LT1763CS8#TRPBF [Linear]

LT1763 - 500mA, Low Noise, LDO Micropower Regulators; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C;
LT1763CS8#TRPBF
型号: LT1763CS8#TRPBF
厂家: Linear    Linear
描述:

LT1763 - 500mA, Low Noise, LDO Micropower Regulators; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C

线性稳压器IC 调节器 电源电路 光电二极管 输出元件
文件: 总16页 (文件大小:280K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1763 Series  
500mA, Low Noise, LDO  
Micropower Regulators  
U
FEATURES  
DESCRIPTIO  
The LT®1763 series are micropower, low noise, low  
dropout regulators. The devices are capable of supplying  
500mAofoutputcurrentwithadropoutvoltageof300mV.  
Designed for use in battery-powered systems, the low  
30µA quiescent current makes them an ideal choice.  
Quiescent current is well controlled; it does not rise in  
dropout as it does with many other regulators.  
Low Noise: 20µVRMS (10Hz to 100kHz)  
Output Current: 500mA  
Low Quiescent Current: 30µA  
Wide Input Voltage Range: 1.8V to 20V  
Low Dropout Voltage: 300mV  
Very Low Shutdown Current: < 1µA  
No Protection Diodes Needed  
Fixed Output Voltages: 1.5V, 1.8V, 2.5V, 3V, 3.3V, 5V  
Adjustable Output from 1.22V to 20V  
Stable with 3.3µF Output Capacitor  
Stable with Aluminum, Tantalum or  
Ceramic Capacitors  
A key feature of the LT1763 regulators is low output noise.  
With the addition of an external 0.01µF bypass capacitor,  
output noise drops to 20µVRMS over a 10Hz to 100kHz  
bandwidth. The LT1763 regulators are stable with output  
capacitors as low as 3.3µF. Small ceramic capacitors can  
be used without the series resistance required by other  
regulators.  
Reverse Battery Protection  
No Reverse Current  
Overcurrent and Overtemperature Protected  
8-Lead SO Package  
Internal protection circuitry includes reverse battery pro-  
tection, current limiting, thermal limiting and reverse  
current protection. The parts come in fixed output volt-  
ages of 1.5V, 1.8V, 2.5V, 3V, 3.3V and 5V, and as an  
adjustable device with a 1.22V reference voltage. The  
LT1763 regulators are available in the 8-lead SO package.  
U
APPLICATIO S  
Cellular Phones  
Battery-Powered Systems  
Noise-Sensitive Instrumentation Systems  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
Dropout Voltage  
400  
350  
300  
250  
200  
150  
100  
50  
3.3V Low Noise Regulator  
3.3V AT 500mA  
IN  
OUT  
V
20µV  
NOISE  
IN  
RMS  
+
3.7V TO  
20V  
1µF  
SENSE  
10µF  
LT1763-3.3  
0.01µF  
1763 TA01  
SHDN  
GND  
BYP  
0
0
100  
200  
300  
400  
500  
OUTPUT CURRENT (mA)  
1763 TA02  
1763fa  
1
LT1763 Series  
W W  
U W  
W U  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE/ORDER INFORMATION  
(Note 1)  
TOP VIEW  
IN Pin Voltage........................................................ ±20V  
OUT Pin Voltage .................................................... ±20V  
Input to Output Differential Voltage ....................... ±20V  
SENSE Pin Voltage ............................................... ±20V  
ADJ Pin Voltage ...................................................... ±7V  
BYP Pin Voltage.................................................... ±0.6V  
SHDN Pin Voltage................................................. ±20V  
Output Short-Circut Duration.......................... Indefinite  
Operating Junction Temperature Range  
*PIN 2: SENSE FOR LT1763-1.5/  
OUT  
SENSE/ADJ*  
GND  
1
2
3
4
8
7
6
5
IN  
LT1763-1.8/LT1763-2.5/  
LT1763-3/LT1763-3.3/LT1763-5  
ADJ FOR LT1763  
GND  
GND  
SHDN  
TJMAX = 150°C, θJA = 70°C/ W,  
θJC = 35°C/ W  
BYP  
SEE THE APPLICATIONS  
INFORMATION SECTION.  
S8 PACKAGE  
8-LEAD PLASTIC SO  
S8 PART MARKING  
ORDER PART NUMBER  
(Note 2) ............................................ 40°C to 125°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
LT1763CS8  
1763  
17633  
LT1763CS8-3  
LT1763CS8-3.3  
LT1763CS8-5  
LT1763CS8-1.5  
LT1763CS8-1.8  
LT1763CS8-2.5  
176315 176333  
176318 17635  
176325  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are TA = 25°C. (Note 2)  
PARAMETER  
CONDITIONS  
= 500mA (Notes 3, 11)  
MIN  
TYP  
MAX  
UNITS  
Minimum Operating Voltage  
I
1.8  
2.3  
V
LOAD  
Regulated Output Voltage  
(Note 4)  
LT1763-1.5  
LT1763-1.8  
LT1763-2.5  
LT1763-3  
LT1763-3.3  
LT1763-5  
LT1763  
V
= 2V, I  
= 1mA  
LOAD  
1.485  
1.462  
1.5  
1.5  
1.515  
1.538  
V
V
IN  
2.5V < V < 20V, 1mA < I  
< 500mA  
< 500mA  
< 500mA  
IN  
LOAD  
LOAD  
LOAD  
V
= 2.3V, I  
= 1mA  
LOAD  
1.782  
1.755  
1.8  
1.8  
1.818  
1.845  
V
V
IN  
2.8V < V < 20V, 1mA < I  
IN  
V
= 3V, I  
= 1mA  
LOAD  
2.475  
2.435  
2.5  
2.5  
2.525  
2.565  
V
V
IN  
3.5V < V < 20V, 1mA < I  
IN  
V
= 3.5V, I  
IN  
= 1mA  
LOAD  
2.970  
2.925  
3
3
3.030  
3.075  
V
V
IN  
4V < V < 20V, 1mA < I  
< 500mA  
LOAD  
V
= 3.8V, I  
= 1mA  
LOAD  
3.267  
3.220  
3.3  
3.3  
3.333  
3.380  
V
V
IN  
4.3V < V < 20V, 1mA < I  
< 500mA  
LOAD  
IN  
V
= 5.5V, I  
IN  
= 1mA  
LOAD  
4.950  
4.875  
5
5
5.050  
5.125  
V
V
IN  
6V < V < 20V, 1mA < I  
< 500mA  
LOAD  
ADJ Pin Voltage  
(Notes 3, 4)  
V
= 2V, I  
= 1mA  
LOAD  
1.208  
1.190  
1.22  
1.22  
1.232  
1.250  
V
V
IN  
2.22V < V < 20V, 1mA < I  
< 500mA  
LOAD  
IN  
Line Regulation  
LT1763-1.5  
LT1763-1.8  
LT1763-2.5  
LT1763-3  
V = 2V to 20V, I  
IN  
= 1mA  
1
1
1
1
1
1
1
5
5
5
5
5
5
5
mV  
mV  
mV  
mV  
mV  
mV  
mV  
IN  
LOAD  
V = 2.3V to 20V, I  
= 1mA  
LOAD  
V = 3V to 20V, I  
= 1mA  
IN  
LOAD  
V = 3.5V to 20V, I  
= 1mA  
IN  
LOAD  
LOAD  
LOAD  
LT1763-3.3  
LT1763-5  
V = 3.8V to 20V, I  
= 1mA  
= 1mA  
IN  
V = 5.5V to 20V, I  
IN  
LT1763 (Note 3) V = 2V to 20V, I  
= 1mA  
IN  
LOAD  
Load Regulation  
LT1763-1.5  
LT1763-1.8  
LT1763-2.5  
V
V
= 2.5V, I  
= 2.5V, I  
= 1mA to 500mA  
= 1mA to 500mA  
3
4
5
8
mV  
mV  
IN  
IN  
LOAD  
LOAD  
15  
V
V
= 2.8V, I  
= 2.8V, I  
= 1mA to 500mA  
= 1mA to 500mA  
9
18  
mV  
mV  
IN  
IN  
LOAD  
LOAD  
V
V
= 3.5V, I  
= 3.5V, I  
= 1mA to 500mA  
= 1mA to 500mA  
12  
25  
mV  
mV  
IN  
IN  
LOAD  
LOAD  
1763fa  
2
LT1763 Series  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are TA = 25°C. (Note 2)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Load Regulation  
LT1763-3  
V
V
= 4V, I  
= 4V, I  
= 1mA to 500mA  
= 1mA to 500mA  
7
15  
30  
mV  
mV  
IN  
IN  
LOAD  
LOAD  
LT1763-3.3  
LT1763-5  
V
V
= 4.3V, I  
= 4.3V, I  
= 1mA to 500mA  
= 1mA to 500mA  
7
17  
33  
mV  
mV  
IN  
IN  
LOAD  
LOAD  
V
V
= 6V, I  
= 6V, I  
= 1mA to 500mA  
= 1mA to 500mA  
12  
25  
50  
mV  
mV  
IN  
IN  
LOAD  
LOAD  
LT1763 (Note 3)  
V
V
= 2.3V, I  
= 2.3V, I  
= 1mA to 500mA  
= 1mA to 500mA  
2
6
12  
mV  
mV  
IN  
IN  
LOAD  
LOAD  
Dropout Voltage  
I
I
= 10mA  
= 10mA  
0.13  
0.17  
0.20  
0.30  
0.19  
0.25  
V
V
LOAD  
LOAD  
V
= V  
OUT(NOMINAL)  
IN  
(Notes 5, 6, 11)  
I
I
= 50mA  
= 50mA  
0.22  
0.32  
V
V
LOAD  
LOAD  
I
I
= 100mA  
= 100mA  
0.24  
0.34  
V
V
LOAD  
LOAD  
I
I
= 500mA  
= 500mA  
0.35  
0.45  
V
V
LOAD  
LOAD  
GND Pin Current  
I
I
I
I
I
I
= 0mA  
30  
65  
1.1  
2
75  
120  
1.6  
3
µA  
µA  
mA  
mA  
mA  
mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
V
= V  
= 1mA  
IN  
OUT(NOMINAL)  
(Notes 5, 7)  
= 50mA  
= 100mA  
= 250mA  
= 500mA  
5
8
11  
16  
Output Voltage Noise  
ADJ Pin Bias Current  
Shutdown Threshold  
C
= 10µF, C  
= 0.01µF, I  
= 500mA, BW = 10Hz to 100kHz  
20  
30  
µV  
RMS  
OUT  
BYP  
LOAD  
(Notes 3, 8)  
100  
2
nA  
V
V
= Off to On  
= On to Off  
0.8  
0.65  
V
V
OUT  
OUT  
0.25  
SHDN Pin Current  
(Note 9)  
V
V
= 0V  
= 20V  
0.1  
1
µA  
µA  
SHDN  
SHDN  
Quiescent Current in Shutdown  
Ripple Rejection  
V
V
= 6V, V  
= 0V  
SHDN  
0.1  
65  
1
µA  
IN  
– V  
= 1.5V (Avg), V  
= 0.5V , f = 120Hz,  
P-P RIPPLE  
50  
dB  
IN  
OUT  
RIPPLE  
I
= 500mA  
LOAD  
Current Limit  
V
V
= 7V, V  
= 0V  
700  
mA  
mA  
IN  
IN  
OUT  
OUT(NOMINAL)  
= V  
+ 1V, V  
= 0.1V  
520  
OUT  
Input Reverse Leakage Current  
V
= 20V, V  
= 0V  
OUT  
1
mA  
IN  
Reverse Output Current  
(Note 10)  
LT1763-1.5  
LT1763-1.8  
LT1763-2.5  
LT1763-3  
V
V
V
V
V
V
V
= 1.5V, V < 1.5V  
10  
10  
10  
10  
10  
10  
5
20  
20  
20  
20  
20  
20  
10  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
IN  
= 1.8V, V < 1.8V  
IN  
= 2.5V, V < 2.5V  
IN  
= 3V, V < 3V  
IN  
LT1763-3.3  
LT1763-5  
= 3.3V, V < 3.3V  
IN  
= 5V, V < 5V  
IN  
LT1763 (Note 3)  
= 1.22V, V < 1.22V  
IN  
all possible combinations of input voltage and output current. When  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
operating at maximum input voltage, the output current range must be  
limited. When operating at maximum output current, the input voltage  
range must be limited.  
of a device may be impaired.  
Note 2: The LT1763 regulators are tested and specified under pulse load  
conditions such that T T . The LT1763 is 100% tested at T = 25°C.  
J
A
A
Note 5: To satisfy requirements for minimum input voltage, the LT1763  
(adjustable version) is tested and specified for these conditions with an  
external resistor divider (two 250k resistors) for an output voltage of  
2.44V. The external resistor divider will add a 5µA DC load on the output.  
Performance at 40°C and 125°C is assured by design, characterization  
and correlation with statistical process controls.  
Note 3: The LT1763 (adjustable version) is tested and specified for these  
conditions with the ADJ pin connected to the OUT pin.  
Note 4: Operating conditions are limited by maximum junction  
temperature. The regulated output voltage specification will not apply for  
1763fa  
3
LT1763 Series  
ELECTRICAL CHARACTERISTICS  
Note 6: Dropout voltage is the minimum input to output voltage differential  
Note 9: SHDN pin current flows into the SHDN pin.  
needed to maintain regulation at a specified output current. In dropout, the  
Note 10: Reverse output current is tested with the IN pin grounded and the  
OUT pin forced to the rated output voltage. This current flows into the OUT  
pin and out the GND pin.  
output voltage will be equal to: V – V  
.
IN  
DROPOUT  
Note 7: GND pin current is tested with V = V  
or V = 2.3V  
IN  
IN  
OUT(NOMINAL)  
(whichever is greater) and a current source load. This means the device is  
tested while operating in its dropout region. This is the worst-case GND  
pin current. The GND pin current will decrease slightly at higher input  
voltages.  
Note 11: For the LT1763, LT1763-1.5 and LT1763-1.8 dropout voltage will  
be limited by the minimum input voltage specification under some output  
voltage/load conditions. See the curve of Minimum Input Voltage in the  
Typical Performance Characteristics.  
Note 8: ADJ pin bias current flows into the ADJ pin.  
U W  
TYPICAL PERFORMANCE CHARACTERISTICS  
Dropout Voltage  
Typical Dropout Voltage  
Guaranteed Dropout Voltage  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
= TEST POINTS  
I
= 500mA  
L
I
L
= 250mA  
T
J
= 125°C  
T
125°C  
25°C  
I
L
= 100mA  
J
T
J
T
J
= 25°C  
I
= 1mA  
L
I
L
= 10mA  
I
L
= 50mA  
0
0
0
–50  
0
25  
50  
75 100 125  
–25  
200  
200  
250 300 350 400 450 500  
0
50 100 150  
250 300 350 400 450 500  
0
50 100 150  
TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
1763 G03  
1763 G01  
1763 G02  
LT1763-1.5  
Output Voltage  
LT1763-1.8  
Output Voltage  
Quiescent Current  
1.84  
1.83  
1.82  
1.81  
1.80  
1.79  
1.78  
1.77  
1.76  
1.528  
1.521  
1.514  
1.507  
1.500  
1.493  
1.486  
1.479  
1.472  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
I
= 1mA  
I
= 1mA  
L
L
V
= V  
IN  
SHDN  
V
= 6V  
IN  
L
L
R = , I = 0 (LT1763-1.5/-1.8/-2.5/-3/-3.3/-5)  
L
R = 250k, I = 5µA (LT1763)  
L
0
–25  
0
25  
50  
75  
125  
–50  
100  
–25  
0
25  
50  
75  
125  
–25  
0
25  
50  
75  
125  
–50  
100  
–50  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1763 G51  
1763 G04  
1763 G50  
1763fa  
4
LT1763 Series  
U W  
TYPICAL PERFORMANCE CHARACTERISTICS  
LT1763-3.3  
Output Voltage  
LT1763-2.5  
Output Voltage  
LT1763-3  
Output Voltage  
3.060  
3.045  
3.030  
3.015  
3.000  
2.985  
2.970  
2.955  
2.940  
2.54  
2.53  
2.52  
2.51  
2.50  
2.49  
2.48  
2.47  
2.46  
3.360  
3.345  
3.330  
3.315  
3.300  
3.285  
3.270  
3.255  
3.240  
I
= 1mA  
I
= 1mA  
I = 1mA  
L
L
L
–25  
0
25  
50  
75  
125  
–50  
100  
–25  
0
25  
50  
75  
125  
–25  
0
25  
50  
75  
125  
–50  
100  
–50  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1763 G06  
1763 G05  
1763 G07  
LT1763-5  
Output Voltage  
LT1763  
ADJ Pin Voltage  
LT1763-1.5  
Quiescent Current  
5.100  
5.075  
5.050  
5.025  
5.000  
4.975  
4.950  
4.925  
4.900  
1.240  
250  
225  
200  
175  
150  
125  
100  
75  
I
L
= 1mA  
I = 1mA  
L
T = 25°C  
J
L
1.235  
1.230  
1.225  
1.220  
1.215  
1.210  
1.205  
1.200  
R
= ∞  
50  
V
= V  
IN  
SHDN  
25  
V
= 0V  
6
SHDN  
0
–25  
0
25  
50  
75  
125  
–25  
0
25  
50  
75  
125  
–50  
100  
–50  
100  
0
1
2
3
4
5
7
8
9
10  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
1763 G08  
1763 G09  
1763 G52  
LT1763-1.8  
Quiescent Current  
LT1763-2.5  
Quiescent Current  
LT1763-3  
Quiescent Current  
250  
225  
200  
175  
150  
125  
100  
75  
250  
225  
200  
175  
150  
125  
100  
75  
250  
225  
200  
175  
150  
125  
100  
75  
T = 25°C  
L
T = 25°C  
L
T = 25°C  
J
R = ∞  
L
J
J
R
= ∞  
R
= ∞  
50  
50  
50  
V
= V  
V
= V  
V
= V  
SHDN IN  
SHDN  
IN  
SHDN  
IN  
25  
25  
25  
V
= 0V  
6
V
= 0V  
8
V
SHDN  
= 0V  
8
SHDN  
5
SHDN  
0
0
0
0
1
2
3
4
7
8
9
10  
0
1
2
3
4
5
6
7
9
10  
0
1
2
3
4
5
6
7
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1763 G53  
1763 G10  
1763 G11  
1763fa  
5
LT1763 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
U W  
LT1763  
Quiescent Current  
LT1763-3.3  
Quiescent Current  
LT1763-5  
Quiescent Current  
40  
35  
30  
25  
20  
15  
10  
5
250  
225  
200  
175  
150  
125  
100  
75  
250  
225  
200  
175  
150  
125  
100  
75  
T = 25°C  
L
T = 25°C  
L
T = 25°C  
L
J
R
J
R
J
R
= 250k  
= ∞  
= ∞  
V
= V  
IN  
SHDN  
50  
50  
V
= V  
IN  
V
= V  
IN  
SHDN  
SHDN  
25  
25  
V
= 0V  
V
= 0V  
8
V
= 0V  
8
SHDN  
SHDN  
SHDN  
0
0
0
0
2
4
6
8
10 12 14 16 18 20  
0
1
2
3
4
5
6
7
9
10  
0
1
2
3
4
5
6
7
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1763 G14  
1763 G12  
1763 G13  
LT1763-1.5  
GND Pin Current  
LT1763-1.8  
GND Pin Current  
LT1763-2.5  
GND Pin Current  
1200  
1000  
800  
600  
400  
200  
0
1200  
1000  
800  
600  
400  
200  
0
1200  
1000  
800  
600  
400  
200  
0
R
L
= 50Ω  
L
R
L
= 36Ω  
R
L
= 30Ω  
L
I
= 50mA*  
L
I
= 50mA*  
I
= 50mA*  
T = 25°C  
T = 25°C  
T = 25°C  
J
V
J
V
J
V
= V  
= V  
= V  
IN  
SHDN  
OUT  
IN  
SHDN  
OUT  
IN  
SHDN  
OUT  
*FOR V  
= 2.5V  
*FOR V  
= 1.5V  
*FOR V  
= 1.8V  
R = 250Ω  
L
R
I
= 150Ω  
= 10mA*  
R
L
= 180Ω  
L
L
I
= 10mA*  
= 2.5k  
L
L
I
= 10mA*  
L
R
= 1.5k  
= 1mA*  
R
I
R
I
= 1.8k  
L
L
I
= 1mA*  
= 1mA*  
L
L
L
4
0
1
2
3
5
6
7
8
9
10  
4
4
0
1
2
3
5
6
7
8
9
10  
0
1
2
3
5
6
7
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1763 G15  
1763 G54  
1763 G55  
LT1763-3.3  
GND Pin Current  
LT1763-5  
GND Pin Current  
LT1763-3  
GND Pin Current  
1200  
1000  
800  
600  
400  
200  
0
1200  
1000  
800  
600  
400  
200  
0
1200  
1000  
800  
600  
400  
200  
0
R
L
= 60Ω  
R
L
= 66Ω  
L
R
I
= 100Ω  
L
L
L
I
= 50mA*  
I
= 50mA*  
= 50mA*  
T = 25°C  
T = 25°C  
T = 25°C  
J
J
V
J
V
= V  
= V  
V = V  
IN SHDN  
IN  
SHDN  
OUT  
IN  
SHDN  
OUT  
*FOR V  
= 3V  
*FOR V  
= 3.3V  
*FOR V  
= 5V  
OUT  
R
I
= 500Ω  
R
I
= 300Ω  
R
I
= 330Ω  
L
L
L
L
L
L
= 10mA*  
= 10mA*  
= 10mA*  
R
L
= 3k  
R
L
= 3.3k  
L
R
L
= 5k  
L
= 1mA*  
L
I
= 1mA*  
I
= 1mA*  
I
4
0
1
2
3
4
6
7
8
9
10  
0
1
2
3
4
6
7
8
9
10  
0
1
2
3
5
6
7
8
9
10  
5
5
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1763 G16  
1763 G17  
1763 G18  
1763fa  
6
LT1763 Series  
U W  
TYPICAL PERFORMANCE CHARACTERISTICS  
LT1763-1.8  
GND Pin Current  
LT1763  
GND Pin Current  
LT1763-1.5  
GND Pin Current  
1200  
1000  
800  
600  
400  
200  
0
12  
10  
8
12  
10  
8
T = 25°C  
T = 25°C  
J
J
V
= V  
V = V  
IN SHDN  
IN  
SHDN  
OUT  
R
L
= 24.4Ω  
L
*FOR V  
= 1.5V  
*FOR V  
= 1.8V  
OUT  
I
= 50mA*  
R
= 3Ω  
L
R
L
= 3.6Ω  
L
I
= 500mA*  
L
I
= 500mA*  
T = 25°C  
J
V
= V  
R
L
= 6Ω  
R
L
= 5Ω  
IN  
SHDN  
OUT  
L
L
6
6
*FOR V  
= 1.22V  
I
= 300mA*  
I
= 300mA*  
R
L
= 122Ω  
= 10mA*  
L
4
4
I
R
L
= 15Ω  
R
= 18Ω  
L
L
I
= 100mA*  
I
L
= 100mA*  
R
I
= 1.22k  
= 1mA*  
2
2
L
L
0
0
4
4
4
0
1
2
3
5
6
7
8
9
10  
0
1
2
3
5
6
7
8
9
10  
0
1
2
3
5
6
7
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1763 G19  
1763 G56  
1763 G57  
LT1763-2.5  
LT1763-3  
GND Pin Current  
LT1763-3.3  
GND Pin Current  
GND Pin Current  
12  
10  
8
12  
10  
8
12  
10  
8
T = 25°C  
T = 25°C  
J
T = 25°C  
J
J
V
= V  
V = V  
IN SHDN  
V
= V  
IN  
SHDN  
IN  
SHDN  
*FOR V  
= 3V  
*FOR V  
= 3.3V  
*FOR V  
= 2.5V  
OUT  
OUT  
OUT  
R
= 5Ω  
L
R
= 6Ω  
R = 6.6Ω  
L
L
I
= 500mA*  
L
I
= 500mA*  
I = 500mA*  
L
L
6
R
L
= 10Ω  
6
6
R = 11Ω  
L
L
L
R
L
= 8.33Ω  
L
I
= 300mA*  
I
= 300mA*  
I
= 300mA*  
4
4
4
R
L
= 30Ω  
R = 33Ω  
L
I = 100mA*  
L
R
L
= 25Ω  
L
L
I
= 100mA*  
I
= 100mA*  
2
2
2
0
0
0
4
4
0
1
2
3
5
6
7
8
9
10  
0
1
2
3
5
6
7
8
9
10  
4
0
1
2
3
5
6
7
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1763 G21  
1763 G22  
1763 G20  
LT1763-5  
GND Pin Current  
LT1763  
GND Pin Current  
GND Pin Current vs ILOAD  
12  
10  
8
12  
10  
8
12  
10  
8
T = 25°C  
T = 25°C  
J
J
V
IN  
= V  
+ 1V  
OUT(NOMINAL)  
V
= V  
V = V  
IN SHDN  
IN  
SHDN  
R
L
= 10Ω  
L
*FOR V  
= 5V  
*FOR V  
= 1.22V  
OUT  
I
= 500mA*  
OUT  
R
L
= 2.44Ω  
L
I
= 500mA*  
R
L
= 16.7Ω  
L
R = 4.07Ω  
L
L
6
6
6
I
= 300mA*  
I
= 300mA*  
4
4
4
R
L
= 12.2Ω  
R
L
= 50Ω  
L
L
I
= 100mA*  
I
= 100mA*  
2
2
2
0
0
0
4
0
1
2
3
5
6
7
8
9
10  
4
200  
250 300 350 400 450 500  
0
1
2
3
5
6
7
8
9
10  
0
50 100 150  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
OUTPUT CURRENT (mA)  
1763 G23  
1763 G24  
1763 G25  
1763fa  
7
LT1763 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
U W  
SHDN Pin Threshold  
(On-to-Off)  
SHDN Pin Threshold  
(Off-to-On)  
SHDN Pin Input Current  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
I
= 1mA  
L
I
= 500mA  
L
I
= 1mA  
L
–50  
0
25  
50  
75 100 125  
0
1
2
3
4
6
7
8
9
10  
50  
75 100 125  
–25  
5
–50  
0
25  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SHDN PIN VOLTAGE (V)  
1763 G27  
1763 G28  
1763 G26  
ADJ Pin Bias Current  
Current Limit  
SHDN Pin Input Current  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
140  
120  
100  
80  
V
= 0V  
V
= 20V  
OUT  
SHDN  
60  
40  
20  
0
0
2
3
4
5
6
7
1
–25  
0
25  
50  
75  
125  
–50  
0
25  
50  
75  
125  
–50  
100  
100  
–25  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1763 G31  
1763 G29  
1763 G30  
Current Limit  
Reverse Output Current  
Reverse Output Current  
20  
18  
16  
14  
12  
10  
8
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
V
V
V
V
V
= 0V, V  
= 1.22V (LT1763)  
OUT  
IN  
V
V
= 7  
OUT  
T = 25°C, V = 0V  
IN  
J
IN  
LT1763-1.5  
= 1.5V (LT1763-1.5)  
= 1.8V (LT1763-1.8)  
= 2.5V (LT1763-2.5)  
= 3V (LT1763-3)  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
= 0V  
CURRENT FLOWS  
INTO OUTPUT PIN  
V
OUT  
= V  
ADJ  
(LT1763)  
= 3.3V (LT1763-3.3)  
= 5V (LT1763-5)  
LT1763  
LT1763-1.8  
LT1763-2.5  
LT1763-3  
LT1763-1.5/-1.8/  
-2.5/-3/-3.3/-5  
LT1763-3.3  
6
4
LT1763  
LT1763-5  
2
0
–50  
0
25  
50  
75 100 125  
–25  
–50  
0
25  
50  
75 100 125  
0
1
2
3
4
6
7
8
9
10  
–25  
5
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OUTPUT VOLTAGE (V)  
1763 G34  
1763 G32  
1763 G33  
1763fa  
8
LT1763 Series  
U W  
TYPICAL PERFORMANCE CHARACTERISTICS  
Input Ripple Rejection  
Input Ripple Rejection  
Ripple Rejection  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
68  
66  
64  
62  
60  
58  
56  
54  
52  
C
= 0.01µF  
BYP  
C
= 10µF  
OUT  
C
= 1000pF  
BYP  
C
= 100pF  
BYP  
I
= 500mA  
L
V
= V  
+
I
= 500mA  
IN  
OUT (NOMINAL)  
L
V
= V  
+
IN  
OUT(NOMINAL)  
1V + 0.5V RIPPLE  
P-P  
C
= 4.7µF  
V
= V +  
OUT  
IN  
OUT(NOMINAL)  
1V + 50mV  
C
RIPPLE  
RMS  
AT f = 120Hz  
1V + 50mV  
C
RIPPLE  
1k  
RMS  
= 10µF  
= 0  
BYP  
I
= 500mA  
L
OUT  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
10k  
100k  
1M  
–25  
0
25  
50  
75  
125  
–50  
100  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
1763 G35  
1763 G36  
1763 G37  
LT1763  
Minimum Input Voltage  
Output Noise Spectral Density  
CBYP = 0  
Load Regulation  
5
0
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
10  
1
LT1763-1.5  
LT1763-2.5  
LT1763  
LT1763-3  
LT1763-1.8  
I
= 500mA  
L
LT1763-3.3  
LT1763-5  
–5  
I
= 1mA  
L
LT1763-3  
–10  
–15  
–20  
–25  
LT1763  
LT1763-3.3  
LT1763-5  
LT1763-2.5  
LT1763-1.8  
LT1763-1.5  
0.1  
0.01  
V
= V  
+ 1V  
IN  
L
OUT(NOMINAL)  
C
= 10µF  
OUT  
I = 1mA TO 500mA  
V
= 1.22V  
I = 500mA  
L
OUT  
–50  
0
25  
50  
75 100 125  
–25  
–25  
0
25  
50  
75  
125  
–50  
100  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1763 G40  
1763 G38  
1763 G39  
RMS Output Noise vs  
Bypass Capacitor  
RMS Output Noise vs  
Load Current (10Hz to 100kHz)  
Output Noise Spectral Density  
160  
10  
1
160  
140  
120  
100  
80  
C
= 10µF  
C
= 10µF  
C
L
= 10µF  
OUT  
OUT  
OUT  
C
= 0  
I = 500mA  
L
I
= 500mA  
140  
BYP  
C
= 0.01µF  
f = 10Hz TO 100kHz  
BYP  
C
= 1000pF  
BYP  
LT1763-5  
LT1763  
120 LT1763-5  
LT1763-5  
LT1763-3.3  
C
= 100pF  
BYP  
100  
80  
LT1763-3  
LT1763-2.5  
60  
60  
LT1763  
0.1  
C
BYP  
= 0.01µF  
40  
40  
LT1763  
LT1763-5  
LT1763  
LT1763-1.8  
20  
0
20  
LT1763-1.5  
0
0.01  
0.01  
10  
100  
1000  
(pF)  
10000  
0.1  
1
10  
100  
1000  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
C
BYP  
LOAD CURRENT (mA)  
1763 G41  
1763 G42  
1763 G43  
1763fa  
9
LT1763 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
U W  
LT1763-5  
LT1763-5  
10Hz to 100kHz Output Noise  
CBYP = 100pF  
LT1763-5  
10Hz to 100kHz Output Noise  
CBYP = 1000pF  
10Hz to 100kHz Output Noise  
CBYP = 0  
VOUT  
100µV/DIV  
VOUT  
100µV/DIV  
VOUT  
100µV/DIV  
1ms/DIV  
1ms/DIV  
COUT = 10µF  
IL = 500mA  
1ms/DIV  
COUT = 10µF  
IL = 500mA  
COUT = 10µF  
1763 G46  
1763 G47  
I
L = 500mA  
1763 G44  
LT1763-5  
LT1763-5  
Transient Response  
CBYP = 0  
LT1763-5  
Transient Response  
CBYP = 0.01µF  
10Hz to 100kHz Output Noise  
CBYP = 0.01µF  
V
C
C
= 6V  
V
C
C
= 6V  
IN  
IN  
IN  
IN  
0.4  
0.2  
0.10  
0.05  
0
= 10µF  
= 10µF  
= 10µF  
= 10µF  
OUT  
OUT  
0
VOUT  
100µV/DIV  
–0.2  
–0.4  
–0.05  
–0.10  
600  
400  
200  
0
600  
400  
200  
0
1ms/DIV  
COUT = 10µF  
IL = 500mA  
1763 G45  
400  
TIME (µs)  
40  
50 60 70 80 90 100  
TIME (µs)  
0
200  
600  
800  
1000  
0
10 20 30  
1763 G48  
1763 G49  
U
U
U
PIN FUNCTIONS  
voltage drops are caused by the resistance (RP) of PC  
traces between the regulator and the load. These may be  
eliminated by connecting the SENSE pin to the output at  
the load as shown in Figure 1 (Kelvin Sense Connection).  
OUT (Pin 1): Output. The output supplies power to the  
load. A minimum output capacitor of 3.3µF is required to  
prevent oscillations. Larger output capacitors will be  
required for applications with large transient loads to limit  
peak voltage transients. See the Applications Information  
section for more information on output capacitance and  
reverse output characteristics.  
R
P
8
1
IN  
OUT  
LT1763  
+
SENSE (Pin 2): Output Sense. For fixed voltage versions  
of the LT1763 (LT1763-1.5/LT1763-1.8/LT1763-2.5/  
LT1763-3/LT1763-3.3/LT1763-5), the SENSE pin is the  
input to the error amplifier. Optimum regulation will be  
obtained at the point where the SENSE pin is connected to  
the OUT pin of the regulator. In critical applications, small  
5
2
+
SHDN SENSE  
GND  
LOAD  
V
IN  
3
R
P
1763 F01  
Figure 1. Kelvin Sense Connection  
1763fa  
10  
LT1763 Series  
U
U
U
PIN FUNCTIONS  
Note that the voltage drop across the external PC traces  
willaddtothedropoutvoltageoftheregulator. TheSENSE  
pin bias current is 10µA at the nominal rated output  
voltage. The SENSE pin can be pulled below ground (as in  
a dual supply system where the regulator load is returned  
to a negative supply) and still allow the device to start and  
operate.  
SHDN (Pin 5): Shutdown. The SHDN pin is used to put the  
LT1763 regulators into a low power shutdown state. The  
output will be off when the SHDN pin is pulled low. The  
SHDN pin can be driven either by 5V logic or open-  
collector logic with a pull-up resistor. The pull-up resistor  
is required to supply the pull-up current of the open-  
collector gate, normally several microamperes, and the  
SHDN pin current, typically 1µA. If unused, the SHDN pin  
must be connected to VIN. The device will be in the low  
power shutdown state if the SHDN pin is not connected.  
ADJ (Pin 2): Adjust. For the adjustable LT1763, this is the  
input to the error amplifier. This pin is internally clamped  
to ±7V. It has a bias current of 30nA which flows into the  
pin (see curve of ADJ Pin Bias Current vs Temperature in  
theTypicalPerformanceCharacteristicssection).TheADJ  
pin voltage is 1.22V referenced to ground and the output  
voltage range is 1.22V to 20V.  
IN (Pin 8): Input. Power is supplied to the device through  
the IN pin. A bypass capacitor is required on this pin if the  
device is more than six inches away from the main input  
filter capacitor. In general, the output impedance of a  
battery rises with frequency, so it is advisable to include a  
bypass capacitor in battery-powered circuits. A bypass  
capacitor in the range of 1µF to 10µF is sufficient. The  
LT1763 regulators are designed to withstand reverse  
voltages on the IN pin with respect to ground and the OUT  
pin. In the case of a reverse input, which can happen if a  
battery is plugged in backwards, the device will act as if  
there is a diode in series with its input. There will be no  
reverse current flow into the regulator and no reverse  
voltage will appear at the load. The device will protect both  
itself and the load.  
BYP (Pin 4): Bypass. The BYP pin is used to bypass the  
reference of the LT1763 regulators to achieve low noise  
performance from the regulator. The BYP pin is clamped  
internally to ±0.6V (one VBE). A small capacitor from the  
output to this pin will bypass the reference to lower the  
output voltage noise. A maximum value of 0.01µF can be  
usedforreducingoutputvoltagenoisetoatypical20µVRMS  
over a 10Hz to 100kHz bandwidth. If not used, this pin  
must be left unconnected.  
GND (Pins 3, 6, 7): Ground.  
U
W U U  
APPLICATIONS INFORMATION  
TheLT1763seriesare500mAlowdropoutregulatorswith  
micropowerquiescentcurrentandshutdown.Thedevices  
are capable of supplying 500mA at a dropout voltage of  
300mV. Output voltage noise can be lowered to 20µVRMS  
over a 10Hz to 100kHz bandwidth with the addition of a  
0.01µFreferencebypasscapacitor. Additionally, therefer-  
ence bypass capacitor will improve transient response of  
the regulator, lowering the settling time for transient load  
conditions. The low operating quiescent current (30µA)  
drops to less than 1µA in shutdown. In addition to the low  
quiescentcurrent, theLT1763regulatorsincorporatesev-  
eral protection features which make them ideal for use in  
battery-powered systems. The devices are protected  
against both reverse input and reverse output voltages. In  
battery backup applications where the output can be held  
up by a backup battery when the input is pulled to ground,  
the LT1763-X acts like it has a diode in series with its  
output and prevents reverse current flow. Additionally, in  
dual supply applications where the regulator load is re-  
turnedtoanegativesupply,theoutputcanbepulledbelow  
groundbyasmuchas20Vandstillallowthedevicetostart  
and operate.  
Adjustable Operation  
The adjustable version of the LT1763 has an output  
voltage range of 1.22V to 20V. The output voltage is set by  
theratiooftwoexternalresistorsasshowninFigure2.The  
device servos the output to maintain the ADJ pin voltage  
at 1.22V referenced to ground. The current in R1 is then  
equalto1.22V/R1andthecurrentinR2isthecurrentinR1  
1763fa  
11  
LT1763 Series  
U
W U U  
APPLICATIONS INFORMATION  
plus the ADJ pin bias current. The ADJ pin bias current,  
30nA at 25°C, flows through R2 into the ADJ pin. The  
output voltage can be calculated using the formula in  
Figure 2. The value of R1 should be no greater than 250k  
to minimize errors in the output voltage caused by the ADJ  
pinbiascurrent.Notethatinshutdowntheoutputisturned  
off and the divider current will be zero. Curves of ADJ Pin  
Voltage vs Temperature and ADJ Pin Bias Current vs  
Temperature appear in the Typical Performance Charac-  
teristics section.  
10µs, with total output voltage deviation of less than 2.5%  
(see LT1763-5 Transient Response in the Typical Perfor-  
mance Characteristics). However, regulator start-up time  
is inversely proportional to the size of the bypass capaci-  
tor, slowing to 15ms with a 0.01µF bypass capacitor and  
10µF output capacitor.  
Output Capacitance and Transient Response  
The LT1763 regulators are designed to be stable with a  
wide range of output capacitors. The ESR of the output  
capacitor affects stability, most notably with small capaci-  
tors. A minimum output capacitor of 3.3µF with an ESR of  
3or less is recommended to prevent oscillations. The  
LT1763-X is a micropower device and output transient  
response will be a function of output capacitance. Larger  
values of output capacitance decrease the peak deviations  
and provide improved transient response for larger load  
current changes. Bypass capacitors, used to decouple  
individual components powered by the LT1763-X, will  
increase the effective output capacitor value. With larger  
capacitors used to bypass the reference (for low noise  
operation), larger values of output capacitors are needed.  
For 100pF of bypass capacitance, 4.7µF of output capaci-  
tor is recommended. With a 1000pF bypass capacitor or  
larger, a 6.8µF output capacitor is recommended.  
IN  
OUT  
V
OUT  
+
V
IN  
R2  
LT1763  
GND  
R2  
R1  
VOUT = 1.22V 1+  
ADJ = 1.22V  
ADJ = 30nA AT 25°C  
OUTPUT RANGE = 1.22V TO 20V  
+ I  
R2  
(
ADJ)(  
)
ADJ  
V
R1  
I
1763 F02  
Figure 2. Adjustable Operation  
The adjustable device is tested and specified with the ADJ  
pin tied to the OUT pin for an output voltage of 1.22V.  
Specifications for output voltages greater than 1.22V will  
beproportionalto the ratio ofthe desired outputvoltage to  
1.22V: VOUT/1.22V. For example, load regulation for an  
output current change of 1mA to 500mA is 2mV typical  
at VOUT = 1.22V. At VOUT = 12V, load regulation is:  
TheshadedregionofFigure3definestherangeoverwhich  
the LT1763 regulators are stable. The minimum ESR  
needed is defined by the amount of bypass capacitance  
used, while the maximum ESR is 3.  
(12V/1.22V)(–2mV) = 19.6mV  
Bypass Capacitance and Low Noise Performance  
The LT1763 regulators may be used with the addition of a  
bypass capacitor from VOUT to the BYP pin to lower output  
voltage noise. A good quality low leakage capacitor is  
recommended. This capacitor will bypass the reference of  
the regulator, providing a low frequency noise pole. The  
noise pole provided by this bypass capacitor will lower the  
output voltage noise to as low as 20µVRMS with the  
addition of a 0.01µF bypass capacitor. Using a bypass  
capacitor has the added benefit of improving transient  
response. With no bypass capacitor and a 10µF output  
capacitor, a 10mA to 500mA load step will settle to within  
1% of its final value in less than 100µs. With the addition  
of a 0.01µF bypass capacitor, the output will settle to  
within 1% for a 10mA to 500mA load step in less than  
4.0  
3.5  
3.0  
STABLE REGION  
2.5  
2.0  
C
= 0  
BYP  
1.5  
1.0  
0.5  
0
C
= 100pF  
BYP  
C
= 330pF  
BYP  
C
1000pF  
BYP  
1
3
6
9 10  
7 8  
2
4
5
OUTPUT CAPACITANCE (µF)  
1763 F03  
Figure 3. Stability  
1763fa  
12  
LT1763 Series  
U
W U U  
APPLICATIONS INFORMATION  
20  
Extra consideration must be given to the use of ceramic  
capacitors. Ceramic capacitors are manufactured with a  
variety of dielectrics, each with different behavior across  
temperature and applied voltage. The most common  
dielectrics used are Z5U, Y5V, X5R and X7R. The Z5U and  
Y5V dielectrics are good for providing high capacitances  
in a small package, but exhibit strong voltage and tem-  
perature coefficients as shown in Figures 4 and 5. When  
used with a 5V regulator, a 10µF Y5V capacitor can exhibit  
an effective value as low as 1µF to 2µF over the operating  
temperature range. The X5R and X7R dielectrics result in  
more stable characteristics and are more suitable for use  
as the output capacitor. The X7R type has better stability  
across temperature, while the X5R is less expensive and  
is available in higher values.  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10µF  
0
X5R  
–20  
–40  
–60  
Y5V  
–80  
–100  
0
8
12 14  
2
4
6
10  
16  
DC BIAS VOLTAGE (V)  
1763 F04  
Figure 4. Ceramic Capacitor DC Bias Characteristics  
40  
20  
Voltage and temperature coefficients are not the only  
sources of problems. Some ceramic capacitors have a  
piezoelectric response. A piezoelectric device generates  
voltage across its terminals due to mechanical stress,  
similar to the way a piezoelectric accelerometer or micro-  
phone works. For a ceramic capacitor the stress can be  
induced by vibrations in the system or thermal transients.  
The resulting voltages produced can cause appreciable  
amounts of noise, especially when a ceramic capacitor is  
used for noise bypassing. A ceramic capacitor produced  
Figure 6’s trace in response to light tapping from a pencil.  
Similar vibration induced behavior can masquerade as  
increased output voltage noise.  
X5R  
0
–20  
–40  
Y5V  
–60  
–80  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10µF  
–100  
50  
TEMPERATURE (°C)  
75  
100 125  
–50 –25  
0
25  
1763 F05  
Figure 5. Ceramic Capacitor Temperature Characteristics  
Thermal Considerations  
LT1763-5  
COUT = 10µF  
CBYP = 0.01µf  
ILOAD = 100mA  
The power handling capability of the device will be limited  
by the maximum rated junction temperature (125°C). The  
power dissipated by the device will be made up of two  
components:  
VOUT  
500µV/DIV  
1. Output current multiplied by the input/output voltage  
differential: (IOUT)(VIN – VOUT), and  
2. GND pin current multiplied by the input voltage:  
(IGND)(VIN).  
100ms/DIV  
1763 F06  
Figure 6. Noise Resulting from Tapping on a Ceramic Capacitor  
The GND pin current can be found by examining the GND  
Pin Current curves in the Typical Performance Character-  
istics.Powerdissipationwillbeequaltothesumofthetwo  
components listed above.  
1763fa  
13  
LT1763 Series  
U
W U U  
APPLICATIONS INFORMATION  
The LT1763 series regulators have internal thermal limit-  
ing designed to protect the device during overload condi-  
tions. For continuous normal conditions, the maximum  
junction temperature rating of 125°C must not be  
exceeded. It is important to give careful consideration to  
allsourcesofthermalresistancefromjunctiontoambient.  
Additional heat sources mounted nearby must also be  
considered.  
P = 250mA(6V – 3.3V) + 5mA(6V) = 0.71W  
The thermal resistance will be in the range of 60°C/W to  
86°C/W depending on the copper area. So the junction  
temperature rise above ambient will be approximately  
equal to:  
0.71W(75°C/W) = 53.3°C  
The maximum junction temperature will then be equal to  
the maximum junction temperature rise above ambient  
plus the maximum ambient temperature or:  
For surface mount devices, heat sinking is accomplished  
by using the heat spreading capabilities of the PC board  
and its copper traces. Copper board stiffeners and plated  
through-holes can also be used to spread the heat gener-  
ated by power devices.  
TJMAX = 50°C + 53.3°C = 103.3°C  
Protection Features  
The following table lists thermal resistance for several  
different board sizes and copper areas. All measurements  
were taken in still air on 3/32" FR-4 board with one ounce  
copper.  
The LT1763 regulators incorporate several protection  
featureswhichmakethemidealforuseinbattery-powered  
circuits. In addition to the normal protection features  
associated with monolithic regulators, such as current  
limiting and thermal limiting, the devices are protected  
against reverse input voltages, reverse output voltages  
and reverse voltages from output to input.  
Table 1. Measured Thermal Resistance  
COPPER AREA  
THERMAL RESISTANCE  
TOPSIDE* BACKSIDE  
BOARD AREA (JUNCTION-TO-AMBIENT)  
Current limit protection and thermal overload protection  
areintendedtoprotectthedeviceagainstcurrentoverload  
conditions at the output of the device. For normal opera-  
tion, the junction temperature should not exceed 125°C.  
2500mm2  
1000mm2  
225mm2  
100mm2  
50mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
60°C/W  
60°C/W  
68°C/W  
74°C/W  
86°C/W  
The input of the device will withstand reverse voltages of  
20V.Currentflowintothedevicewillbelimitedtolessthan  
1mA (typically less than 100µA) and no negative voltage  
will appear at the output. The device will protect both itself  
and the load. This provides protection against batteries  
which can be plugged in backward.  
*Device is mounted on topside.  
Calculating Junction Temperature  
Example: Given an output voltage of 3.3V, an input voltage  
range of 4V to 6V, an output current range of 0mA to  
250mA and a maximum ambient temperature of 50°C,  
what will the maximum junction temperature be?  
The output of the LT1763-X can be pulled below ground  
withoutdamagingthedevice.Iftheinputisleftopencircuit  
or grounded, the output can be pulled below ground by  
20V. For fixed voltage versions, the output will act like a  
large resistor, typically 500kor higher, limiting current  
flow to less than 100µA. For adjustable versions, the  
output will act like an open circuit; no current will flow out  
of the pin. If the input is powered by a voltage source, the  
output will source the short-circuit current of the device  
and will protect itself by thermal limiting. In this case,  
grounding the SHDN pin will turn off the device and stop  
the output from sourcing the short-circuit current.  
The power dissipated by the device will be equal to:  
IOUT(MAX)(VIN(MAX) – VOUT) + IGND(VIN(MAX)  
where,  
)
IOUT(MAX) = 250mA  
VIN(MAX) = 6V  
IGND at (IOUT = 250mA, VIN = 6V) = 5mA  
So,  
1763fa  
14  
LT1763 Series  
U
W U U  
APPLICATIONS INFORMATION  
The ADJ pin of the adjustable device can be pulled above  
or below ground by as much as 7V without damaging the  
device. Iftheinputisleftopencircuitorgrounded, theADJ  
pin will act like an open circuit when pulled below ground  
and like a large resistor (typically 100k) in series with a  
diode when pulled above ground.  
When the IN pin of the LT1763-X is forced below the OUT  
pin or the OUT pin is pulled above the IN pin, input current  
will typically drop to less than 2µA. This can happen if the  
input of the device is connected to a discharged (low  
voltage) battery and the output is held up by either a  
backup battery or a second regulator circuit. The state of  
the SHDN pin will have no effect on the reverse output  
current when the output is pulled above the input.  
In situations where the ADJ pin is connected to a resistor  
divider that would pull the ADJ pin above its 7V clamp  
voltage if the output is pulled high, the ADJ pin input  
current must be limited to less than 5mA. For example, a  
resistor divider is used to provide a regulated 1.5V output  
fromthe1.22Vreferencewhentheoutputisforcedto20V.  
The top resistor of the resistor divider must be chosen to  
limitthecurrentintotheADJpintolessthan5mAwhenthe  
ADJ pin is at 7V. The 13V difference between output and  
ADJpindividedbythe5mAmaximumcurrentintotheADJ  
pin yields a minimum top resistor value of 2.6k.  
100  
T = 25°C  
IN  
J
V
LT1763-1.5  
= 0V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
CURRENT FLOWS  
INTO OUTPUT PIN  
V
OUT  
= V  
ADJ  
(LT1763)  
LT1763  
LT1763-1.8  
LT1763-2.5  
LT1763-3  
LT1763-5  
LT1763-3.3  
In circuits where a backup battery is required, several  
different input/output conditions can occur. The output  
voltage may be held up while the input is either pulled to  
ground, pulledtosomeintermediatevoltageorisleftopen  
circuit. Current flow back into the output will follow the  
curve shown in Figure 7.  
4
0
1
2
3
5
6
7
8
9
10  
OUTPUT VOLTAGE (V)  
1763 F07  
Figure 7. Reverse Output Current  
U
TYPICAL APPLICATION  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
NOTE 3  
.045 ±.005  
.160 ±.005  
.050 BSC  
7
5
8
6
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.245  
MIN  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
.010 – .020  
(0.254 – 0.508)  
.030 ±.005  
TYP  
× 45°  
1
2
3
4
RECOMMENDED SOLDER PAD LAYOUT  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
NOTE:  
INCHES  
(MILLIMETERS)  
1. DIMENSIONS IN  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
.016 – .050  
2. DRAWING NOT TO SCALE  
(0.406 – 1.270)  
SO8 0303  
1763fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT1763 Series  
U
TYPICAL APPLICATION  
Paralleling of Regulators for Higher Output Current  
R1  
0.1  
3.3V  
1A  
IN  
OUT  
SENSE  
LT1763-3.3  
+
+
C1  
10µF  
C2  
10µF  
V
IN  
> 3.8V  
C4  
0.01µF  
SHDN  
BYP  
GND  
R2  
0.1Ω  
IN  
OUT  
C5  
0.01µF  
R6  
LT1763  
2k  
BYP  
ADJ  
SHDN  
SHDN  
GND  
R3  
2.2k  
R4  
2.2k  
R7  
1.21k  
8
3
2
R5  
10k  
+
1
1/2 LT1490  
C3  
4
0.01µF  
1763 TA03  
RELATED PARTS  
PART NUMBER  
LT1120  
DESCRIPTION  
COMMENTS  
Includes 2.5V Reference and Comparator  
125mA Low Dropout Regulator with 20µA I  
Q
LT1121  
150mA Micropower Low Dropout Regulator  
700mA Micropower Low Dropout Regulator  
30µA I , SOT-223 Package  
Q
LT1129  
50µA Quiescent Current  
LT1175  
500mA Negative Low Dropout Micropower Regulator  
300mA Low Dropout Micropower Regulator with Shutdown  
3A Low Dropout Regulator with 50µA I  
45µA I , 0.26V Dropout Voltage, SOT-223 Package  
Q
LT1521  
15µA I , Reverse Battery Protection  
Q
LT1529  
500mV Dropout Voltage  
Q
LT1613  
1.4MHz Single-Cell Micropower DC/DC Converter  
SOT-23 Package, Internally Compensated  
LT1761 Series  
LT1762 Series  
LT1764A  
LT1962  
100mA, Low Noise, Low Dropout Micropower Regulators in SOT-23 20µA Quiescent Current, 20µV  
Noise, ThinSOT  
Noise, MS8  
RMS  
RMS  
150mA, Low Noise, LDO Micropower Regulators  
3A, Fast Transient Response Low Dropout Regulator  
300mA, Fast Transient Response Low Dropout Regulator  
1.5A, Fast Transient Response Low Dropout Regulator  
50mA, 80V Low Noise, LDO Micropower Regulator  
25µA Quiescent Current, 20µV  
340mV Dropout Voltage, DD, TO220  
270mV Dropout Voltage, 20µV  
340mV Dropout Voltage, 40µV  
, MS8  
RML  
RML  
LT1963A  
LT3010  
, DD, TO220, S8, SOT-223  
300mV Dropout Voltage, MS8E  
1763fa  
LT/TP 1003 1K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 1999  

相关型号:

LT1763CS8-1.5

500mA, Low Noise, LDO Micropower Regulators
Linear

LT1763CS8-1.5#PBF

LT1763 - 500mA, Low Noise, LDO Micropower Regulators; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1763CS8-1.5#TRPBF

LT1763 - 500mA, Low Noise, LDO Micropower Regulators; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1763CS8-1.5-PBF

500mA, Low Noise, LDO Micropower Regulators
Linear

LT1763CS8-1.5-TR

500mA, Low Noise, LDO Micropower Regulators
Linear

LT1763CS8-1.5-TRPBF

500mA, Low Noise, LDO Micropower Regulators
Linear

LT1763CS8-1.5PBF

500mA, Low Noise, LDO Micropower Regulators
Linear

LT1763CS8-1.5TR

500mA, Low Noise, LDO Micropower Regulators
Linear

LT1763CS8-1.5TRPBF

500mA, Low Noise, LDO Micropower Regulators
Linear

LT1763CS8-1.8

500mA, Low Noise, LDO Micropower Regulators
Linear

LT1763CS8-1.8#TRPBF

LT1763 - 500mA, Low Noise, LDO Micropower Regulators; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1763CS8-1.8-PBF

500mA, Low Noise, LDO Micropower Regulators
Linear