LT1640HIS8#TRPBF [Linear]

LT1640 - Negative Voltage Hot Swap Controller; Package: SO; Pins: 8; Temperature Range: -40°C to 85°C;
LT1640HIS8#TRPBF
型号: LT1640HIS8#TRPBF
厂家: Linear    Linear
描述:

LT1640 - Negative Voltage Hot Swap Controller; Package: SO; Pins: 8; Temperature Range: -40°C to 85°C

光电二极管
文件: 总16页 (文件大小:190K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1640L/LT1640H  
Negative Voltage  
Hot Swap Controller  
U
DESCRIPTIO  
FEATURES  
The LT®1640L/LT1640H is an 8-pin, negative voltage Hot  
SwapTM controller that allows a board to be safely inserted  
and removed from a live backplane. Inrush current is  
limited to a programmable value by controlling the gate  
voltage of an external N-channel pass transistor. The pass  
transistor is turned off if the input voltage is less than the  
programmable undervoltage threshold or greater than the  
overvoltage threshold. A programmable electronic circuit  
breaker protects the system against shorts. The PWRGD  
(LT1640L) or PWRGD (LT1640H) signal can be used to  
directly enable a power module. The LT1640L is designed  
for modules with a low enable input and the LT1640H for  
modules with a high enable input.  
Allows Safe Board Insertion and Removal  
from a Live 48V Backplane  
Operates from –10V to 80V  
Programmable Inrush Current  
Programmable Electronic Circuit Breaker  
Programmable Overvoltage Protection  
Programmable Undervoltage Lockout  
Power Good Control Output  
U
APPLICATIO S  
Central Office Switching  
48V Distributed Power Systems  
Negative Power Supply Control  
The LT1640L/LT1640H is available in 8-pin PDIP and SO  
packages.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Hot Swap is a trademark of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
(SHORT PIN)  
GND  
GND  
Input Inrush Current  
R4†  
8
562k  
V
DD  
1%  
3
2
INRUSH  
CURRENT  
1A/DIV  
UV  
OV  
R5†  
9.09k  
1%  
1
LT1640L  
PWRGD  
UV = 37V  
R6†  
10k  
1%  
V
SENSE  
5
GATE  
6
DRAIN  
7
EE  
GATE – VEE  
10V/DIV  
4
OV = 71V  
*
1N4148  
C1†  
150nF  
25V  
R3†  
18k  
5%  
R2  
10Ω  
5%  
C2†  
3.3nF  
100V  
R1†  
0.02Ω  
5%  
DRAIN  
50V/DIV  
3
4
48V  
VEE  
50V/DIV  
2
1
2
Q1  
IRF530  
ON/OFF  
1
9
8
+
+
+
5V  
V
V
V
IN  
OUT  
SENSE  
CONTACT  
BOUNCE  
* DIODES INC. SMAT70A  
C3  
0.1µF  
100V  
+
C4  
+
C5  
THESE COMPONENTS ARE APPLICATION  
SPECIFIC AND MUST BE SELECTED BASED  
UPON OPERATING CONDITIONS AND DESIRED  
PERFORMANCE. SEE APPLICATIONS  
INFORMATION.  
7
6
5
100µF  
TRIM  
100µF  
16V  
1640 F06b  
100V  
5ms/DIV  
SENSE  
4
V
IN  
OUT  
1640 TA01  
LUCENT  
JW050A1-E  
1640lhfb  
1
LT1640L/LT1640H  
W W  
U W  
ABSOLUTE MAXIMUM RATINGS  
(Note 1), All Voltages Referred to VEE  
Supply Voltage (VDD – VEE) .................... 0.3V to 100V  
DRAIN, PWRGD, PWRGD Pins ............... 0.3V to 100V  
SENSE, GATE Pins.................................... 0.3V to 20V  
UV, OV Pins .............................................. 0.3V to 60V  
Maximum Junction Temperature ......................... 125°C  
Operating Temperature Range  
LT1640LC/LT1640HC ............................. 0°C to 70°C  
LT1640LI/LT1640HI .......................... 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
W
U
/O  
PACKAGE RDER I FOR ATIO  
ORDER PART  
ORDER PART  
NUMBER  
NUMBER  
TOP VIEW  
TOP VIEW  
PWRGD  
OV  
1
2
3
4
8
7
6
5
V
DD  
PWRGD  
OV  
1
2
3
4
8
7
6
5
V
DD  
LT1640LCN8  
LT1640LCS8  
LT1640LIN8  
LT1640LIS8  
LT1640HCN8  
LT1640HCS8  
LT1640HIN8  
LT1640HIS8  
DRAIN  
GATE  
DRAIN  
GATE  
UV  
UV  
V
SENSE  
V
SENSE  
EE  
EE  
N8 PACKAGE  
8-LEAD PDIP  
S8 PACKAGE  
N8 PACKAGE  
8-LEAD PDIP  
S8 PACKAGE  
8-LEAD PLASTIC SO  
8-LEAD PLASTIC SO  
S8 PART MARKING  
S8 PART MARKING  
TJMAX = 125°C, θJA = 120°C/W (N8)  
JMAX = 125°C, θJA = 150°C/W (S8)  
TJMAX = 125°C, θJA = 120°C/W (N8)  
TJMAX = 125°C, θJA = 150°C/W (S8)  
T
1640L  
1640LI  
1640H  
1640HI  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
The denotes the specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 25°C. (Note 2), VDD = 48V, VEE = 0V unless otherwise noted.  
SYMBOL PARAMETER  
DC  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Supply Operating Range  
Supply Current  
10  
80  
5
V
mA  
mV  
µA  
DD  
I
UV = 3V, OV = V , SENSE = V  
EE  
1.3  
50  
DD  
EE  
V
Circuit Breaker Trip Voltage  
GATE Pin Pull-Up Current  
GATE Pin Pull-Down Current  
SENSE Pin Current  
V
= (V  
– V )  
EE  
40  
30  
24  
60  
60  
70  
CB  
CB  
SENSE  
I
I
I
Gate Drive On, V  
= V  
EE  
45  
50  
PU  
GATE  
Any Fault Condition  
= 50mV  
mA  
µA  
PD  
V
20  
SENSE  
SENSE  
V  
GATE  
External Gate Drive  
(V  
GATE  
(V  
GATE  
– V ), 15V V 80V  
10  
6
13.5  
8
18  
15  
V
V
EE  
DD  
– V ), 10V V < 15V  
EE  
DD  
V
V
V
UV Pin High Threshold Voltage  
UV Pin Low Threshold Voltage  
UV Pin Hysteresis  
UV Low to High Transition  
UV High to Low Transition  
1.213  
1.198  
1.243  
1.223  
20  
1.272  
1.247  
V
V
UVH  
UVL  
UVHY  
INUV  
mV  
µA  
V
I
UV Pin Input Current  
V
= V  
0.02  
1.223  
1.203  
20  
0.5  
1.247  
1.232  
UV  
EE  
V
V
V
OV Pin High Threshold Voltage  
OV Pin Low Threshold Voltage  
OV Pin Hysteresis  
OV Low to High Transition  
OV High to Low Transition  
1.198  
1.165  
OVH  
OVL  
V
mV  
OVHY  
INOV  
I
OV Pin Input Current  
V
= V  
–0.03  
0.5  
µA  
OV  
EE  
1640lhfb  
2
LT1640L/LT1640H  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 2), VDD = 48V, VEE = 0V unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
1.4  
0.4  
50  
MAX  
UNITS  
V
V
Power Good Threshold  
V
– V , High to Low Transition  
1.1  
2.0  
V
V
PG  
DRAIN  
DRAIN  
EE  
Power Good Threshold Hysteresis  
Drain Input Bias Current  
PGHY  
DRAIN  
I
V
= 48V  
10  
500  
µA  
V
PWRGD Output Low Voltage  
PWRGD (LT1640L), (V  
– V ) < V  
OL  
DRAIN  
EE  
PG  
I
I
= 1mA  
= 5mA  
0.48  
1.50  
0.8  
3.0  
V
V
OUT  
OUT  
PWRGD Output Low Voltage  
(PWRGD – DRAIN)  
PWRGD (LT1640H), V  
= 5V  
DRAIN  
I
= 1mA  
0.75  
0.05  
1.0  
10  
V
OUT  
I
Output Leakage  
PWRGD (LT1640L), V  
= 80V  
=48V,  
µA  
OH  
DRAIN  
V
PWRGD  
R
Power Good Output Impedance  
(PWRGD to DRAIN)  
PWRGD (LT1640H), (V  
– V ) < V  
PG  
2
2
6.5  
kΩ  
OUT  
DRAIN  
EE  
AC  
t
t
t
t
t
t
OV High to GATE Low  
UV Low to GATE Low  
OV Low to GATE High  
UV High to GATE High  
SENSE High to Gate Low  
Figures 1, 2  
Figures 1, 3  
Figures 1, 2  
Figures 1, 3  
Figures 1, 4  
1.7  
1.5  
5.5  
6.5  
3
µs  
µs  
µs  
µs  
µs  
PHLOV  
PHLUV  
PLHOV  
PLHUV  
PHLSENSE  
PHLPG  
4
DRAIN Low to PWRGD Low  
DRAIN Low to (PWRGD – DRAIN) High  
(LT1640L) Figures 1, 5  
(LT1640H) Figures 1, 5  
0.5  
0.5  
µs  
µs  
t
DRAIN High to PWRGD High  
DRAIN High to (PWRGD – DRAIN) Low  
(LT1640L) Figures 1, 5  
(LT1640H) Figures 1, 5  
0.5  
0.5  
µs  
µs  
PLHPG  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: All currents into device pins are positive; all currents out of device  
pins are negative. All voltages are referenced to V unless otherwise  
EE  
specified.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Supply Current vs Supply Voltage  
Supply Current vs Temperature  
Gate Voltage vs Supply Voltage  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
15  
14  
13  
12  
11  
10  
9
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
0
8
7
6
20  
40  
SUPPLY VOLTAGE (V)  
80  
50 25  
0
25  
50  
75  
100  
0
100  
60  
0
80  
100  
20  
40  
60  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
1640 G02  
1640 G01  
1640 G03  
1640lhfb  
3
LT1640L/LT1640H  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Circuit Breaker Trip Voltage  
Gate Pull-Up Current  
vs Temperature  
Gate Voltage vs Temperature  
vs Temperature  
15.0  
14.5  
48  
47  
46  
45  
44  
43  
42  
41  
40  
55  
54  
V
= 0V  
GATE  
53  
14.0  
13.5  
52  
51  
50  
49  
13.0  
12.5  
12.0  
48  
50 25  
0
25  
50  
75  
100  
50  
0
25  
50  
75  
100  
25  
75  
50  
25  
0
25  
50  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1640 G04  
1640 G05  
1640 G06  
Gate Pull-Down Current  
vs Temperature  
PWRGD Output Impedance  
vs Temperature (LT1640H)  
PWRGD Output Low Voltage  
vs Temperature (LT1640L)  
8
7
55  
52  
49  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
– V > 2.4V  
EE  
V
= 2V  
I
= 1mA  
DRAIN  
GATE  
OUT  
6
5
46  
43  
40  
4
3
2
50 25  
0
25  
50  
75  
100  
50 25  
0
25  
50  
75  
100  
50 25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1640 G09  
1640 G07  
1640 G08  
U
U
U
PIN FUNCTIONS  
PWRGD/PWRGD(Pin1):PowerGoodOutputPin.Thispin  
will toggle when VDRAIN is within VPG of VEE. This pin can  
be connected directly to the enable pin of a power module.  
pin which pulls the module’s enable pin low, forcing it off.  
When VDRAIN drops below VPG, the PWRGD sink current  
is turned off and a 6.5k resistor is connected between  
PWRGD and DRAIN, allowing the module’s pull-up cur-  
rent to pull the enable pin high and turn on the module.  
When the DRAIN pin of the LT1640L is above VEE by more  
thanVPG,thePWRGDpinwillbehighimpedance,allowing  
the pull-up current of the module’s enable pin to pull the  
pin high and turn the module off. When VDRAIN drops  
below VPG, the PWRGD pin sinks current to VEE, pulling  
the enable pin low and turning on the module.  
OV (Pin 2): Analog Overvoltage Input. When OV is pulled  
above the 1.223V low to high threshold, an overvoltage  
conditionisdetectedandtheGATEpinwillbeimmediately  
pulled low. The GATE pin will remain low until OV drops  
below the 1.203V high to low threshold.  
When the DRAIN pin of the LT1640H is above VEE by more  
than VPG, the PWRGD pin will sink current to the DRAIN  
1640lhfb  
4
LT1640L/LT1640H  
U
U
U
PIN FUNCTIONS  
UV (Pin 3): Analog Undervoltage Input. When UV is If the circuit breaker trip current is set to twice the normal  
pulled below the 1.223V high to low threshold, an under- operating current, only 25mV is dropped across the  
voltage condition is detected and the GATE pin will be sense resistor during normal operation. To disable the  
immediately pulled low. The GATE pin will remain low circuit breaker, VEE and SENSE can be shorted together.  
until UV rises above the 1.243 low to high threshold.  
GATE (Pin 6): Gate Drive Output for the External  
The UV pin is also used to reset the electronic circuit N-Channel. The GATE pin will go high when the following  
breaker. If the UV pin is cycled low and high following the start-upconditionsaremet:theUVpinishigh, theOVpin  
trip of the circuit breaker, the circuit breaker is reset and is low and (VSENSE – VEE) < 50mV. The GATE pin is pulled  
a normal power-up sequence will occur.  
high by a 45µA current source and pulled low with a  
50mA current source.  
VEE (Pin 4): Negative Supply Voltage Input. Connect to  
the lower potential of the power supply.  
DRAIN (Pin 7): Analog Drain Sense Input. Connect this  
pin to the drain of the external N-channel and the Vpin  
of the power module. When the DRAIN pin is below VPG,  
the PWRGD or PWRGD pin will toggle.  
SENSE (Pin 5): Circuit Breaker Sense Pin. With a sense  
resistor placed in the supply path between VEE and  
SENSE, the circuit breaker will trip when the voltage  
across the resistor exceeds 50mV. Noise spikes of less VDD (Pin 8): Positive Supply Voltage Input. Connect this  
than 2µs are filtered out and will not trip the circuit pin to the higher potential of the power supply inputs and  
breaker.  
the V+ pin of the power module. The input supply voltage  
ranges from 10V to 80V.  
W
BLOCK DIAGRA  
V
DD  
UV  
V
CC  
V
AND  
CC  
REFERENCE  
GENERATOR  
REF  
+
OUTPUT  
DRIVE  
PWRGD/PWRGD  
REF  
LOGIC  
AND  
GATE DRIVE  
+
50mV  
OV  
+
+
+
+
V
PG  
V
EE  
1640 BD  
V
EE  
SENSE  
GATE  
DRAIN  
1640lhfb  
5
LT1640L/LT1640H  
TEST CIRCUIT  
R
5k  
+
V
PWRGD/PWRGD  
OV  
V
DD  
5V  
+
48V  
DRAIN  
V
OV  
V
V
DRAIN  
LT1640L/LT1640H  
UV  
GATE  
V
UV  
V
SENSE  
EE  
SENSE  
1640 F01  
Figure 1. Test Circuit  
W U  
W
TIMING DIAGRAMS  
2V  
1.223V  
OV  
2V  
1.223V  
1.203V  
1.243V  
UV  
0V  
0V  
t
t
t
t
PHLOV  
PLHOV  
1V  
PHLUV  
PLHUV  
1V  
GATE  
GATE  
1V  
1V  
1640 F02  
1640 F03  
Figure 2. OV to GATE Timing  
Figure 3. UV to GATE Timing  
1.8V  
50mV  
1.4V  
SENSE  
GATE  
DRAIN  
V
EE  
t
t
t
PHLSENSE  
1V  
PLHPG  
PHLPG  
1V  
PWRGD  
DRAIN  
1V  
V
EE  
1640 F04  
1.8V  
0V  
Figure 4. SENSE to GATE Timing  
1.4V  
t
t
PLHPG  
1V  
PHLPG  
1V  
PWRGD  
1640 F05  
V
– V  
= 0V  
DRAIN  
PWRGD  
Figure 5. DRAIN to PWRGD/PWRGD Timing  
1640lhfb  
6
LT1640L/LT1640H  
U
W U U  
APPLICATIONS INFORMATION  
Hot Circuit Insertion  
Power Supply Ramping  
Whencircuitboardsareinsertedintoalive48Vbackplane,  
the bypass capacitors at the input of the board’s power  
module or switching power supply can draw huge tran-  
sient currents as they charge up. The transient currents  
can cause permanent damage to the board’s components  
and cause glitches on the system power supply.  
The input to the power module on a board is controlled by  
placing an external N-channel pass transistor (Q1) in the  
power path (Figure 6a, all waveforms are with respect to  
the VEE pin of the LT1640). R1 provides current fault  
detection and R2 prevents high frequency oscillations.  
Resistors R4, R5 and R6 provide undervoltage and over-  
voltage sensing. By ramping the gate of Q1 up at a slow  
rate, the surge current charging load capacitors C3 and C4  
can be limited to a safe value when the board makes  
connection.  
The LT1640 is designed to turn on a board’s supply  
voltage in a controlled manner, allowing the board to be  
safely inserted or removed from a live backplane. The chip  
also provides undervoltage, overvoltage and overcurrent  
protection while keeping the power module off until its  
input voltage is stable and within tolerance.  
Resistor R3 and capacitor C2 act as a feedback network to  
accurately control the inrush current. The inrush current  
can be calculated with the following equation:  
IINRUSH = (45µA • CL)/C2  
where CL is the total load capacitance, C3 + C4 + module  
input capacitance.  
(SHORT PIN)  
GND  
GND  
VICOR  
8
R4  
562k  
1%  
VI-J3D-CY  
C3  
0.1µF  
100V  
C4  
100µF  
100V  
+
V
+
+
DD  
5V  
V
V
IN  
OUT  
3
2
UV = 37V  
OV = 71V  
UV  
OV  
+
C5  
R5  
9.09k  
1%  
1
LT1640H  
PWRGD  
GATE IN  
100µF  
16V  
V
V
R6  
10k  
1%  
IN  
OUT  
V
SENSE  
5
GATE  
6
DRAIN  
7
EE  
4
2× 1N4148  
*
R2  
10Ω  
5%  
C1  
150nF  
25V  
R3  
18k  
5%  
C2  
3.3nF  
100V  
R1  
0.02Ω  
5%  
3
4
1640 F06a  
48V  
* DIODES INC. SMAT70A  
1
2
Q1  
IRF530  
Figure 6a. Inrush Control Circuitry  
1640lhfb  
7
LT1640L/LT1640H  
U
W U U  
APPLICATIONS INFORMATION  
Capacitor C1 and resistor R3 prevent Q1 from momen-  
tarily turning on when the power pins first make contact.  
Without C1 and R3, capacitor C2 would pull the gate of Q1  
up to a voltage roughly equal to VEE • C2/CGS(Q1) before  
the LT1640 could power up and actively pull the gate low.  
By placing capacitor C1 in parallel with the gate capaci-  
tance of Q1 and isolating them from C2 using resistor R3  
the problem is solved. The value of C1 should be:  
R3’svalueisnotcriticalandisgivenby(VINMAX +VGATE)/  
5mA.  
The waveforms are shown in Figure 6b. When the power  
pins make contact, they bounce several times. While the  
contactsarebouncing,theLT1640sensesanundervoltage  
condition and the GATE is immediately pulled low when  
the power pins are disconnected.  
Once the power pins stop bouncing, the GATE pin starts to  
ramp up. When Q1 turns on, the GATE voltage is held  
constant by the feedback network of R3 and C2. When the  
DRAIN voltage has finished ramping, the GATE pin then  
ramps to its final value.  
V
INMAX VTH  
C2 + C  
(
)
GD  
VTH  
where VTH is the MOSFET’s minimum gate threshold and  
VINMAX is the maximum operating input voltage.  
INRUSH  
CURRENT  
1A/DIV  
GATE – VEE  
10V/DIV  
DRAIN  
50V/DIV  
VEE  
50V/DIV  
CONTACT  
BOUNCE  
1640 F06b  
5ms/DIV  
Figure 6b. Inrush Control Waveforms  
1640lhfb  
8
LT1640L/LT1640H  
U
W U U  
APPLICATIONS INFORMATION  
Electronic Circuit Breaker  
on R7. This voltage will be counted into the circuit breaker  
trip voltage just as the voltage across the sense resistor.  
A small resistor is recommended for R7. A 100for R7  
willcausea2mVerror.Thefollowingequationcanbeused  
to estimate the delay time at the SENSE pin:  
The LT1640 features an electronic circuit breaker function  
that protects against short circuits or excessive supply  
currents. By placing a sense resistor between the VEE and  
SENSEpin, thecircuitbreakerwillbetrippedwheneverthe  
voltage across the sense resistor is greater than 50mV for  
more than 3µs as shown in Figure 7.  
V(t)V(tO)  
t = –R C •In 1–  
V – V(tO)  
i
Note that the circuit breaker threshold should be set  
sufficiently high to account for the sum of the load current  
andtheinrushcurrent.Iftheloadcurrentcanbecontrolled  
bythePWRGD/PWRGDpin(asinFigure6a),thethreshold  
can be set lower, since it will never need to accommodate  
inrush current and load current simultaneously.  
Where V(t) is the circuit breaker trip voltage, typically  
50mV. V(tO) is the voltage drop across the sense resistor  
before the short or over current condition occurs. Vi is the  
voltage across the sense resistor when the short current  
or over current is applied on it.  
Example: A system has a 1A current load and a 0.02Ω  
sense resistor is used. An extended delay circuit needs to  
be designed for a 50µs delay time after the load jumps to  
5A. In this case:  
Whenthecircuitbreakertrips,theGATEpinisimmediately  
pulled to VEE and the external N-channel turns off. The  
GATE pin will remain low until the circuit breaker is reset  
by pulling UV low, then high or cycling power to the part.  
V(t) = 50mV  
If more than 3µs deglitching time is needed to reject  
current noise, an external resistor and capacitor can be  
added to the sense circuit as shown in Figure 8. R7 and C3  
act as a lowpass filter that will slow down the SENSE pin  
voltage from rising too fast. Since the SENSE pin will  
source current, typically 20µA, there will be a voltage drop  
V(tO) = 20mV  
Vi = 5A • 0.02= 100mV  
If R7 = 100, then C3 = 1µF.  
(SHORT PIN)  
GND  
GND  
8
R4  
562k  
V
INRUSH  
CURRENT  
2A/DIV  
DD  
1%  
3
UV  
OV  
UV = 37V  
OV = 71V  
R5  
9.09k  
1%  
1
LT1640L  
PWRGD  
2
+
C
L
100µF  
GATE – VEE  
4V/DIV  
R6  
10k  
1%  
100V  
V
EE  
SENSE  
5
GATE  
6
DRAIN  
7
4
C3  
1N4148  
*
R7  
R2  
10Ω  
5%  
VEE  
50V/DIV  
C1  
150nF  
25V  
R3  
18k  
5%  
C2  
3.3nF  
100V  
R1  
0.02Ω  
5%  
3
4
48V  
1640 F08  
1
2
Q1  
IRF530  
1640 F07  
4ms/DIV  
* DIODES INC. SMAT70A  
Figure 7. Start-Up Into a Short Circuit  
Figure 8. Extending the Short-Circuit Protection Delay  
1640lhfb  
9
LT1640L/LT1640H  
U
W U U  
APPLICATIONS INFORMATION  
Under some conditions, a short circuit at the output can  
cause the input supply to dip below the UV threshold,  
resetting the circuit breaker immediately.  
Transistors Q2 and Q3 along with R7, R8, C4 and D1 form  
a programmable one-shot circuit. Before a short occurs,  
the GATE pin is pulled high and Q3 is turned on, pulling  
node 2 to VEE. Resistor R8 turns off Q2. When a short  
occurs, the GATE pin is pulled low and Q3 turns off. Node  
2 starts to charge C4 and Q2 turns on, pulling the UV pin  
low and resetting the circuit breaker. As soon as C4 is fully  
charged, R8 turns off Q2, UV goes high and the GATE  
starts to ramp up. Q3 turns back on and quickly pulls node  
2 back to VEE. Diode D1 clamps node 3 one diode drop  
below VEE. The duty cycle is set to 10% to prevent Q1 from  
overheating.  
The LT1640 then cycles on and off repeatedly until the  
short is removed. This can be minimized by adding a  
deglitching delay to the UV pin with a capacitor from UV to  
VEE. This capacitor forms an RC time constant with the  
resistorsatUV, allowingtheinputsupplytorecoverbefore  
the UV pin resets the circuit breaker.  
A circuit that automatically resets the circuit breaker after  
a current fault is shown in Figure 9.  
(SHORT PIN)  
GND  
GND  
8
R6  
562k  
1%  
R7  
1M  
5%  
R4  
562k  
1%  
V
DD  
2
3
2
UV  
OV  
C4  
1
1µF  
LT1640L  
PWRGD  
C3  
100µF  
100V  
+
100V  
R9  
10k  
1%  
R5  
19.1k  
1%  
V
SENSE  
5
GATE  
6
DRAIN  
7
EE  
Q2  
2N2222  
4
1N4148  
3
*
Q3  
ZVN3310  
R2  
10Ω  
5%  
C1  
150nF  
25V  
R3  
18k  
5%  
C2  
3.3nF  
100V  
R8  
510k  
5%  
R1  
0.02Ω  
5%  
D1  
1N4148  
3
4
48V  
* DIODES INC. SMAT70A  
1640 F09a  
1
2
Q1  
IRF530  
NODE 2  
50V/DIV  
GATE  
2V/DIV  
1640 F09b  
1s/DIV  
Figure 9. Automatic Restart After Current Fault  
1640lhfb  
10  
LT1640L/LT1640H  
U
W U U  
APPLICATIONS INFORMATION  
Undervoltage and Overvoltage Detection  
undervoltage threshold is set to 37V and the overvoltage  
threshold is set to 71V. The resistor divider will also gain  
up the 20mV hysteresis at the UV pin and OV pin to 0.6V  
and 1.2V at the input respectively.  
The UV (Pin 3) and OV (Pin 2) pins can be used to detect  
undervoltage and overvoltage conditions at the power  
supply input. The UV and OV pins are internally connected  
toanalogcomparatorswith20mVofhysteresis. Whenthe  
UV pin falls below its threshold or the OV pin rises above  
its threshold, the GATE pin is immediately pulled low. The  
GATE pin will be held low until UV is high and OV is low.  
More hysteresis can be added to the UV threshold by  
connecting resistor R3 between the UV pin and the GATE  
pin as shown in Figure 10b.  
The undervoltage and overvoltage trip voltages can be  
programmed using a three resistor divider as shown in  
Figure 10a. With R4 = 562k, R5 = 9.09k and R6 = 10K, the  
(SHORT PIN)  
GND  
GND  
8
R4  
R5  
R6  
V
DD  
3
2
R4 + R5+ R6  
R5 + R6  
V
V
= 1.223  
= 1.223  
UV  
OV  
UV  
(
(
)
)
LT1640L  
LT1640H  
R4 + R5+ R6  
R6  
OV  
V
EE  
4
48V  
1640 F10a  
Figure 10a. Undervoltage and Overvoltage Sensing  
(SHORT PIN)  
GND  
GND  
8
R4  
506k  
1%  
V
DD  
2
3
OV  
UV = 37.6V  
UV = 43V  
OV = 71V  
R1  
562k  
1%  
LT1640L/LT1640H  
UV  
R5  
R2  
R3  
V
3
SENSE  
GATE  
6
EE  
8.87k 16.9k 1.62M  
1%  
1%  
1%  
4
5
R6  
C1  
10Ω  
150nF  
*
R1  
5%  
25V  
0.02Ω  
4
5%  
48V  
1640 F10b  
1
2
Q1  
IRF530  
* DIODES INC. SMAT70A  
Figure 10b. Programmable Hysteresis for Undervoltage Detection  
1640lhfb  
11  
LT1640L/LT1640H  
U
W U U  
APPLICATIONS INFORMATION  
Thenewthresholdvoltagewhentheinputmovesfromlow  
to high is:  
R4 + R5  
VOV = VOVH  
R5  
R2 R3 +R1R3 +R1R2  
With R4 = 506k, R5 = 8.87k and VOVH = 1.223V, the  
overvoltage threshold will be 71V.  
V
UV,LH = V  
UVH  
R2 R3  
where VUVH is typically 1.243V.  
PWRGD/PWRGD Output  
The new threshold voltage when the input moves from  
high to low is:  
The PWRGD/PWRGD output can be used to directly en-  
able a power module when the input voltage to the module  
is within tolerance. The LT1640L has a PWRGD output for  
modules with an active low enable input, and the LT1640H  
has a PWRGD output for modules with an active high  
enable input.  
R2 R3 +R1R3 +R1R2  
R1  
R3  
V
UV,HL = V  
VGATE  
UVL  
R2 R3  
where VUVL is typically 1.223V.  
The new hysteresis value will be:  
When the DRAIN voltage of the LT1640H is high with  
respect to VEE (Figure 11), the internal transistor Q3 is  
turned off and R7 and Q2 clamp the PWRGD pin one diode  
drop (0.7V) above the DRAIN pin. Transistor Q2 sinks  
the module’s pull-up current and the module turns off.  
R2 R3 +R1R3 +R1R2  
R1  
R3  
V
= V  
+ VGATE  
HYS  
UVHY  
R2 R3  
WithR1=562k,R2=16.9kandR3=1.62M,VGATE =13.5V  
andVUVHY =20mV, theundervoltagethresholdwillbe43V  
(from low to high) and 37.6V (from high to low). The  
hysteresis is 5.4V. A separate resistor divider should be  
used to set the overvoltage threshold given by:  
WhentheDRAINvoltagedropsbelowVPG, Q3willturnon,  
shorting the bottom of R7 to DRAIN and turning Q2 off.  
The pull-up current in the module then flows through R7,  
pulling the PWRGD pin high and enabling the module.  
ACTIVE HIGH  
(SHORT PIN)  
GND  
ENABLE MODULE  
+
+
GND  
V
V
IN  
OUT  
8
V
LT1640H  
DD  
PWRGD  
Q2  
1
7
R4  
R7  
6.5k  
+
ON/OFF  
3
2
UV  
C3  
+
+
R5  
R6  
Q3  
EE  
V
PG  
OV  
2× 1N4148  
V
V
V
IN  
OUT  
DRAIN  
V
SENSE  
5
GATE  
6
EE  
4
*
R3  
C2  
C1  
R2  
3
4
R1  
1640 F11  
48V  
1
2
Q1  
* DIODES INC. SMAT70A  
Figure 11. Active High Enable Module  
1640lhfb  
12  
LT1640L/LT1640H  
U
W U U  
APPLICATIONS INFORMATION  
When the DRAIN voltage of the LT1640L is high with  
respect to VEE, the internal pull-down transistor Q2 is off  
and the PWRGD pin is in a high impedance state (Fig-  
ure 12).ThePWRGDpinwillbepulledhighbythemodule’s  
internal pull-up current source, turning the module off.  
When the DRAIN voltage drops below VPG, Q2 will turn on  
and the PWRGD pin will pull low, enabling the module.  
Gate Pin Voltage Regulation  
When the supply voltage to the chip is more than 15.5V,  
theGATEpinvoltageisregulatedat13.5VaboveVEE. Ifthe  
supply voltage is less than 15.5V, the GATE voltage will be  
about 2V below the supply voltage. At the minimum 10V  
supplyvoltage,thegatevoltageisguaranteedtobegreater  
than 6V. The gate voltage will be no greater than 18V for  
supply voltages up to 80V.  
The PWRGD signal can also be used to turn on an LED or  
optoisolator to indicate that the power is good as shown  
in Figure 13.  
ACTIVE LOW  
(SHORT PIN)  
GND  
ENABLE MODULE  
+
+
OUT  
GND  
V
IN  
V
8
V
LT1640L  
UV  
DD  
PWRGD  
Q2  
1
7
R4  
+
ON/OFF  
3
2
+
C3  
+
V
PG  
R5  
R6  
V
EE  
OUT  
OV  
V
IN  
V
DRAIN  
1N4148  
V
4
SENSE GATE  
EE  
5
6
*
R3  
C2  
C1  
R2  
3
4
R1  
1640 F12  
48V  
1
2
Q1  
* DIODES INC. SMAT70A  
Figure 12. Active Low Enable Module  
(SHORT PIN)  
GND  
GND  
R7  
51k  
5%  
PWRGD  
8
R4  
562k  
+
C3  
100µF  
100V  
V
DD  
1%  
3
2
UV  
OV  
MOC207  
R5  
9.09k  
1%  
1
LT1640L  
PWRGD  
R6  
10k  
1%  
V
SENSE  
5
GATE  
6
DRAIN  
7
EE  
4
1N4148  
R2  
10Ω  
5%  
C1  
150nF  
25V  
*
R3  
18k  
5%  
C2  
3.3nF  
100V  
R1  
0.02Ω  
5%  
3
4
48V  
1640 F13  
1
2
Q1  
IRF530  
* DIODES INC. SMAT70A  
Figure 13. Using PWRGD to Drive an Optoisolator  
1640lhfb  
13  
LT1640L/LT1640H  
U
PACKAGE DESCRIPTION  
N8 Package  
8-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510)  
0.400*  
(10.160)  
MAX  
8
7
6
5
4
0.255 ± 0.015*  
(6.477 ± 0.381)  
1
2
3
0.130 ± 0.005  
0.300 – 0.325  
0.045 – 0.065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
0.020  
(0.508)  
MIN  
(3.175)  
MIN  
+0.035  
0.325  
–0.015  
0.018 ± 0.003  
(0.457 ± 0.076)  
0.100  
(2.54)  
BSC  
+0.889  
8.255  
(
)
N8 1098  
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
1640lhfb  
14  
LT1640L/LT1640H  
U
PACKAGE DESCRIPTION  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
7
5
8
6
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
1
3
4
2
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.016 – 0.050  
(0.406 – 1.270)  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
TYP  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
SO8 1298  
1640lhfb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT1640L/LT1640H  
U
TYPICAL APPLICATION  
Using an EMI Filter Module  
using the Lucent FLTR100V10 filter module is shown in  
Figure 14. When using a filter, an optoisolator is required  
to prevent common mode transients from destroying the  
PWRGD and ON/OFF pins.  
Many applications place an EMI filter module in the power  
path to prevent switching noise of the module from being  
injected back onto the power supply. A typical application  
R7  
51k  
5%  
(SHORT PIN)  
GND  
MOC207  
LUCENT  
JW050A1-E  
GND  
1
2
9
8
7
8
1
+
+
+
R4  
562k  
1%  
5V  
V
V
IN  
OUT  
SENSE  
PWRGD  
V
DD  
1N4148  
+
C7  
7
6
3
2
+
+
V
V
ON/OFF  
TRIM  
UV  
DRAIN  
100µF  
16V  
IN  
OUT  
C2  
3.3nF  
100V  
R5  
9.09k  
1%  
C3  
0.1µF  
100V  
C4  
0.1µF  
100V  
C5  
100µF  
100V  
C6  
0.1µF  
100V  
+
6
5
LT1640L  
LUCENT  
FLTR100V10  
1N4003  
SENSE  
R3  
18k  
5%  
OV  
V
GATE  
SENSE  
5
4
V
V
V
V
R6  
10k  
1%  
IN  
OUT  
CASE  
OUT  
IN  
EE  
CASE  
R2  
10Ω  
5%  
C1  
150nF  
25V  
4
3
R1  
0.02Ω  
5%  
1640 F14  
*
3
4
48V  
* DIODES INC. SMAT70A  
1
2
Q1  
IRF530  
Figure 14. Typical Application Using a Filter Module  
RELATED PARTS  
PART NUMBER  
LTC®1421  
LTC1422  
LT1640A  
LT1641  
DESCRIPTION  
COMMENTS  
Operates from 3V to 12V  
System Reset Output with Programmable Delay  
Dual Channel, Hot Swap Controller  
High Side Drive, Hot Swap Controller in SO-8  
–48V Hot Swap Controller in SO-8  
48V Hot Swap Controller  
LT1640 Pin Compatible, Improved Drain Pin Ruggedness  
Foldback Analog Current Limit  
LTC1642  
LTC1643  
LTC1645  
LTC1646  
LTC1647  
LTC4211  
LT4250  
Fault Protected Hot Swap Controller  
PCI Hot Swap Controller  
Operates Up to 16.5V, Protected to 33V  
3.3V, 5V, 12V, 12V Supplies for PCI Bus  
Operates from 1.2V to 12V, Power Sequencing  
3.3V, 5V Supplies, 1V Precharge, Local PCI Reset Logic  
Dual ON Pins for Supplies from 3V to 15V  
Dual Hot Swap Controller  
CompactPCITM Hot Swap Controller  
Dual Hot Swap Controller  
Low Voltage Hot Swap Controller  
–48V Hot Swap Controller in SO-8  
–48V Hot Swap Controller in SOT-23  
2.5V to 16.5V, Dual Level Circuit Breaker, Active Inrush Limiting  
LT1640 Pin Compatible, Active Current Limiting  
LTC4251  
Active Current Limiting, Fast Circuit Breaker for Short-Circuit Faults  
CompactPCI is a trademark of the PCI Industrial Computer Manufacturers Group  
1640lhfb  
LT/TP 1101 1.5K REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 1998  

相关型号:

LT1640H_15

Negative Voltage Hot Swap Controller
Linear

LT1640L

Negative Voltage Hot Swap Controller
Linear

LT1640LCN8

Negative Voltage Hot Swap Controller
Linear

LT1640LCN8#PBF

LT1640 - Negative Voltage Hot Swap Controller; Package: PDIP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1640LCS8

Negative Voltage Hot Swap Controller
Linear

LT1640LCS8#PBF

LT1640 - Negative Voltage Hot Swap Controller; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1640LCS8#TR

LT1640 - Negative Voltage Hot Swap Controller; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1640LCS8#TRPBF

LT1640 - Negative Voltage Hot Swap Controller; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1640LIN8

Negative Voltage Hot Swap Controller
Linear

LT1640LIN8#PBF

LT1640 - Negative Voltage Hot Swap Controller; Package: PDIP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1640LIS8

Negative Voltage Hot Swap Controller
Linear

LT1640LIS8#PBF

暂无描述
Linear