LT1763MPDE-2.5#TRPBF [Linear]

LT1763 - 500mA, Low Noise, LDO Micropower Regulators; Package: DFN; Pins: 12; Temperature Range: -55°C to 125°C;
LT1763MPDE-2.5#TRPBF
型号: LT1763MPDE-2.5#TRPBF
厂家: Linear    Linear
描述:

LT1763 - 500mA, Low Noise, LDO Micropower Regulators; Package: DFN; Pins: 12; Temperature Range: -55°C to 125°C

线性稳压器IC 调节器 电源电路 光电二极管 输出元件
文件: 总22页 (文件大小:1120K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1763 Series  
500mA, Low Noise, LDO  
Micropower Regulators  
FEATURES  
DESCRIPTION  
TheLT®1763seriesaremicropower,lownoise,lowdropout  
regulators.Thedevicesarecapableofsupplying500mAof  
output current with a dropout voltage of 300mV. Designed  
foruseinbattery-poweredsystems,thelow3Aquiescent  
current makes them an ideal choice. Quiescent current is  
well controlled; it does not rise in dropout as it does with  
many other regulators.  
n
Low Noise: 20μV  
Output Current: 500mA  
(10Hz to 100kHz)  
RMS  
n
n
n
n
n
n
n
n
n
n
Low Quiescent Current: 30μA  
Wide Input Voltage Range: 1.8V to 20V  
Low Dropout Voltage: 300mV  
Very Low Shutdown Current: < 1μA  
No Protection Diodes Needed  
Fixed Output Voltages: 1.5V, 1.8V, 2.5V, 3V, 3.3V, 5V  
Adjustable Output from 1.22V to 20V  
Stable with 3.3μF Output Capacitor  
Stable with Aluminum, Tantalum or Ceramic  
Capacitors  
A key feature of the LT1763 regulators is low output noise.  
With the addition of an external 0.01μF bypass capacitor,  
output noise drops to 20μV  
bandwidth. The LT1763 regulators are stable with output  
capacitors as low as 3.3μF. Small ceramic capacitors can  
be used without the series resistance required by other  
regulators.  
over a 10Hz to 100kHz  
RMS  
n
n
n
n
Reverse Battery Protection  
No Reverse Current  
Overcurrent and Overtemperature Protected  
8-Lead SO and 12-Lead (4mm × 3mm) DFN  
Packages  
Internal protection circuitry includes reverse battery  
protection, current limiting, thermal limiting and reverse  
currentprotection.Thepartscomeinxedoutputvoltages  
of 1.5V, 1.8V, 2.5V, 3V, 3.3V and 5V, and as an adjustable  
device with a 1.22V reference voltage. The LT1763  
regulators are available in 8-lead SO and 12-lead, low  
profile (4mm × 3mm × 0.75mm) DFN packages.  
APPLICATIONS  
n
Cellular Phones  
n
Battery-Powered Systems  
n
Noise-Sensitive Instrumentation Systems  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and  
ThinSOT is a trademark of Linear Technology Corporation. All other trademarks are the property  
of their respective owners. Protected by U.S. Patents including 6144250, 6118263.  
TYPICAL APPLICATION  
Dropout Voltage  
400  
350  
300  
250  
200  
150  
100  
50  
3.3V Low Noise Regulator  
3.3V AT 500mA  
20μV NOISE  
IN  
OUT  
V
IN  
RMS  
+
3.7V TO  
20V  
1μF  
SENSE  
10μF  
LT1763-3.3  
0.01μF  
SHDN  
GND  
BYP  
1763 TA01  
0
0
100  
200  
300  
400  
500  
OUTPUT CURRENT (mA)  
1763 TA02  
1763fg  
1
LT1763 Series  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
IN Pin Voltage ........................................................ 20V  
OUT Pin Voltage..................................................... 20V  
Input to Output Differential Voltage........................ 20V  
SENSE Pin Voltage ............................................... 20V  
ADJ Pin Voltage ...................................................... 7V  
BYP Pin Voltage..................................................... 0.6V  
SHDN Pin Voltage ................................................ 20V  
Output Short-Circuit Duration ........................ Indefinite  
Operating Junction Temperature Range (Note 2)  
C, I Grade...........................................40°C to 125°C  
MP Grade...........................................55°C to 125°C  
Storage Temperature Range  
S8 Package........................................65°C to 150°C  
DFN Package......................................65°C to 150°C  
Lead Temperature (Soldering, 10 sec)  
S8 Package....................................................... 300°C  
PIN CONFIGURATION  
TOP VIEW  
NC  
OUT  
1
2
3
4
5
6
12 NC  
11 IN  
10 IN  
TOP VIEW  
OUT  
SENSE/ADJ*  
GND  
1
2
3
4
8
7
6
5
IN  
OUT  
GND  
GND  
SHDN  
13  
GND  
NC  
9
8
7
NC  
SENSE/ADJ*  
BYP  
SHDN  
GND  
BYP  
S8 PACKAGE  
8-LEAD PLASTIC SO  
DE PACKAGE  
12-LEAD (4mm × 3mm) PLASTIC DFN  
T
JMAX  
= 150°C, θ = 70°C/W, θ = 35°C/W  
JA JC  
T
= 125°C, θ = 40°C/W, θ = 5°C/W  
JA JC  
JMAX  
*PIN 2: SENSE FOR LT1763-1.5/LT1763-1.8/LT1763-2.5/LT1763-3/LT1763-3.3/LT1763-5  
ADJ FOR LT1763  
EXPOSED PAD (PIN 13) IS GND, MUST BE SOLDERED TO PCB  
*PIN 5: SENSE FOR LT1763-1.5/LT1763-1.8/LT1763-2.5/LT1763-3/LT1763-3.3/LT1763-5  
ADJ FOR LT1763  
SEE THE APPLICATIONS INFORMATION SECTION.  
SEE THE APPLICATIONS INFORMATION SECTION.  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING*  
1763  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
LT1763CDE#PBF  
LT1763CDE#TRPBF  
LT1763IDE#TRPBF  
LT1763MPDE#TRPBF  
LT1763CDE-1.5#TRPBF  
LT1763IDE-1.5#TRPBF  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
LT1763IDE#PBF  
1763  
LT1763MPDE#PBF  
LT1763CDE-1.5#PBF  
LT1763IDE-1.5#PBF  
LT1763MPDE-1.5#PBF  
LT1763CDE-1.8#PBF  
LT1763IDE-1.8#PBF  
LT1763MPDE-1.8#PBF  
LT1763CDE-2.5#PBF  
LT1763IDE-2.5#PBF  
LT1763MPDE-2.5#PBF  
1763  
76315  
76315  
LT1763MPDE-1.5#TRPBF 76315  
LT1763CDE-1.8#TRPBF  
LT1763IDE-1.8#TRPBF  
76318  
76318  
LT1763MPDE-1.8#TRPBF 76318  
LT1763CDE-2.5#TRPBF  
LT1763IDE-2.5#TRPBF  
76325  
76325  
LT1763MPDE-2.5#TRPBF 76325  
1763fg  
2
LT1763 Series  
ORDER INFORMATION  
LEAD FREE FINISH  
LT1763CDE-3#PBF  
LT1763IDE-3#PBF  
LT1763MPDE-3#PBF  
LT1763CDE-3.3#PBF  
LT1763IDE-3.3#PBF  
LT1763MPDE-3.3#PBF  
LT1763CDE-5#PBF  
LT1763IDE-5#PBF  
LT1763MPDE-5#PBF  
LT1763CS8#PBF  
LT1763IS8#PBF  
TAPE AND REEL  
PART MARKING*  
17633  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
40°C to 125°C  
40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
LT1763CDE-3#TRPBF  
LT1763IDE-3#TRPBF  
LT1763MPDE-3#TRPBF  
LT1763CDE-3.3#TRPBF  
LT1763IDE-3.3#TRPBF  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
8-Lead Plastic SO  
17633  
17633  
76333  
76333  
LT1763MPDE-3.3#TRPBF 76333  
LT1763CDE-5#TRPBF  
LT1763IDE-5#TRPBF  
LT1763MPDE-5#TRPBF  
LT1763CS8#TRPBF  
LT1763IS8#TRPBF  
LT1763MPS8#TRPBF  
LT1763CS8-1.5#TRPBF  
LT1763IS8-1.5#TRPBF  
LT1763CS8-1.8#TRPBF  
LT1763IS8-1.8#TRPBF  
LT1763CS8-2.5#TRPBF  
LT1763IS8-2.5#TRPBF  
LT1763CS8-3#TRPBF  
LT1763IS8-3#TRPBF  
LT1763CS8-3.3#TRPBF  
LT1763IS8-3.3#TRPBF  
LT1763CS8-5#TRPBF  
LT1763IS8-5#TRPBF  
TAPE AND REEL  
17635  
17635  
17635  
1763  
1763  
8-Lead Plastic SO  
LT1763MPS8#PBF  
LT1763CS8-1.5#PBF  
LT1763IS8-1.5#PBF  
LT1763CS8-1.8#PBF  
LT1763IS8-1.8#PBF  
LT1763CS8-2.5#PBF  
LT1763IS8-2.5#PBF  
LT1763CS8-3#PBF  
LT1763IS8-3#PBF  
LT1763CS8-3.3#PBF  
LT1763IS8-3.3#PBF  
LT1763CS8-5#PBF  
LT1763IS8-5#PBF  
LEAD BASED FINISH  
LT1763CDE  
1763MP  
176315  
176315  
176318  
176318  
176325  
176325  
17633  
17633  
176333  
176333  
17635  
17635  
PART MARKING*  
1763  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic SO  
PACKAGE DESCRIPTION  
LT1763CDE#TR  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
LT1763IDE  
LT1763IDE#TR  
1763  
LT1763MPDE  
LT1763MPDE#TR  
1763  
LT1763CDE-1.5  
LT1763CDE-1.5#TR  
LT1763IDE-1.5#TR  
LT1763MPDE-1.5#TR  
LT1763CDE-1.8#TR  
LT1763IDE-1.8#TR  
LT1763MPDE-1.8#TR  
LT1763CDE-2.5#TR  
LT1763IDE-2.5#TR  
LT1763MPDE-2.5#TR  
LT1763CDE-3#TR  
76315  
76315  
76315  
76318  
76318  
76318  
76325  
76325  
76325  
17633  
17633  
17633  
LT1763IDE-1.5  
LT1763MPDE-1.5  
LT1763CDE-1.8  
LT1763IDE-1.8  
LT1763MPDE-1.8  
LT1763CDE-2.5  
LT1763IDE-2.5  
LT1763MPDE-2.5  
LT1763CDE-3  
LT1763IDE-3  
LT1763IDE-3#TR  
LT1763MPDE-3  
LT1763MPDE-3#TR  
–55°C to 125°C  
1763fg  
3
LT1763 Series  
ORDER INFORMATION  
LEAD FREE FINISH  
LT1763CDE-3.3  
LT1763IDE-3.3  
LT1763MPDE-3.3  
LT1763CDE-5  
LT1763IDE-5  
TAPE AND REEL  
PART MARKING*  
76333  
PACKAGE DESCRIPTION  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
8-Lead Plastic SO  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
LT1763CDE-3.3#TR  
LT1763IDE-3.3#TR  
LT1763MPDE-3.3#TR  
LT1763CDE-5#TR  
LT1763IDE-5#TR  
LT1763MPDE-5#TR  
LT1763CS8#TR  
76333  
76333  
17635  
17635  
LT1763MPDE-5  
LT1763CS8  
17635  
1763  
LT1763IS8  
LT1763IS8#TR  
1763  
8-Lead Plastic SO  
LT1763MPS8  
LT1763CS8-1.5  
LT1763IS8-1.5  
LT1763CS8-1.8  
LT1763IS8-1.8  
LT1763CS8-2.5  
LT1763IS8-2.5  
LT1763CS8-3  
LT1763IS8-3  
LT1763MPS8#TR  
LT1763CS8-1.5#TR  
LT1763IS8-1.5#TR  
LT1763CS8-1.8#TR  
LT1763IS8-1.8#TR  
LT1763CS8-2.5#TR  
LT1763IS8-2.5#TR  
LT1763CS8-3#TR  
LT1763IS8-3#TR  
LT1763CS8-3.3#TR  
LT1763IS8-3.3#TR  
LT1763CS8-5#TR  
1763MP  
176315  
176315  
176318  
176318  
176325  
176325  
17633  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic SO  
17633  
8-Lead Plastic SO  
LT1763CS8-3.3  
LT1763IS8-3.3  
LT1763CS8-5  
LT1763IS8-5  
176333  
176333  
17635  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic SO  
17635  
8-Lead Plastic SO  
LT1763IS8-5#TR  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 2)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
Minimum Operating Voltage  
C, I Grade: I  
MP Grade: I  
= 500mA (Notes 3, 11)  
= 500mA (Notes 3, 11)  
1.8  
1.8  
2.3  
2.35  
V
V
LOAD  
LOAD  
Regulated Output Voltage  
(Note 4)  
LT1763-1.5  
LT1763-1.8  
LT1763-2.5  
LT1763-3  
V
= 2V, I  
= 1mA  
1.485  
1.462  
1.5  
1.5  
1.515  
1.538  
V
V
IN  
LOAD  
l
l
l
l
l
l
2.5V < V < 20V, 1mA < I  
< 500mA  
< 500mA  
< 500mA  
IN  
LOAD  
V
= 2.3V, I  
= 1mA  
LOAD  
1.782  
1.755  
1.8  
1.8  
1.818  
1.845  
V
V
IN  
2.8V < V < 20V, 1mA < I  
IN  
LOAD  
V
= 3V, I  
= 1mA  
2.475  
2.435  
2.5  
2.5  
2.525  
2.565  
V
V
IN  
LOAD  
3.5V < V < 20V, 1mA < I  
IN  
LOAD  
V
= 3.5V, I  
IN  
= 1mA  
LOAD  
2.970  
2.925  
3
3
3.030  
3.075  
V
V
IN  
4V < V < 20V, 1mA < I  
< 500mA  
LOAD  
LT1763-3.3  
LT1763-5  
V
= 3.8V, I  
= 1mA  
LOAD  
3.267  
3.220  
3.3  
3.3  
3.333  
3.380  
V
V
IN  
4.3V < V < 20V, 1mA < I  
< 500mA  
IN  
LOAD  
V
= 5.5V, I  
IN  
= 1mA  
LOAD  
4.950  
4.875  
5
5
5.050  
5.125  
V
V
IN  
6V < V < 20V, 1mA < I  
< 500mA  
LOAD  
1763fg  
4
LT1763 Series  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 2)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ADJ Pin Voltage  
(Notes 3, 4)  
LT1763  
V
= 2.2V, I  
= 1mA  
LOAD  
1.208  
1.190  
1.190  
1.220  
1.220  
1.220  
1.232  
1.250  
1.250  
V
V
V
IN  
l
l
C, I Grade: 2.3V < V < 20V, 1mA < I  
< 500mA  
LOAD  
IN  
IN  
LOAD  
MP Grade: 2.35V < V < 20V, 1mA < I  
< 500mA  
l
l
l
l
l
l
l
l
l
Line Regulation  
LT1763-1.5  
LT1763-1.5  
LT1763-1.8  
LT1763-2.5  
LT1763-3  
C, I Grade: ΔV = 2V to 20V, I  
= 1mA  
LOAD  
1
1
1
1
1
1
1
1
1
5
5
5
5
5
5
5
5
5
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
IN  
LOAD  
MP Grade: ΔV = 2.1V to 20V, I  
= 1mA  
IN  
ΔV = 2.3V to 20V, I  
= 1mA  
IN  
LOAD  
ΔV = 3V to 20V, I  
= 1mA  
IN  
LOAD  
ΔV = 3.5V to 20V, I  
= 1mA  
= 1mA  
= 1mA  
IN  
IN  
IN  
LOAD  
LOAD  
LOAD  
LT1763-3.3  
LT1763-5  
ΔV = 3.8V to 20V, I  
ΔV = 5.5V to 20V, I  
LT1763 (Note 3) C, I Grade: ΔV = 2V to 20V, I  
LT1763 (Note 3) MP Grade: ΔV = 2.1V to 20V, I  
= 1mA  
IN  
LOAD  
= 1mA  
IN  
LOAD  
Load Regulation  
LT1763-1.5  
LT1763-1.8  
LT1763-2.5  
LT1763-3  
V
V
= 2.5V, ΔI  
= 2.5V, ΔI  
= 1mA to 500mA  
3
8
mV  
mV  
IN  
IN  
LOAD  
LOAD  
l
l
l
l
l
l
= 1mA to 500mA  
15  
V
V
= 2.8V, ΔI  
= 2.8V, ΔI  
= 1mA to 500mA  
= 1mA to 500mA  
4
9
18  
mV  
mV  
IN  
IN  
LOAD  
LOAD  
V
V
= 3.5V, ΔI  
= 3.5V, ΔI  
= 1mA to 500mA  
= 1mA to 500mA  
5
12  
25  
mV  
mV  
IN  
IN  
LOAD  
LOAD  
V
V
= 4V, ΔI  
= 4V, ΔI  
= 1mA to 500mA  
= 1mA to 500mA  
7
15  
30  
mV  
mV  
IN  
IN  
LOAD  
LOAD  
LT1763-3.3  
LT1763-5  
V
V
= 4.3V, ΔI  
= 4.3V, ΔI  
= 1mA to 500mA  
= 1mA to 500mA  
7
17  
33  
mV  
mV  
IN  
IN  
LOAD  
LOAD  
V
V
= 6V, ΔI  
= 6V, ΔI  
= 1mA to 500mA  
= 1mA to 500mA  
12  
2
25  
50  
mV  
mV  
IN  
IN  
LOAD  
LOAD  
LT1763 (Note 3)  
V
= 2.3V, ΔI  
= 1mA to 500mA  
6
12  
12  
mV  
mV  
mV  
IN  
LOAD  
l
l
C, I Grade: V = 2.3V, ΔI  
= 1mA to 500mA  
LOAD  
IN  
IN  
LOAD  
MP Grade: V = 2.35V, ΔI  
= 1mA to 500mA  
Dropout Voltage  
I
I
= 10mA  
= 10mA  
0.13  
0.17  
0.20  
0.30  
0.19  
0.25  
V
V
LOAD  
LOAD  
l
l
l
l
V
= V  
OUT(NOMINAL)  
IN  
(Notes 5, 6, 11)  
I
I
= 50mA  
= 50mA  
0.22  
0.32  
V
V
LOAD  
LOAD  
I
I
= 100mA  
= 100mA  
0.24  
0.34  
V
V
LOAD  
LOAD  
I
I
= 500mA  
= 500mA  
0.35  
0.45  
V
V
LOAD  
LOAD  
l
l
l
l
l
l
GND Pin Current  
I
I
I
I
I
I
= 0mA  
30  
65  
1.1  
2
75  
120  
1.6  
3
μA  
μA  
mA  
mA  
mA  
mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
V
= V  
= 1mA  
IN  
OUT(NOMINAL)  
(Notes 5, 7)  
= 50mA  
= 100mA  
= 250mA  
= 500mA  
5
8
11  
16  
Output Voltage Noise  
ADJ Pin Bias Current  
Shutdown Threshold  
C
= 10μF, C  
= 0.01μF, I  
= 500mA, BW = 10Hz to 100kHz  
20  
30  
μV  
RMS  
OUT  
BYP  
LOAD  
(Notes 3, 8)  
100  
2
nA  
l
l
V
OUT  
V
OUT  
= Off to On  
= On to Off  
0.8  
0.65  
V
V
0.25  
50  
SHDN Pin Current  
(Note 9)  
V
SHDN  
V
SHDN  
= 0V  
= 20V  
0.1  
1
μA  
μA  
Quiescent Current in Shutdown  
Ripple Rejection  
V
IN  
= 6V, V  
= 0V  
0.1  
65  
1
μA  
dB  
SHDN  
V
LOAD  
– V  
= 1.5V (Avg), V  
= 0.5V , f  
= 120Hz,  
IN  
OUT  
RIPPLE  
P-P RIPPLE  
I
= 500mA  
1763fg  
5
LT1763 Series  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 2)  
PARAMETER  
CONDITIONS  
= 7V, V = 0V  
OUT  
MIN  
TYP  
MAX  
UNITS  
Current Limit  
V
IN  
l
l
C, I Grade: V = V  
+ 1V or 2.3V (Note 12), ΔV = 0.1V  
OUT  
520  
520  
mA  
mA  
IN  
OUT(NOMINAL)  
MP Grade: V = 2.35V (Note 12), ΔV  
= 0.1V  
IN  
OUT  
l
Input Reverse Leakage Current  
V
IN  
= –20V, V  
= 0V  
1
mA  
OUT  
Reverse Output Current  
(Note 10)  
LT1763-1.5  
LT1763-1.8  
LT1763-2.5  
LT1763-3  
V
V
V
V
V
V
V
= 1.5V, V < 1.5V  
10  
10  
10  
10  
10  
10  
5
20  
20  
20  
20  
20  
20  
10  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
IN  
= 1.8V, V < 1.8V  
IN  
= 2.5V, V < 2.5V  
IN  
= 3V, V < 3V  
IN  
LT1763-3.3  
LT1763-5  
= 3.3V, V < 3.3V  
IN  
= 5V, V < 5V  
IN  
LT1763 (Note 3)  
= 1.22V, V < 1.22V  
IN  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 6: Dropout voltage is the minimum input to output voltage differential  
needed to maintain regulation at a specified output current. In dropout, the  
output voltage will be equal to: V – V  
.
IN  
DROPOUT  
Note 7: GND pin current is tested with V = V  
or V = 2.3V  
IN  
IN  
OUT(NOMINAL)  
Note 2: The LT1763 regulators are tested and specified under pulse  
(C, I grade) or 2.35V (MP grade), whichever is greater, and a current  
source load. This means the device is tested while operating in its dropout  
region. This is the worst-case GND pin current. The GND pin current will  
decrease slightly at higher input voltages.  
Note 8: ADJ pin bias current flows into the ADJ pin.  
Note 9: SHDN pin current flows into the SHDN pin.  
Note 10: Reverse output current is tested with the IN pin grounded and the  
OUT pin forced to the rated output voltage. This current flows into the OUT  
pin and out the GND pin.  
load conditions such that T T . The LT1763 (C grade) is 100% tested  
J
A
at T = 25°C; performance at 40°C and 125°C is assured by design,  
A
characterization and correlation with statistical process controls. The  
LT1763 (I grade) is guaranteed over the full 40°C to 125°C operating  
junction temperature range. The LT1763 (MP grade) is 100% tested and  
guaranteed over the 55°C to 125°C operating junction temperature range.  
Note 3: The LT1763 (adjustable version) is tested and specified for these  
conditions with the ADJ pin connected to the OUT pin.  
Note 4: Operating conditions are limited by maximum junction  
temperature. The regulated output voltage specification will not apply  
for all possible combinations of input voltage and output current. When  
operating at maximum input voltage, the output current range must be  
limited. When operating at maximum output current, the input voltage  
range must be limited.  
Note 5: To satisfy requirements for minimum input voltage, the LT1763  
(adjustable version) is tested and specified for these conditions with an  
external resistor divider (two 250k resistors) for an output voltage of  
2.44V. The external resistor divider will add a 5μA DC load on the output.  
Note 11: For the LT1763, LT1763-1.5 and LT1763-1.8 dropout voltage will  
be limited by the minimum input voltage specification under some output  
voltage/load conditions. See the curve of Minimum Input Voltage in the  
Typical Performance Characteristics.  
Note 12: To satisfy requirements for minimum input voltage, current limit  
is tested at V = V  
+ 1V or 2.3V (C, I grade) or 2.35V  
IN  
OUT(NOMINAL)  
(MP grade), whichever is greater.  
1763fg  
6
LT1763 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
Typical Dropout Voltage  
Guaranteed Dropout Voltage  
Dropout Voltage  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
= TEST POINTS  
I
= 500mA  
L
I
L
= 250mA  
T
= 125°C  
J
T
b 125°C  
b 25°C  
J
I = 100mA  
L
T
J
T
= 25°C  
J
I
= 1mA  
L
I
L
= 10mA  
I
L
= 50mA  
0
0
0
–50  
0
25  
50  
75 100 125  
200  
200  
250 300 350 400 450 500  
–25  
0
50 100 150  
250 300 350 400 450 500  
0
50 100 150  
TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
1763 G03  
1763 G01  
1763 G02  
LT1763-1.5  
Output Voltage  
LT1763-1.8  
Output Voltage  
Quiescent Current  
1.528  
1.521  
1.514  
1.507  
1.500  
1.493  
1.486  
1.479  
1.472  
1.84  
1.83  
1.82  
1.81  
1.80  
1.79  
1.78  
1.77  
1.76  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
I
= 1mA  
I = 1mA  
L
L
V
= V  
IN  
SHDN  
V
R
R
= 6V  
IN  
L
L
= d, I = 0 (LT1763-1.5/-1.8/-2.5/-3/-3.3/-5)  
L
= 250k, I = 5μA (LT1763)  
L
0
–25  
0
25  
50  
75  
125  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
–50  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1763 G04  
1763 G05  
1763 G06  
LT1763-2.5  
Output Voltage  
LT1763-3  
Output Voltage  
LT1763-3.3  
Output Voltage  
2.54  
2.53  
2.52  
2.51  
2.50  
2.49  
2.48  
2.47  
2.46  
3.060  
3.045  
3.030  
3.015  
3.000  
2.985  
2.970  
2.955  
2.940  
3.360  
3.345  
3.330  
3.315  
3.300  
3.285  
3.270  
3.255  
3.240  
I
= 1mA  
I
= 1mA  
I = 1mA  
L
L
L
–25  
0
25  
50  
75  
125  
–25  
0
25  
50  
75  
125  
–50 –25  
0
25  
50  
75 100 125  
–50  
100  
–50  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1763 G07  
1763 G08  
1763 G09  
1763fg  
7
LT1763 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
LT1763-5  
Output Voltage  
LT1763  
ADJ Pin Voltage  
LT1763-1.5  
Quiescent Current  
5.100  
5.075  
5.050  
5.025  
5.000  
4.975  
4.950  
4.925  
4.900  
1.240  
1.235  
1.230  
1.225  
1.220  
1.215  
1.210  
1.205  
1.200  
250  
225  
200  
175  
150  
125  
100  
75  
I
= 1mA  
L
I = 1mA  
L
T
R
= 25°C  
J
L
= d  
50  
V
= V  
IN  
SHDN  
25  
V
= 0V  
6
SHDN  
0
–25  
0
25  
50  
75  
125  
–25  
0
25  
50  
75  
125  
–50  
100  
–50  
100  
0
1
2
3
4
5
7
8
9
10  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
1763 G10  
1763 G11  
1763 G12  
LT1763-1.8  
Quiescent Current  
LT1763-2.5  
Quiescent Current  
LT1763-3  
Quiescent Current  
250  
225  
200  
175  
150  
125  
100  
75  
250  
225  
200  
175  
150  
125  
100  
75  
250  
225  
200  
175  
150  
125  
100  
75  
T
= 25°C  
= d  
T
= 25°C  
= d  
T = 25°C  
J
R = d  
L
J
L
J
L
R
R
50  
50  
50  
V
= V  
V
= V  
V
= V  
SHDN IN  
SHDN  
IN  
SHDN  
IN  
25  
25  
25  
V
= 0V  
6
V
= 0V  
8
V
SHDN  
= 0V  
8
SHDN  
SHDN  
0
0
0
0
1
2
3
4
5
7
8
9
10  
0
1
2
3
4
5
6
7
9
10  
0
1
2
3
4
5
6
7
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1763 G13  
1763 G14  
1763 G15  
LT1763-3.3  
Quiescent Current  
LT1763-5  
Quiescent Current  
LT1763  
Quiescent Current  
250  
225  
200  
175  
150  
125  
100  
75  
250  
225  
200  
175  
150  
125  
100  
75  
40  
35  
30  
25  
20  
15  
10  
5
T
= 25°C  
T
= 25°C  
T
= 25°C  
R = 250k  
L
J
L
J
L
J
R
= d  
R
= d  
V
= V  
IN  
SHDN  
50  
50  
V
= V  
V
= V  
SHDN IN  
SHDN  
IN  
25  
25  
V
= 0V  
8
V
= 0V  
8
V
= 0V  
SHDN  
SHDN  
SHDN  
0
0
0
0
1
2
3
4
5
6
7
9
10  
0
1
2
3
4
5
6
7
9
10  
0
2
4
6
8
10 12 14 16 18 20  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1763 G16  
1763 G17  
1763 G18  
1763fg  
8
LT1763 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
LT1763-1.5  
GND Pin Current  
LT1763-1.8  
GND Pin Current  
LT1763-2.5  
GND Pin Current  
1200  
1000  
800  
600  
400  
200  
0
1200  
1000  
800  
600  
400  
200  
0
1200  
1000  
800  
600  
400  
200  
0
R
= 50Ω  
L
R
L
= 36Ω  
R
L
= 30Ω  
L
L
I
= 50mA*  
L
I
= 50mA*  
I
= 50mA*  
T
= 25°C  
T
= 25°C  
T = 25°C  
J
J
V
J
= V  
V
= V  
V = V  
IN SHDN  
IN  
SHDN  
IN  
SHDN  
*FOR V  
= 1.5V  
*FOR V  
= 1.8V  
*FOR V  
= 2.5V  
OUT  
OUT  
OUT  
R
I
= 250Ω  
R
I
= 150Ω  
= 10mA*  
L
L
R
L
= 180Ω  
L
L
= 10mA*  
I
= 10mA*  
L
R
= 1.5k  
= 1mA*  
R
L
= 2.5k  
R
I
= 1.8k  
L
L
L
I
L
I
= 1mA*  
= 1mA*  
L
4
4
4
0
1
2
3
5
6
7
8
9
10  
0
1
2
3
5
6
7
8
9
10  
10  
10  
0
1
2
3
5
6
7
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1763 G19  
1763 G20  
1763 G21  
LT1763-3  
GND Pin Current  
LT1763-3.3  
GND Pin Current  
LT1763-5  
GND Pin Current  
1200  
1000  
800  
600  
400  
200  
0
1200  
1000  
800  
600  
400  
200  
0
1200  
1000  
800  
600  
400  
200  
0
R
L
= 60Ω  
R
L
= 66Ω  
L
R
I
= 100Ω  
= 50mA*  
L
L
L
I
= 50mA*  
I
= 50mA*  
T
= 25°C  
T
V
= 25°C  
T = 25°C  
J
J
J
V
= V  
= V  
SHDN  
V = V  
IN SHDN  
IN  
SHDN  
IN  
*FOR V  
= 3V  
*FOR V  
= 3.3V  
*FOR V  
= 5V  
OUT  
OUT  
OUT  
R
= 500Ω  
= 10mA*  
R
I
= 300Ω  
= 10mA*  
R
I
= 330Ω  
L
L
L
L
L
I
= 10mA*  
L
R
= 3k  
R
L
= 5k  
L
= 1mA*  
R
I
= 3.3k  
L
= 1mA*  
L
I
= 1mA*  
I
L
L
4
4
4
0
1
2
3
5
6
7
8
9
10  
0
1
2
3
5
6
7
8
9
0
1
2
3
5
6
7
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1763 G22  
1763 G23  
1763 G24  
LT1763  
GND Pin Current  
LT1763-1.5  
GND Pin Current  
LT1763-1.8  
GND Pin Current  
1200  
1000  
800  
600  
400  
200  
0
12  
10  
8
12  
10  
8
T
= 25°C  
T = 25°C  
J
J
IN  
V
= V  
SHDN  
V = V  
IN SHDN  
R
L
= 24.4Ω  
L
*FOR V  
= 1.5V  
*FOR V  
= 1.8V  
OUT  
OUT  
I
= 50mA*  
R
= 3Ω  
L
R
= 3.6Ω  
L
I
= 500mA*  
L
I
= 500mA*  
L
T
= 25°C  
= V  
J
IN  
V
R
= 6Ω  
R
L
= 5Ω  
= 300mA*  
SHDN  
L
L
6
6
*FOR V  
= 1.22V  
I
= 300mA*  
I
OUT  
L
R
L
= 122Ω  
L
4
4
I
= 10mA*  
R
L
= 15Ω  
R
= 18Ω  
L
L
I
= 100mA*  
I
= 100mA*  
L
R
I
= 1.22k  
= 1mA*  
2
2
L
L
0
0
4
4
4
0
1
2
3
5
6
7
8
9
10  
0
1
2
3
5
6
7
8
9
0
1
2
3
5
6
7
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1763 G25  
1763 G26  
1763 G27  
1763fg  
9
LT1763 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
LT1763-2.5  
GND Pin Current  
LT1763-3  
GND Pin Current  
LT1763-3.3  
GND Pin Current  
12  
10  
8
12  
10  
8
12  
10  
8
T
= 25°C  
T
= 25°C  
T = 25°C  
J
J
J
V
= V  
V
= V  
V = V  
IN SHDN  
IN  
SHDN  
IN  
SHDN  
*FOR V  
= 2.5V  
*FOR V  
= 3V  
*FOR V  
= 3.3V  
OUT  
OUT  
OUT  
R
= 5Ω  
L
R
= 6Ω  
R = 6.6Ω  
L
L
I
L
= 500mA*  
I
L
= 500mA*  
I = 500mA*  
L
6
6
R
L
= 10Ω  
6
R
L
= 11Ω  
L
L
R
L
= 8.33Ω  
L
I
= 300mA*  
I
= 300mA*  
I
= 300mA*  
4
4
4
R
L
= 25Ω  
R
L
= 30Ω  
R = 33Ω  
L
L
L
L
I
= 100mA*  
I
= 100mA*  
I
= 100mA*  
2
2
2
0
0
0
4
4
4
0
1
2
3
5
6
7
8
9
10  
0
1
2
3
5
6
7
8
9
10  
0
1
2
3
5
6
7
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1763 G28  
1763 G29  
1763 G30  
LT1763-5  
GND Pin Current  
LT1763  
GND Pin Current  
GND Pin Current vs ILOAD  
12  
10  
8
12  
10  
8
12  
10  
8
T
= 25°C  
= V  
T
= 25°C  
= V  
J
IN  
V
IN  
= V  
+ 1V  
J
IN  
OUT(NOMINAL)  
V
V
SHDN  
SHDN  
R = 10Ω  
L
L
*FOR V  
= 1.22V  
*FOR V  
= 5V  
OUT  
OUT  
I
= 500mA*  
R
= 2.44Ω  
L
I
= 500mA*  
L
R
L
= 16.7Ω  
L
= 300mA*  
R
L
L
= 4.07Ω  
6
6
6
I
I
= 300mA*  
4
4
4
R
L
L
= 12.2Ω  
R = 50Ω  
L
= 100mA*  
L
I
= 100mA*  
I
2
2
2
0
0
0
4
4
200  
250 300 350 400 450 500  
0
1
2
3
5
6
7
8
9
10  
0
1
2
3
5
6
7
8
9
10  
0
50 100 150  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
OUTPUT CURRENT (mA)  
1763 G31  
1763 G32  
1763 G33  
SHDN Pin Threshold  
(On-to-Off)  
SHDN Pin Threshold  
(Off-to-On)  
SHDN Pin Input Current  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
I
= 1mA  
L
I
= 500mA  
L
I
= 1mA  
L
–50  
0
25  
50  
75 100 125  
–50  
0
25  
50  
75 100 125  
4
–25  
–25  
0
1
2
3
6
7
8
9
10  
5
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SHDN PIN VOLTAGE (V)  
1763 G34  
1763 G35  
1763 G36  
1763fg  
10  
LT1763 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
SHDN Pin Input Current  
ADJ Pin Bias Current  
Current Limit  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
140  
120  
100  
80  
V
= 20V  
V
= 0V  
SHDN  
OUT  
60  
40  
20  
0
–25  
0
25  
50  
75  
125  
–50  
0
25  
50  
75  
125  
–50  
100  
100  
4
7
–25  
0
2
3
5
6
1
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
1763 G37  
1763 G38  
1763 G39  
Current Limit  
Reverse Output Current  
Reverse Output Current  
20  
18  
16  
14  
12  
10  
8
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
V
V
V
V
V
= 0V, V  
= 1.22V (LT1763)  
OUT  
IN  
V
V
= 7  
OUT  
T
= 25°C, V = 0V  
IN  
IN  
J
LT1763-1.5  
= 1.5V (LT1763-1.5)  
= 1.8V (LT1763-1.8)  
= 2.5V (LT1763-2.5)  
= 3V (LT1763-3)  
= 0V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
CURRENT FLOWS  
INTO OUTPUT PIN  
V
= V  
(LT1763)  
OUT  
ADJ  
= 3.3V (LT1763-3.3)  
= 5V (LT1763-5)  
LT1763  
LT1763-1.8  
LT1763-2.5  
LT1763-3  
LT1763-1.5/-1.8/  
-2.5/-3/-3.3/-5  
LT1763-3.3  
6
4
LT1763  
LT1763-5  
2
0
–50  
0
25  
50  
75 100 125  
4
–50  
0
25  
50  
75  
125  
–25  
0
1
2
3
6
7
8
9
10  
–25  
100  
5
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OUTPUT VOLTAGE (V)  
1763 G40  
1763 G42  
1763 G41  
Input Ripple Rejection  
Input Ripple Rejection  
Ripple Rejection  
68  
66  
64  
62  
60  
58  
56  
54  
52  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
C
= 0.01μF  
BYP  
C
= 10μF  
OUT  
C
= 1000pF  
BYP  
C
= 100pF  
BYP  
I
= 500mA  
= V  
V
= V  
+
OUT (NOMINAL)  
L
IN  
I
= 500mA  
IN  
L
V
+
1V + 0.5V RIPPLE  
P-P  
OUT(NOMINAL)  
V
= V  
+
C
= 4.7μF  
IN  
OUT(NOMINAL)  
OUT  
1V + 50mV  
C
RIPPLE  
AT f = 120Hz  
RMS  
1V + 50mV  
C
RIPPLE  
1k  
RMS  
= 0  
I
= 500mA  
BYP  
= 10μF  
L
OUT  
–25  
0
25  
50  
75  
125  
–50  
100  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
1763 G43  
1763 G44  
1763 G45  
1763fg  
11  
LT1763 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
LT1763  
Output Noise Spectral Density  
CBYP = 0  
Minimum Input Voltage  
Load Regulation  
5
0
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
10  
1
LT1763-1.5  
LT1763-2.5  
LT1763  
LT1763-3  
LT1763-1.8  
I
= 500mA  
L
LT1763-3.3  
LT1763-5  
–5  
I
= 1mA  
L
LT1763-3  
–10  
–15  
–20  
–25  
LT1763  
LT1763-3.3  
LT1763-5  
LT1763-2.5  
LT1763-1.8  
LT1763-1.5  
0.1  
V
= V  
+ 1V  
IN  
L
OUT(NOMINAL)  
C
= 10μF  
OUT  
$I = 1mA TO 500mA  
V
= 1.22V  
OUT  
I = 500mA  
L
0.01  
–50  
0
25  
50  
75 100 125  
–25  
–25  
0
25  
50  
75  
125  
–50  
100  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1763 G48  
1763 G46  
1763 G47  
RMS Output Noise  
vs Load Current (10Hz to 100kHz)  
RMS Output Noise  
vs Bypass Capacitor  
Output Noise Spectral Density  
10  
1
160  
140  
120  
100  
80  
160  
C
I
= 10μF  
C = 10μF  
OUT  
OUT  
L
C
I
= 10μF  
OUT  
= 500mA  
C
BYP  
= 0  
= 0.01μF  
BYP  
= 500mA  
140  
L
C
f = 10Hz TO 100kHz  
C
= 1000pF  
BYP  
LT1763-5  
120 LT1763-5  
LT1763-5  
LT1763-3.3  
C
BYP  
= 100pF  
100  
80  
LT1763-3  
LT1763  
LT1763-2.5  
60  
60  
LT1763  
0.1  
C
BYP  
= 0.01μF  
100  
40  
40  
LT1763  
LT1763-5  
LT1763  
LT1763-1.8  
20  
20  
0
LT1763-1.5  
0.01  
0
0.01  
10  
1k  
FREQUENCY (Hz)  
10k  
100k  
0.1  
1
10  
100  
1000  
10  
100  
1000  
(pF)  
10000  
LOAD CURRENT (mA)  
C
BYP  
1763 G49  
1763 G51  
1763 G50  
LT1763-5  
LT1763-5  
10Hz to 100kHz Output Noise  
CBYP = 100pF  
LT1763-5  
10Hz to 100kHz Output Noise  
CBYP = 0  
10Hz to 100kHz Output Noise  
CBYP = 1000pF  
V
V
OUT  
OUT  
V
OUT  
100μV/DIV  
100μV/DIV  
100μV/DIV  
1763 G53  
1763 G54  
1763 G52  
1ms/DIV  
1ms/DIV  
1ms/DIV  
C
I
= 10μF  
C
= 10μF  
OUT  
C
I
= 10μF  
OUT  
L
OUT  
L
= 500mA  
I
= 500mA  
L
= 500mA  
1763fg  
12  
LT1763 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
LT1763-5  
LT1763-5  
Transient Response  
CBYP = 0.01μF  
LT1763-5  
Transient Response  
CBYP = 0  
10Hz to 100kHz Output Noise  
CBYP = 0.01μF  
V
C
C
= 6V  
V
C
C
= 6V  
IN  
IN  
IN  
IN  
0.4  
0.2  
0.10  
0.05  
0
= 10μF  
= 10μF  
= 10μF  
= 10μF  
OUT  
OUT  
0
V
–0.2  
–0.4  
–0.05  
–0.10  
OUT  
100μV/DIV  
600  
400  
200  
0
600  
400  
200  
0
1763 G55  
1ms/DIV  
C
L
= 10μF  
OUT  
I
= 500mA  
400  
TIME (μs)  
0
200  
600  
800  
1000  
40  
10 20 30  
0
50 60 70 80 90 100  
TIME (μs)  
1763 G56  
1763 G57  
1763fg  
13  
LT1763 Series  
PIN FUNCTIONS (DE12/S8)  
NC (Pins 1, 4, 9, 12) DE12 Only: No Connect. No connect  
BYP (Pin 6/Pin 4): Bypass. The BYP pin is used to bypass  
thereferenceoftheLT1763regulatorstoachievelownoise  
performance from the regulator. The BYP pin is clamped  
pins have no connection to any internal circuitry. These  
pins may be tied to either GND or V , or left floating.  
IN  
internally to 0.6V (one V ). A small capacitor from the  
BE  
OUT (Pins 2, 3/Pin 1): Output. The output supplies power  
to the load. A minimum output capacitor of 3.3μF is re-  
quired to prevent oscillations. Larger output capacitors  
will be required for applications with large transient loads  
tolimitpeakvoltagetransients. SeetheApplicationsInfor-  
mationsectionformoreinformationonoutputcapacitance  
and reverse output characteristics.  
output to this pin will bypass the reference to lower the  
output voltage noise. A maximum value of 0.01μF can  
be used for reducing output voltage noise to a typical  
20μV  
over a 10Hz to 100kHz bandwidth. If not used,  
RMS  
this pin must be left unconnected.  
GND (Pins 7, Exposed Pad Pin 13/Pins 3, 6, 7): Ground.  
The exposed pad of the DFN package is an electrical con-  
nection to GND. To ensure proper electrical and thermal  
performance, solder Pin 13 to the PCB ground and tie  
directly to Pin 7. Connect the bottom of the output volt-  
age setting resistor divider directly to the GND pins for  
optimum load regulation performance.  
ADJ (Pin 5/Pin 2): Adjust. For the adjustable LT1763, this  
is the input to the error amplifier. This pin is internally  
clamped to 7V. It has a bias current of 30nA which flows  
into the pin (see the curve of ADJ Pin Bias Current vs  
Temperature in the Typical Performance Characteristics  
section).TheADJpinvoltageis1.22Vreferencedtoground  
and the output voltage range is 1.22V to 20V.  
SHDN (Pin 8/Pin 5): Shutdown. The SHDN pin is used  
to put the LT1763 regulators into a low power shutdown  
state. The output will be off when the SHDN pin is pulled  
low. The SHDN pin can be driven either by 5V logic or  
open-collector logic with a pull-up resistor. The pull-up  
resistor is required to supply the pull-up current of the  
open-collector gate, normally several microamperes, and  
the SHDN pin current, typically 1μA. If unused, the SHDN  
SENSE (Pin 5/Pin 2): Output Sense. For fixed volt-  
age versions of the LT1763 (LT1763-1.5/LT1763-1.8/  
LT1763-2.5/LT1763-3/LT1763-3.3/LT1763-5), the SENSE  
pin is the input to the error amplifier. Optimum regula-  
tion will be obtained at the point where the SENSE pin  
is connected to the OUT pin of the regulator. In critical  
applications, small voltage drops are caused by the re-  
pin must be connected to V . The device will be in the low  
IN  
sistance (R ) of PC traces between the regulator and the  
P
power shutdown state if the SHDN pin is not connected.  
load. These may be eliminated by connecting the SENSE  
pin to the output at the load as shown in Figure 1 (Kelvin  
Sense Connection).  
IN(Pin10,11/Pin8):Input.Powerissuppliedtothedevice  
through the IN pin. A bypass capacitor is required on this  
pin if the device is more than six inches away from the  
main input filter capacitor. In general, the output imped-  
ance of a battery rises with frequency, so it is advisable to  
include a bypass capacitor in battery-powered circuits. A  
bypass capacitor in the range of 1μF to 10μF is sufficient.  
The LT1763 regulators are designed to withstand reverse  
voltages on the IN pin with respect to ground and the OUT  
pin. In the case of a reverse input, which can happen if  
a battery is plugged in backwards, the device will act as  
if there is a diode in series with its input. There will be  
no reverse current flow into the regulator and no reverse  
voltage will appear at the load. The device will protect both  
itself and the load.  
R
P
8
1
IN  
OUT  
LT1763  
+
5
2
+
SHDN SENSE  
LOAD  
V
IN  
GND  
3
R
P
1763 F01  
Figure 1. Kelvin Sense Connection  
Note that the voltage drop across the external PC traces will  
add to the dropout voltage of the regulator. The SENSE pin  
biascurrentis1Aatthenominalratedoutputvoltage.The  
SENSE pin can be pulled below ground (as in a dual supply  
system where the regulator load is returned to a negative  
supply) and still allow the device to start and operate.  
1763fg  
14  
LT1763 Series  
APPLICATIONS INFORMATION  
The LT1763 series are 500mA low dropout regulators with  
micropowerquiescentcurrentandshutdown.Thedevices  
are capable of supplying 500mA at a dropout voltage of  
to 1.22V: V /1.22V. For example, load regulation for an  
OUT  
output current change of 1mA to 500mA is –2mV typical  
at V  
= 1.22V. At V  
= 12V, load regulation is:  
OUT  
OUT  
300mV. Output voltage noise can be lowered to 20μV  
RMS  
(12V/1.22V)(–2mV) = –19.6mV  
over a 10Hz to 100kHz bandwidth with the addition of  
a 0.01μF reference bypass capacitor. Additionally, the  
referencebypasscapacitorwillimprovetransientresponse  
oftheregulator,loweringthesettlingtimefortransientload  
conditions. The low operating quiescent current (30μA)  
drops to less than 1μA in shutdown. In addition to the  
low quiescent current, the LT1763 regulators incorporate  
several protection features which make them ideal for use  
in battery-powered systems. The devices are protected  
against both reverse input and reverse output voltages.  
In battery backup applications where the output can be  
held up by a backup battery when the input is pulled to  
ground, the LT1763-X acts like it has a diode in series with  
its output and prevents reverse current flow. Additionally,  
in dual supply applications where the regulator load is  
returned to a negative supply, the output can be pulled  
below ground by as much as 20V and still allow the device  
to start and operate.  
IN  
OUT  
ADJ  
V
OUT  
+
V
IN  
R2  
LT1763  
GND  
R2  
R1  
VOUT = 1.22V 1+  
+ I R2  
ADJ)( )  
(
V
ADJ = 1.22V  
ADJ = 30nA AT 25°C  
OUTPUT RANGE = 1.22V TO 20V  
R1  
I
1763 F02  
Figure 2. Adjustable Operation  
Bypass Capacitance and Low Noise Performance  
The LT1763 regulators may be used with the addition of  
a bypass capacitor from V  
to the BYP pin to lower  
OUT  
output voltage noise. A good quality low leakage capacitor  
is recommended. This capacitor will bypass the reference  
of the regulator, providing a low frequency noise pole.  
The noise pole provided by this bypass capacitor will  
Adjustable Operation  
lower the output voltage noise to as low as 20μV  
TheadjustableversionoftheLT1763hasanoutputvoltage  
range of 1.22V to 20V. The output voltage is set by the  
ratio of two external resistors, as shown in Figure 2. The  
device servos the output to maintain the ADJ pin voltage  
at 1.22V referenced to ground. The current in R1 is then  
equal to 1.22V/R1 and the current in R2 is the current  
in R1 plus the ADJ pin bias current. The ADJ pin bias  
current, 30nA at 25°C, flows through R2 into the ADJ pin.  
The output voltage can be calculated using the formula in  
Figure 2. The value of R1 should be no greater than 250k  
to minimize errors in the output voltage caused by the  
ADJ pin bias current. Note that in shutdown the output  
is turned off and the divider current will be zero. Curves  
of ADJ Pin Voltage vs Temperature and ADJ Pin Bias  
CurrentvsTemperatureappearintheTypicalPerformance  
Characteristics section.  
RMS  
with the addition of a 0.01μF bypass capacitor. Using  
a bypass capacitor has the added benefit of improving  
transient response. With no bypass capacitor and a 10μF  
output capacitor, a 10mA to 500mA load step will settle  
to within 1% of its final value in less than 100μs. With  
the addition of a 0.01μF bypass capacitor, the output will  
settle to within 1% for a 10mA to 500mA load step in less  
than 10μs, with total output voltage deviation of less than  
2.5% (see the LT1763-5 Transient Response curve in the  
Typical Performance Characteristics section). However,  
regulator start-up time is proportional to the size of the  
bypass capacitor, slowing to 15ms with a 0.01μF bypass  
capacitor and 10μF output capacitor.  
The adjustable device is tested and specified with the ADJ  
pin tied to the OUT pin for an output voltage of 1.22V.  
Specifications for output voltages greater than 1.22V will  
be proportional to the ratio of the desired output voltage  
1763fg  
15  
LT1763 Series  
APPLICATIONS INFORMATION  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
Output Capacitance and Transient Response  
The LT1763 regulators are designed to be stable with a  
wide range of output capacitors. The ESR of the output  
capacitor affects stability, most notably with small capaci-  
tors. A minimum output capacitor of 3.3μF with an ESR  
of 3Ω, or less, is recommended to prevent oscillations.  
The LT1763-X is a micropower device and output transient  
response will be a function of output capacitance. Larger  
values of output capacitance decrease the peak deviations  
and provide improved transient response for larger load  
current changes. Bypass capacitors, used to decouple  
individual components powered by the LT1763-X, will  
increase the effective output capacitor value. With larger  
capacitors used to bypass the reference (for low noise  
operation), larger values of output capacitors are needed.  
For 100pF of bypass capacitance, 4.7μF of output capaci-  
tor is recommended. With a 1000pF bypass capacitor or  
larger, a 6.8μF output capacitor is recommended.  
STABLE REGION  
C
= 0  
BYP  
C
= 100pF  
BYP  
C
= 330pF  
BYP  
C
r 1000pF  
BYP  
1
3
6 9 10  
7 8  
2
4
5
OUTPUT CAPACITANCE (μF)  
1763 F03  
Figure 3. Stability  
20  
0
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10μF  
X5R  
Y5V  
–20  
–40  
–60  
–80  
–100  
The shaded region of Figure 3 defines the range over  
whichtheLT1763regulatorsarestable. TheminimumESR  
needed is defined by the amount of bypass capacitance  
used, while the maximum ESR is 3Ω.  
Extra consideration must be given to the use of ceramic  
capacitors. Ceramic capacitors are manufactured with a  
variety of dielectrics, each with different behavior across  
temperature and applied voltage. The most common  
dielectrics used are specified with EIA temperature  
characteristic codes of Z5U, Y5V, X5R and X7R. The Z5U  
andY5Vdielectricsaregoodforprovidinghighcapacitances  
in a small package, but they tend to have strong voltage  
and temperature coefficients, as shown in Figures 4  
and 5. When used with a 5V regulator, a 16V 10μF Y5V  
capacitor can exhibit an effective value as low as 1μF to  
2μF for the DC bias voltage applied and over the operating  
temperature range. The X5R and X7R dielectrics result in  
more stable characteristics and are more suitable for use  
as the output capacitor. The X7R type has better stability  
across temperature, while the X5R is less expensive and is  
availableinhighervalues.Carestillmustbeexercisedwhen  
using X5R and X7R capacitors; the X5R and X7R codes  
only specify operating temperature range and maximum  
capacitancechangeovertemperature.Capacitancechange  
due to DC bias with X5R and X7R capacitors is better than  
0
8
12 14  
2
4
6
10  
16  
DC BIAS VOLTAGE (V)  
1763 F04  
Figure 4. Ceramic Capacitor DC Bias Characteristics  
40  
20  
X5R  
0
–20  
–40  
Y5V  
–60  
–80  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10μF  
–100  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
1763 F05  
Figure 5. Ceramic Capacitor Temperature Characteristics  
1763fg  
16  
LT1763 Series  
APPLICATIONS INFORMATION  
Y5VandZ5Ucapacitors,butcanstillbesignificantenough  
todropcapacitorvaluesbelowappropriatelevels.Capacitor  
DC bias characteristics tend to improve as component  
casesizeincreases, butexpectedcapacitanceatoperating  
voltage should be verified.  
Thermal Considerations  
The power handling capability of the device will be limited  
by the maximum rated junction temperature (125°C). The  
power dissipated by the device will be made up of two  
components:  
Voltage and temperature coefficients are not the only  
sources of problems. Some ceramic capacitors have a  
piezoelectric response. A piezoelectric device generates  
voltage across its terminals due to mechanical stress,  
similar to the way a piezoelectric accelerometer or  
microphone works. For a ceramic capacitor, the stress  
can be induced by vibrations in the system or thermal  
transients. The resulting voltages produced can cause  
appreciable amounts of noise, especially when a ceramic  
capacitor isusedfor noisebypassing. A ceramic capacitor  
producedFigure6straceinresponsetolighttappingfroma  
pencil.Similarvibrationinducedbehaviorcanmasquerade  
as increased output voltage noise.  
1. Output current multiplied by the input/output voltage  
differential: (I )(V – V ), and  
OUT  
IN  
OUT  
2. GND pin current multiplied by the input voltage:  
(I )(V ).  
GND  
IN  
The GND pin current can be found by examining the GND  
Pin Current curves in the Typical Performance Character-  
istics section. Power dissipation will be equal to the sum  
of the two components listed above.  
TheLT1763seriesregulatorshaveinternalthermallimiting  
designedtoprotectthedeviceduringoverloadconditions.  
For continuous normal conditions, the maximum junction  
temperature rating of 125°C must not be exceeded. It is  
important to give careful consideration to all sources of  
thermal resistance from junction-to-ambient. Additional  
heat sources mounted nearby must also be considered.  
LT1763-5  
C
C
LOAD  
= 10μF  
= 0.01μF  
= 100mA  
OUT  
BYP  
I
V
For surface mount devices, heat sinking is accomplished  
by using the heat spreading capabilities of the PC board  
and its copper traces. Copper board stiffeners and plated  
through-holes can also be used to spread the heat gener-  
ated by power devices.  
OUT  
500μV/DIV  
1763 F06  
100ms/DIV  
The following tables list thermal resistance for several  
different board sizes and copper areas. All measurements  
were taken in still air on 3/32" FR-4 board with one ounce  
copper.  
Figure 6. Noise Resulting from  
Tapping on a Ceramic Capacitor  
Table 1. DE Package, 12-Lead DFN  
COPPER AREA  
THERMAL RESISTANCE  
BOARD AREA (JUNCTION-TO-AMBIENT)  
TOPSIDE* BACKSIDE  
2
2
2
2
2
2
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
40°C/W  
45°C/W  
50°C/W  
60°C/W  
2
2
2
2
1000mm  
2
225mm  
100mm  
2
* Device is mounted on topside  
1763fg  
17  
LT1763 Series  
APPLICATIONS INFORMATION  
Table 2. SO-8 Package, 8-Lead SO  
Protection Features  
COPPER AREA  
The LT1763 regulators incorporate several protection  
featureswhichmakethemidealforuseinbattery-powered  
circuits. In addition to the normal protection features  
associated with monolithic regulators, such as current  
limiting and thermal limiting, the devices are protected  
against reverse input voltages, reverse output voltages  
and reverse voltages from output to input.  
THERMAL RESISTANCE  
BOARD AREA (JUNCTION-TO-AMBIENT)  
TOPSIDE* BACKSIDE  
2500mm2  
1000mm2  
225mm2  
100mm2  
50mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
60°C/W  
60°C/W  
68°C/W  
74°C/W  
86°C/W  
Current limit protection and thermal overload protection  
are intended to protect the device against current overload  
conditionsattheoutputofthedevice.Fornormaloperation,  
the junction temperature should not exceed 125°C.  
* Device is mounted on topside  
Calculating Junction Temperature  
The input of the device will withstand reverse voltages of  
20V. Current flow into the device will be limited to less  
than 1mA (typically less than 100μA) and no negative  
voltage will appear at the output. The device will protect  
both itself and the load. This provides protection against  
batteries which can be plugged in backward.  
Example: Given an output voltage of 3.3V, an input voltage  
rangeof4Vto6V,anoutputcurrentrangeof0mAto250mA  
and a maximum ambient temperature of 50°C, what will  
the maximum junction temperature be?  
The power dissipated by the device will be equal to:  
I
(V  
– V ) + I (V  
)
OUT(MAX) IN(MAX)  
OUT  
GND IN(MAX)  
The output of the LT1763-X can be pulled below ground  
withoutdamagingthedevice.Iftheinputisleftopen-circuit  
or grounded, the output can be pulled below ground by  
20V. For fixed voltage versions, the output will act like a  
largeresistor,typically500korhigher,limitingcurrentow  
to less than 100μA. For adjustable versions, the output  
will act like an open circuit; no current will flow out of the  
pin. If the input is powered by a voltage source, the output  
will source the short-circuit current of the device and will  
protect itself by thermal limiting. In this case, grounding  
the SHDN pin will turn off the device and stop the output  
from sourcing the short-circuit current.  
where,  
I
= 250mA  
= 6V  
OUT IN  
OUT(MAX)  
V
IN(MAX)  
I
at (I  
= 250mA, V = 6V) = 5mA  
GND  
So,  
P = 250mA(6V – 3.3V) + 5mA(6V) = 0.71W  
The thermal resistance will be in the range of 60°C/W to  
86°C/W, depending on the copper area. So, the junction  
temperature rise above ambient will be approximately  
equal to:  
The ADJ pin of the adjustable device can be pulled above  
or below ground by as much as 7V without damaging the  
device. If the input is left open-circuit or grounded, the  
ADJ pin will act like an open circuit when pulled below  
ground and like a large resistor (typically 100k) in series  
with a diode when pulled above ground.  
0.71W(75°C/W) = 53.3°C  
The maximum junction temperature will then be equal to  
the maximum junction temperature rise above ambient  
plus the maximum ambient temperature, or:  
T
= 50°C + 53.3°C = 103.3°C  
JMAX  
In situations where the ADJ pin is connected to a resistor  
divider that would pull the ADJ pin above its 7V clamp  
voltageiftheoutputispulledhigh,theADJpininputcurrent  
must be limited to less than 5mA. For example, a resistor  
divider is used to provide a regulated 1.5V output from the  
1.22V reference when the output is forced to 20V.  
1763fg  
18  
LT1763 Series  
APPLICATIONS INFORMATION  
The top resistor of the resistor divider must be chosen to  
limit the current into the ADJ pin to less than 5mA when  
the ADJ pin is at 7V. The 13V difference between output  
and ADJ pin divided by the 5mA maximum current into the  
ADJ pin yields a minimum top resistor value of 2.6k.  
When the IN pin of the LT1763-X is forced below the OUT  
pin, or the OUT pin is pulled above the IN pin, input cur-  
rent will typically drop to less than 2μA. This can happen  
if the input of the device is connected to a discharged  
(low voltage) battery and the output is held up by either  
a backup battery or a second regulator circuit. The state  
of the SHDN pin will have no effect on the reverse output  
current when the output is pulled above the input.  
In circuits where a backup battery is required, several  
different input/output conditions can occur. The output  
voltage may be held up while the input is either pulled  
to ground, pulled to some intermediate voltage or is left  
open-circuit. Current flow back into the output will follow  
the curve shown in Figure 7.  
100  
T
= 25°C  
= 0V  
J
IN  
LT1763-1.5  
V
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
CURRENT FLOWS  
INTO OUTPUT PIN  
V
= V  
(LT1763)  
OUT  
ADJ  
LT1763  
LT1763-1.8  
LT1763-2.5  
LT1763-3  
LT1763-5  
LT1763-3.3  
4
0
1
2
3
5
6
7
8
9
10  
OUTPUT VOLTAGE (V)  
1763 F07  
Figure 7. Reverse Output Current  
1763fg  
19  
LT1763 Series  
PACKAGE DESCRIPTION  
DE/UE Package  
12-Lead Plastic DFN (4mm × 3mm)  
(Reference LTC DWG # 05-08-1695 Rev D)  
0.40 p 0.10  
4.00 p0.10  
(2 SIDES)  
R = 0.115  
TYP  
7
12  
0.70 p0.05  
R = 0.05  
TYP  
3.30 p0.05  
3.60 p0.05  
3.30 p0.10  
3.00 p0.10  
(2 SIDES)  
2.20 p0.05  
PIN 1  
TOP MARK  
(NOTE 6)  
1.70 p 0.05  
1.70 p 0.10  
PIN 1 NOTCH  
R = 0.20 OR  
PACKAGE  
OUTLINE  
0.35 s 45o  
CHAMFER  
(UE12/DE12) DFN 0806 REV D  
6
1
0.25 p 0.05  
0.75 p0.05  
0.25 p 0.05  
0.200 REF  
0.50 BSC  
0.50 BSC  
2.50 REF  
2.50 REF  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
NOTE:  
1. DRAWING PROPOSED TO BE A VARIATION OF VERSION  
(WGED) IN JEDEC PACKAGE OUTLINE M0-229  
2. DRAWING NOT TO SCALE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
NOTE 3  
.045 .005  
.160 .005  
.050 BSC  
7
5
8
6
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.245  
MIN  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
.010 – .020  
(0.254 – 0.508)  
.030 .005  
TYP  
s 45°  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
NOTE:  
INCHES  
(MILLIMETERS)  
1. DIMENSIONS IN  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
.016 – .050  
2. DRAWING NOT TO SCALE  
(0.406 – 1.270)  
SO8 0303  
1763fg  
20  
LT1763 Series  
REVISION HISTORY (Revision history begins at Rev G)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
G
5/10  
Updated Order Information to add MP-grade to all versions of DFN package  
Revised Line Regulation section of Electrical Characteristics  
Consolidated GND and exposed pad descriptions in Pin Descriptions section  
Added LT3085 to Related Parts  
2 to 4  
5
14  
22  
1763fg  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
21  
LT1763 Series  
TYPICAL APPLICATION  
Paralleling of Regulators for Higher Output Current  
R1  
0.1Ω  
3.3V  
1A  
IN  
OUT  
SENSE  
LT1763-3.3  
+
+
C1  
10μF  
C2  
10μF  
V
> 3.8V  
C4  
0.01μF  
IN  
SHDN  
BYP  
GND  
R2  
0.1Ω  
IN  
OUT  
C5  
0.01μF  
R6  
LT1763  
2k  
BYP  
ADJ  
SHDN  
SHDN  
GND  
R3  
2.2k  
R4  
2.2k  
R7  
1.21k  
8
3
2
R5  
10k  
+
1
1/2 LT1490  
C3  
4
0.01μF  
1763 TA03  
RELATED PARTS  
PART NUMBER  
LT1120  
DESCRIPTION  
125mA Low Dropout Regulator with 20μA I  
COMMENTS  
Includes 2.5V Reference and Comparator  
Q
LT1121  
150mA Micropower Low Dropout Regulator  
700mA Micropower Low Dropout Regulator  
30μA I , SOT-223 Package  
Q
LT1129  
50μA Quiescent Current  
LT1175  
500mA Negative Low Dropout Micropower Regulator  
300mA Low Dropout Micropower Regulator with Shutdown  
3A Low Dropout Regulator with 50μA I  
45μA I , 0.26V Dropout Voltage, SOT-223 Package  
Q
LT1521  
15μA I , Reverse Battery Protection  
Q
LT1529  
500mV Dropout Voltage  
Q
LT1613  
1.4MHz Single-Cell Micropower DC/DC Converter  
SOT-23 Package, Internally Compensated  
LT1761 Series  
LT1762 Series  
LT1764A  
LT1962  
100mA, Low Noise, Low Dropout Micropower Regulators in SOT-23  
150mA, Low Noise, LDO Micropower Regulators  
20μA Quiescent Current, 20μV  
25μA Quiescent Current, 20μV  
Noise, ThinSOT™  
Noise, MS8  
RMS  
RMS  
3A, Fast Transient Response Low Dropout Regulator  
300mA, Fast Transient Response Low Dropout Regulator  
1.5A, Fast Transient Response Low Dropout Regulator  
50mA, 80V Low Noise, LDO Micropower Regulator  
340mV Dropout Voltage, DD, TO220  
270mV Dropout Voltage, 20μV  
340mV Dropout Voltage, 40μV  
, MS8  
RML  
RML  
LT1963A  
LT3010  
, DD, TO220, S8, SOT-223  
300mV Dropout Voltage, MS8E  
LT3021  
500mA, Low Voltage, Very Low Dropout Linear Regulator  
500mA Parallelable, Low Noise, Low Dropout Linear Regulator  
160mV Dropout Voltage, DFN-8 and SOIC-8 Packages  
LT3085  
275mV Dropout Voltage (2 Supply Operation), MSOP-8 and  
2mm × 3mm DFN-6 Packages  
1763fg  
LT 0510 REV G • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
22  
© LINEAR TECHNOLOGY CORPORATION 1999  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY