
OUTPUT  
DRIVE  
PWRGD/PWRGD  
REF  
LOGIC  
+
50mV  
OV  
+
500µs  
DELAY  
GATE  
DRIVER  
+
+
+
+
+
V
DL  
V
GH  
V
V  
GATE  
EE  
4250 BD  
DRAIN  
GATE  
V
EE  
SENSE  
4250lhf  
5
LT4250L/LT4250H  
R
5k  
+
+
V
20V  
PWRGD/PWRGD  
OV  
V
DD  
PWRGD/PWRGD  
OV  
V
DD  
5V  
+
48V  
+
48V  
DRAIN  
DRAIN  
V
OV  
V
V
DRAIN  
LT4250L/LT4250H  
LT4250L/LT4250H  
10k  
10Ω  
UV  
GATE  
IRF530  
UV  
GATE  
V
UV  
0.1µF  
V
UV  
V
SENSE  
V
SENSE  
EE  
EE  
SENSE  
10Ω  
1640 F01a  
4250 F01b  
Figure 1a. Test Circuit 1  
Figure 1b. Test Circuit 2  
W U  
W
TIMING DIAGRAMS  
2V  
1.255V  
OV  
2V  
0V  
1.125V  
1.235V  
1.255V  
UV  
0V  
t
t
PLHOV  
t
t
PHLOV  
PHLUV  
PLHUV  
GATE  
GATE  
1V  
1V  
1V  
1V  
4250 F02  
4250 F03  
Figure 2. OV to GATE Timing  
Figure 3. UV to GATE Timing  
100mV  
SENSE  
60mV  
UV  
V
EE  
t
PHLCB  
t
PHLSENSE  
1V  
GATE  
GATE  
1V  
1V  
4250 F04b  
4250 F04a  
Figure 4b. Active Current Limit Timeout  
Figure 4a. SENSE to GATE Timing  
1.4V  
V  
– V  
= 0  
GATE  
GATE  
1.4V  
GATE  
DRAIN  
V
EE  
t
PHLGH  
t
PHLDL  
1V  
PWRGD  
PWRGD  
DRAIN  
1V  
V
EE  
V
EE  
1.4V  
V  
– V  
= 0  
GATE  
GATE  
GATE  
1.4V  
V
EE  
t
PHLGH  
1V  
t
PHLDL  
PWRGD  
PWRGD  
1V  
4250 F05a  
V
– V  
= 0  
DRAIN  
4250 F05b  
PWRGD  
V
– V  
= 0V  
DRAIN  
PWRGD  
Figure 5a. DRAIN to PWRGD/PWRGD Timing  
Figure 5b. GATE to PWRGD/PWRGD Timing  
4250lhf  
6
LT4250L/LT4250H  
U
W U U  
APPLICATIONS INFORMATION  
Hot Circuit Insertion  
where CL is the total load capacitance = C3 + C4 + module  
input capacitance.  
Whencircuitboardsareinsertedintoalive 48Vbackplane,  
the bypass capacitors at the input of the board’s power  
module or switching power supply can draw huge tran-  
sient currents as they charge up. The transient currents  
can cause permanent damage to the board’s components  
and cause glitches on the system power supply.  
Capacitor C1 and resistor R3 prevent Q1 from momen-  
tarily turning on when the power pins first make contact.  
Without C1 and R3, capacitor C2 would pull the gate of Q1  
uptoavoltageroughlyequaltoVEE C2/CGS(Q1) beforethe  
LT4250 could power up and actively pull the gate low. By  
placing capacitor C1 in parallel with the gate capacitance  
of Q1 and isolating them from C2 using resistor R3 the  
problem is solved. The value of C1 is given by:  
The LT4250 is designed to turn on a board’s supply  
voltage in a controlled manner, allowing the board to be  
safely inserted or removed from a live backplane. The chip  
also provides undervoltage, overvoltage and overcurrent  
protection while keeping the power module off until its  
input voltage is stable and within tolerance.  
V
INMAX VTH  
C1=  
C2 + CGD  
(
)
VTH  
C1 35 • C2 for VINMAX = 72V  
Power Supply Ramping  
where VTH is the MOSFET’s minimum gate threshold and  
VINMAX is the maximum operating input voltage.  
The input to the power module on a board is controlled by  
placing an external N-channel pass transistor (Q1) in the  
power path (Figure 6a, all waveforms are with respect to  
the VEE pin of the LT4250). R1 provides current fault  
detection and R2 prevents high frequency oscillations.  
Resistors R4, R5 and R6 provide undervoltage and over-  
voltage sensing. By ramping the gate of Q1 up at a slow  
rate, the inrush current charging load capacitors C3 and  
C4 can be limited to a safe value when the board makes  
connection.  
R3 should not exceed a value that produces an  
R3 • C2 time-constant of 150µs. A 1k value for R3 will  
ensure this for C2 values up to 150nF.  
The waveforms are shown in Figure 6b. When the power  
pins make contact, they bounce several times. While the  
contactsarebouncing,theLT4250sensesanundervoltage  
condition and the GATE is immediately pulled low when  
the power pins are disconnected.  
Resistor R3 and capacitor C2 act as a feedback network to  
accuratelycontroltheinrushcurrent.TheC2capacitorcan  
be calculated with the following equation:  
Once the power pins stop bouncing, the GATE pin starts to  
ramp up. When Q1 turns on, the GATE voltage is held  
constant by the feedback network of R3 and C2. When the  
DRAIN voltage has finished ramping, the GATE pin then  
ramps to its final value.  
C2 = (45µA • CL)/IINRUSH  
–48V RTN  
(SHORT PIN)  
–48V RTN  
INRUSH  
C3  
CURRENT  
0.1µF  
VICOR  
MODULE  
TURN-ON  
8
100V  
R4  
549k  
1%  
500mA/DIV  
VI-J30-CY  
+
V
C4  
+
+
DD  
5V  
C5  
V
V
OUT  
IN  
100µF  
3
2
UV = 38.5V  
OV = 71V  
UV  
OV  
GATE –V  
100V  
EE  
+
R5  
6.49k  
1%  
1
10V/DIV  
LT4250H  
PWRGD  
DRAIN  
GATE IN  
100µF  
16V  
V
V
OUT  
R6  
10k  
1%  
IN  
V
EE  
SENSE  
5
GATE  
6
DRAIN  
50V/DIV  
R3  
4
7
1k, 5%  
V
EE  
R2  
C1  
50V/DIV  
10Ω  
5%  
C2  
15nF  
100V  
470nF  
25V  
CONTACT  
*
R1  
0.02Ω  
BOUNCE  
3
4
5%  
4250 F06a  
48V  
25ms/DIV  
1
2
Q1  
IRF530  
* DIODES INC. SMAT70A  
4250 F06b  
Figure 6b. Inrush Control Waveforms  
Figure 6a. Inrush Control Circuitry  
4250lhf  
7
LT4250L/LT4250H  
U
W U U  
APPLICATIONS INFORMATION  
Current Limit/Electronic Circuit Breaker  
The LT4250 guards against voltage steps on the input  
supply. A positive voltage step (increasing in magnitude)  
on the input supply causes an inrush current that is  
proportional to the voltage slew rate I = CL V/T. If the  
inrush exceeds 50mV/RSENSE, the current limit will acti-  
vate as shown in Figure 8. The GATE pin pulls low, limiting  
the current to 50mV/RSENSE. At this level the MOSFET  
drain will not follow the source as the input voltage rapidly  
changes, but instead remains at the voltage stored on the  
load capacitance. The load capacitance begins to charge  
at a current of 50mV/RSENSE, but not for long. As the load  
capacitance charges, C2 pushes back on the gate and  
limits the MOSFET current in a manner identical to the  
initialstart-upconditionwhichislessthantheshortcircuit  
limiting value of 50mV/RSENSE. Thus the circuit breaker  
does not trip. To ensure correct operation under input  
voltage step conditions, RSENSE must be chosen to pro-  
vide a current limit value greater than the sum of the load  
current and the dynamic current in the load capacitance.  
The LT4250 features a current limit function that protects  
against short circuits or excessive supply currents. If the  
current limit is active for more than 500µs the electronic  
circuit breaker will trip. By placing a sense resistor  
between the VEE and SENSE pin, the current limit will be  
activated whenever the voltage across the sense resistor  
is greater than 50mV.  
Note that the current limit threshold should be set suffi-  
ciently high to account for the sum of the load current and  
the inrush current. The maximum value of the inrush  
current is given by:  
40mV  
RSENSE  
IINRUSH 0.8•  
– ILOAD,  
where the 0.8 factor is used as a worst case margin  
combined with the minimum trip voltage (40mV).  
For C2 values less than 10nF a positive voltage step on the  
input supply can result in the Q1 turning off momentarily  
which can shut down the output. By adding an additional  
resistor and diode, Q1 remains on during the voltage step.  
This is shown as D1 and R7 in Figure 9. The purpose of D1  
is to shunt current around R7 when the power pins first  
makecontactandallowC1toholdtheGATElow. Thevalue  
of R7 should be sized to generate an R7 • C1 time constant  
of 33µs.  
In the case of a short circuit, the current limit circuitry  
activates and immediately pulls the GATE low, servos the  
SENSE voltage to 50mV, and starts a 500µs timer. The  
MOSFETcurrentislimitedto50mV/RSENSE (seeFigure7).  
Iftheshortcircuitpersistsformorethan500µs, thecircuit  
breaker trips and pulls the GATE pin low, shutting off the  
MOSFET. The circuit breaker is reset by pulling UV low, or  
by cycling power to the part. If the short circuit clears  
before the 500µs timing interval the current limit will  
deactivate and release the GATE.  
Under some conditions, a short circuit at the output can  
cause the input supply to dip below the UV threshold. The  
LT4250 turns off once and then turns on until the elec-  
tronic circuit breaker is tripped. This can be minimized by  
adding a deglitching delay to the UV pin with a capacitor  
from UV to VEE. This capacitor forms an RC time constant  
with the resistors at UV, allowing the input supply to  
recover before the UV pin resets the circuit breaker.  
DRAIN  
50V/DIV  
GATE  
10V/DIV  
I
(Q1)  
D
5A/DIV  
1ms/DIV  
Figure 7. Short-Circuit Protection Waveforms  
4250lhf  
8
LT4250L/LT4250H  
U
W U U  
APPLICATIONS INFORMATION  
A circuit that automatically resets the circuit breaker after  
a current fault is shown in Figure 10. Transistors Q2 and  
Q3 along with R7, R8, C4 and D1 form a programmable  
one-shot circuit. Before a short occurs, the GATE pin is  
pulled high and Q3 is turned on, pulling node 2 to VEE.  
Resistor R8 turns off Q2. When a short occurs, the GATE  
pin is pulled low and Q3 turns off. Node 2 starts to charge  
C4 and Q2 turns on, pulling the UV pin low and resetting  
thecircuitbreaker.AssoonasC4isfullycharged,R8turns  
off Q2, UV goes high and the GATE starts to ramp up. Q3  
turns back on and quickly pulls node 2 back to VEE. Diode  
D1 clamps node 3 one diode drop below VEE. The duty  
cycle is set to 10% to prevent Q1 from overheating.  
–48V RTN  
(SHORT PIN)  
–48V RTN  
8
R4  
549k  
1%  
C3  
0.1µF  
100V  
V
DD  
3
2
UV  
OV  
R5  
6.49k  
1%  
1
LT4250H  
PWRGD  
+
C4  
22µF  
100V  
V
AND  
EE  
DRAIN  
20V/DIV  
R6  
10k  
1%  
V
SENSE  
5
GATE  
6
DRAIN  
7
EE  
R3  
1k  
5%  
4
I
(Q1)  
D
R7  
5A/DIV  
C2  
3.3nF  
100V  
*
220Ω  
R2  
D1  
5%  
10Ω  
BAT85  
5%  
R1  
0.02Ω  
5%  
C1  
3
4
150nF  
25V  
500µs/DIV  
48V  
* DIODES INC. SMAT70A  
4250 F09  
1
2
Q1  
IRF530  
Figure 8. Voltage Step on  
Input Supply Waveforms  
Figure 9. Circuit for Input Steps with Small C2 (<10nF)  
–48V RTN  
(SHORT PIN)  
–48V RTN  
8
R7  
1M  
5%  
R6  
549k  
1%  
R4  
549k  
1%  
V
DD  
2
3
2
UV  
OV  
C4  
1µF  
100V  
1
LT4250L  
PWRGD  
C3  
100µF  
100V  
+
R9  
R5  
V
EE  
SENSE  
5
GATE  
6
DRAIN  
7
10k 16.5k  
Q2  
1%  
1%  
4
2N2222  
R3  
1k, 5%  
3
Q3  
ZVN3310  
R2  
10Ω  
5%  
C1  
470nF  
25V  
*
C2  
15nF  
100V  
R8  
510k  
5%  
R1  
0.02Ω  
5%  
D1  
1N4148  
3
4
48V  
4250 F10a  
1
2
Q1  
IRF530  
* DIODES INC. SMAT70A  
NODE 2  
50V/DIV  
GATE  
2V/DIV  
1s/DIV  
Figure 10. Automatic Restart After Current Fault  
4250lhf  
9
LT4250L/LT4250H  
U
W U U  
APPLICATIONS INFORMATION  
Undervoltage and Overvoltage Detection  
internal transistor Q3 is turned off and I1 and Q2 clamp the  
PWRGD pin one SAT drop (0.3V) above the DRAIN pin.  
Transistor Q2 sinks the module’s pull-up current and the  
module turns off.  
The UV (Pin 3) and OV (Pin 2) pins can be used to detect  
undervoltage and overvoltage conditions at the power  
supply input. The UV and OV pins are internally connected  
to analog comparators with 130mV and 20mV of hyster- When the DRAIN voltage drops below VDL and the GATE  
esisrespectively.WhentheUVpinfallsbelowitsthreshold voltage is high, Q3 will turn on, shorting the bottom of I1  
or the OV pin rises above its threshold, the GATE pin is to DRAIN and turning Q2 off. The pull-up current in the  
immediatelypulledlow. TheGATEpinwillbeheldlowuntil module pulls the PWRGD pin high and enables the  
UV is high and OV is low.  
module.  
The undervoltage and overvoltage trip voltages can be When the DRAIN voltage of the LT4250L is high with  
programmed using a three resistor divider as shown in respecttoVEE ortheGATEvoltageislow, theinternalpull-  
Figure 11. With R4 = 549k, R5 = 6.49k and R6 = 10K, the down transistor Q2 is off and the PWRGD pin is in a high  
undervoltage threshold is set to 38.5V (with a 43V release impedance state (Figure 13). The PWRGD pin will be  
from undervoltage) and the overvoltage threshold is set to pulledhighbythemodule’sinternalpull-upcurrentsource,  
71V. The resistor divider will also gain up the hysteresis turning the module off. When the DRAIN voltage drops  
at the UV pin and OV pin to 4.5V and 1.2V at the input belowVDL andtheGATEvoltageishigh,Q2willturnonand  
respectively.  
the PWRGD pin will pull low, enabling the module.  
The PWRGD signal can also be used to turn on an LED or  
optoisolator to indicate that the power is good as shown  
in Figure 14.  
PWRGD/PWRGD Output  
The PWRGD/PWRGD output can be used to directly en-  
able a power module when the input voltage to the module  
is within tolerance. The LT4250L has a PWRGD output for Gate Pin Voltage Regulation  
modules with an active low enable input, and the LT4250H  
has a PWRGD output for modules with an active high  
enable input.  
When the supply voltage to the chip is more than 20V, the  
GATEpinvoltageisregulatedat13.5VaboveVEE. Thegate  
voltage will be no greater than 18V for supply voltages up  
When the DRAIN voltage of the LT4250H is high with to 80V.  
respect to VEE (Figure 12) or the GATE voltage is low, the  
ACTIVE HIGH  
ENABLE MODULE  
–48V RTN  
(SHORT PIN)  
+
+
–48V RTN  
–48V RTN  
V
V
IN  
OUT  
8
(SHORT PIN)  
V
DD  
LT4250H  
PWRGD  
Q2  
1
–48V RTN  
R4  
I
1
+
GATE  
+
ON/OFF  
3
2
8
UV  
OV  
C3  
R4  
R5  
R6  
V
DD  
V
GH  
R5  
R6  
Q3  
EE  
3
2
R4 + R5+ R6  
R5 + R6  
+
V
V
= 1.255  
= 1.255  
UV  
UV  
OV  
+
(
(
)
)
V
DL  
V
OUT  
V
V
LT4250L/LT4250H  
OV  
IN  
+
7
DRAIN  
R3  
R4 + R5+ R6  
R6  
V  
V
EE  
SENSE  
GATE  
6
GATE  
V
EE  
4
5
4
*
48V  
C2  
C1  
4250 F11  
R2  
3
4
R1  
4250 F12  
48V  
1
2
Q1  
* DIODES INC. SMAT70A  
Figure 11. Undervoltage and Overvoltage Sensing  
Figure 12. Active High Enable Module  
4250lhf  
10  
LT4250L/LT4250H  
W U U  
U
APPLICATIO S I FOR ATIO  
–48V RTN  
(SHORT PIN)  
ACTIVE LOW  
ENABLE MODULE  
–48V RTN  
(SHORT PIN)  
PWRGD  
+
+
–48V RTN  
–48V RTN  
V
V
OUT  
IN  
R7  
8
8
R4  
549k  
1%  
51k  
V
5%  
DD  
LT4250L  
V
DD  
PWRGD  
Q2  
1
R4  
3
2
+
ON/OFF  
+
UV  
3
2
GATE  
R5  
6.49k  
1%  
UV  
C3  
LT4250L  
PWRGD  
1
R5  
R6  
V
GH  
MOC207  
OV  
V
+
+
V
R6  
10k  
1%  
EE  
OV  
V
DL  
SENSE  
5
GATE  
6
DRAIN  
7
V
V
OUT  
EE  
IN  
+
7
DRAIN  
4
R3  
1k, 5%  
C3  
+
V  
GATE  
V
EE  
GATE  
6
SENSE  
5
100µF  
4
100V  
R2  
10Ω  
5%  
C1  
470nF  
25V  
*
C2  
15nF  
100V  
*
R3  
R1  
0.02Ω  
5%  
C2  
C1  
R2  
3
4
3
4
R1  
48V  
4250 F14  
1
2
Q1  
IRF530  
48V  
4250 F13  
* DIODES INC. SMAT70A  
1
2
Q1  
* DIODES INC. SMAT70A  
Figure 14. Using PWRGD to Drive an Optoisolator  
Figure 13. Active Low Enable Module  
U
PACKAGE DESCRIPTIO  
N8 Package  
8-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510)  
0.400*  
(10.160)  
MAX  
0.130 ± 0.005  
0.300 – 0.325  
0.045 – 0.065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
8
1
7
6
5
0.065  
(1.651)  
TYP  
0.255 ± 0.015*  
(6.477 ± 0.381)  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
0.020  
(0.508)  
MIN  
(3.175)  
MIN  
+0.035  
–0.015  
2
4
3
0.325  
0.018 ± 0.003  
0.100  
(2.54)  
BSC  
+0.889  
8.255  
(0.457 ± 0.076)  
(
)
N8 1098  
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
0.010 – 0.020  
(0.254 – 0.508)  
7
5
8
6
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
0.016 – 0.050  
(0.406 – 1.270)  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
TYP  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
SO8 1298  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1
2
3
4
4250lhf  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LT4250L/LT4250H  
U
TYPICAL APPLICATION  
Using an EMI Filter Module  
using the Lucent FLTR100V10 filter module is shown in  
Figure 15. When using a filter, an optoisolator is required  
to prevent common mode transients from destroying the  
PWRGD and ON/OFF pins.  
Many applications place an EMI filter module in the power  
path to prevent switching noise of the module from being  
injected back onto the power supply. A typical application  
–48V RTN  
(SHORT PIN)  
–48V RTN  
R7  
51k  
5%  
8
LUCENT  
V
DD  
JW050A1-E  
MOC207  
1
2
9
8
7
1
7
+
+
+
R4  
549k  
1%  
5V  
V
V
OUT  
PWRGD  
IN  
SENSE  
+
C7  
3
2
+
+
V
V
OUT  
ON/OFF  
TRIM  
UV  
DRAIN  
LT4250L  
GATE  
100µF  
16V  
IN  
C2  
15nF  
100V  
R5  
6.49k  
1%  
C3  
0.1µF  
100V  
C4  
0.1µF  
100V  
C5  
100µF  
100V  
C6  
+
LUCENT  
FLTR100V10  
0.1µF  
6
5
6
SENSE  
R3  
1k  
100V  
OV  
V
4
V
V
V
V
OUT  
R6  
10k  
1%  
IN  
OUT  
CASE  
IN  
SENSE  
5
5%  
EE  
CASE  
1N4003  
R2  
10Ω  
5%  
C1  
470nF  
25V  
4
3
R1  
0.02Ω  
5%  
4250 F15  
*
3
4
48V  
* DIODES INC. SMAT70A  
1
2
Q1  
IRF530  
Figure 15. Typical Application Using a Filter Module  
RELATED PARTS  
PART NUMBER  
LTC®1421  
DESCRIPTION  
COMMENTS  
Operates from 3V to 12V  
Dual Hot Swap Controller with Additional –12V Control  
Hot Swap Controller in SO-8  
LTC1422  
System Reset Output with Programmable Delay  
LT4250 is a Pin-Compatible Upgrade to LT1640  
LT1640AH/LT1640AL  
LT1641-1/LT1641-2  
LTC1642  
–48V Hot Swap Controller in SO-8  
+48V Hot Swap Controller in SO-8  
Fault Protected Hot Swap Controller  
PCI Hot Swap Controller  
Foldback Current Limit, 9V to 80V, Auto-Retry/Latch-Off  
Operates Up to 16.5V, Protected to 33V  
LTC1643  
3.3V, 5V, 12V, 12V Supplies for PCI Bus  
LTC1645  
Dual Hot Swap Controller  
Operates from 1.2V to 12V, Power Sequencing  
3.3V, 5V Supplies with Precharge and Local PCI Reset Logic  
Dual ON Pins for Supplies from 3V to 15V  
LTC1646  
Dual CompactPCI Hot Swap Controller  
Dual Hot Swap Controller  
LTC1647  
LTC4211  
Hot Swap Controller with Multifunction Current Control  
–48 Hot Swap Controller in SOT-23  
2.5V to 16.5V Supplies, Active Inrush Current Limiting  
LTC4251  
Active Current Limiting, Fast Comparator  
for Catastrophic Faults  
LTC4252  
–48 Hot Swap Controller in MSOP  
Active Current Limiting, Fast Comparator for Catastrophic  
Faults, Separate UV/0V Pins, Power-Good Output  
4250lhf  
LT/TP 0402 2K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
LINEAR TECHNOLOGY CORPORATION 2001  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY