LT1764AEQ-25 [Linear]

3A, Fast Transient Response, Low Noise, LDO Regulators; 3A ,快速瞬态响应,低噪声, LDO稳压器
LT1764AEQ-25
型号: LT1764AEQ-25
厂家: Linear    Linear
描述:

3A, Fast Transient Response, Low Noise, LDO Regulators
3A ,快速瞬态响应,低噪声, LDO稳压器

稳压器
文件: 总20页 (文件大小:638K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1764A Series  
3A, Fast Transient  
Response, Low Noise,  
LDO Regulators  
U
FEATURES  
DESCRIPTIO  
The LT®1764A is a low dropout regulator optimized for  
fasttransientresponse. Thedeviceiscapableofsupplying  
3A of output current with a dropout voltage of 340mV.  
Operating quiescent current is 1mA, dropping to <1µA in  
shutdown. Quiescentcurrentiswellcontrolled;itdoesnot  
rise in dropout as it does with many other regulators. In  
addition to fast transient response, the LT1764A has very  
low output voltage noise which makes the device ideal for  
sensitive RF supply applications.  
Optimized for Fast Transient Response  
Output Current: 3A  
Dropout Voltage: 340mV at 3A  
Low Noise: 40µVRMS (10Hz to 100kHz)  
1mA Quiescent Current  
Wide Input Voltage Range: 2.7V to 20V  
No Protection Diodes Needed  
Controlled Quiescent Current in Dropout  
Fixed Output Voltages: 1.5V, 1.8V, 2.5V, 3.3V  
Adjustable Output from 1.21V to 20V  
<1µA Quiescent Current in Shutdown  
Stable with 10µF Output Capacitor*  
Stable with Ceramic Capacitors*  
Reverse Battery Protection  
Output voltage range is from 1.21V to 20V. The LT1764A  
regulatorsarestablewithoutputcapacitorsaslowas10µF.  
Internal protection circuitry includes reverse battery pro-  
tection, current limiting, thermal limiting and reverse cur-  
rent protection. The device is available in fixed output  
voltages of 1.5V, 1.8V, 2.5V, 3.3V and as an adjustable  
device with a 1.21V reference voltage. The LT1764A regu-  
latorsareavailablein5-leadTO-220andDDpackages,and  
16-lead FE packages.  
No Reverse Current  
Thermal Limiting  
U
APPLICATIO S  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
3.3V to 2.5V Logic Power Supply  
Post Regulator for Switching Supplies  
*See Applications Information Section.  
U
TYPICAL APPLICATIO  
Dropout Voltage  
400  
350  
300  
250  
200  
150  
100  
50  
3.3V to 2.5V  
Regulator  
OUT  
IN  
2.5V  
3A  
IN  
OUT  
+
+
V
IN  
> 3V  
10µF*  
10µF*  
LT1764A-2.5  
SHDN SENSE  
GND  
*TANTALUM,  
CERAMIC OR  
ALUMINUM ELECTROLYTIC  
1764 TA01  
0
2.5  
0
0.5  
1.0  
1.5  
2.0  
3.0  
LOAD CURRENT (A)  
1764 TA02  
1764afb  
1
LT1764A Series  
W W U W  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
Output Short-Circuit Duration......................... Indefinite  
Operating Junction Temperature Range  
E Grade............................................. 40°C to 125°C  
MP Grade ......................................... 55°C to 125°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
IN Pin Voltage........................................................ ±20V  
OUT Pin Voltage .................................................... ±20V  
Input to Output Differential Voltage (Note 12) ....... ±20V  
SENSE Pin Voltage ............................................... ±20V  
ADJ Pin Voltage ...................................................... ±7V  
SHDN Pin Voltage................................................. ±20V  
U
W U  
PACKAGE/ORDER INFORMATION  
TOP VIEW  
FRONT VIEW  
FRONT VIEW  
GND  
NC  
1
2
3
4
5
6
7
8
16 GND  
15 NC  
14 IN  
SENSE/  
ADJ*  
5
4
3
2
1
SENSE/ADJ*  
OUT  
5
4
3
2
1
OUT  
GND  
IN  
OUT  
TAB IS  
GND  
GND  
*PIN 6 = SENSE FOR LT1764A-1.5/  
LT1764A-1.8/LT1764A-2.5/  
LT1764A-3.3  
OUT  
13 IN  
17  
IN  
OUT  
12 IN  
SHDN  
SHDN  
SENSE/ADJ*  
GND  
11 NC  
10 SHDN  
= ADJ FOR LT1764A  
TAB IS  
GND  
T PACKAGE  
5-LEAD PLASTIC TO-220  
Q PACKAGE  
5-LEAD PLASTIC DD  
GND  
9
GND  
*PIN 5 = SENSE FOR LT1764A-1.5/LT1764A-1.8/  
LT1764A-2.5/LT1764A-3.3  
*PIN 5 = SENSE FOR LT1764A-1.5/LT1764A-1.8/  
LT1764A-2.5/LT1764A-3.3  
FE PACKAGE  
16-LEAD PLASTIC TSSOP  
PIN 17 IS GND  
= ADJ FOR LT1764A  
= ADJ FOR LT1764A  
TJMAX = 150°C, θJA = 50°C/ W  
TJMAX = 150°C, θJA = 30°C/ W  
TJMAX = 150°C, θJA = 38°C/ W  
ORDER PART NUMBER  
ORDER PART NUMBER  
ORDER PART NUMBER FE PART MARKING  
LT1764AEQ  
LT1764AET  
LT1764AEFE  
LT1764AEFE  
LT1764AEQ-1.5  
LT1764AEQ-1.8  
LT1764AEQ-2.5  
LT1764AEQ-3.3  
LT1764AMPQ  
LT1764AET-1.5  
LT1764AET-1.8  
LT1764AET-2.5  
LT1764AET-3.3  
LT1764AEFE-1.5  
LT1764AEFE-1.8  
LT1764AEFE-2.5  
LT1764AEFE-3.3  
LT1764AEFE-1.5  
LT1764AEFE-1.8  
LT1764AEFE-2.5  
LT1764AEFE-3.3  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The  
denotes specifications which apply over the full operating temperature range, otherwise specifications are T = 25°C. (Note 2)  
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Minimum Input Voltage  
(Notes 3, 11)  
I
I
= 0.5A  
= 1.5A  
1.7  
1.9  
2.3  
2.3  
V
V
V
V
LOAD  
LOAD  
E Grade: I  
MP Grade: I  
= 3A  
= 3A  
2.7  
2.8  
LOAD  
LOAD  
Regulated Output Voltage  
(Note 4)  
LT1764A-1.5 V = 2.21V, I  
= 1mA  
1.477  
1.447  
1.500  
1.500  
1.523  
1.545  
V
V
IN  
LOAD  
2.7V < V < 20V, 1mA < I  
< 3A  
< 3A  
IN  
LOAD  
LOAD  
LT1764A-1.8 V = 2.3V, I  
= 1mA  
LOAD  
1.773  
1.737  
1.800  
1.800  
1.827  
1.854  
V
V
IN  
2.8V < V < 20V, 1mA < I  
IN  
1764afb  
2
LT1764A Series  
ELECTRICAL CHARACTERISTICS  
denotes specifications which apply over the full operating temperature range, otherwise specifications are T = 25°C. (Note 2)  
A
The  
PARAMETER  
CONDITIONS  
LT1764A-2.5 V = 3V, I  
MIN  
TYP  
MAX  
UNITS  
= 1mA  
LOAD  
2.462  
2.412  
2.500  
2.500  
2.538  
2.575  
V
V
IN  
3.5V < V < 20V, 1mA < I  
< 3A  
< 3A  
IN  
LOAD  
LOAD  
LT1764A-3.3 V = 3.8V, I  
= 1mA  
LOAD  
3.250  
3.183  
3.300  
3.300  
3.350  
3.400  
V
V
IN  
4.3V < V < 20V, 1mA < I  
IN  
ADJ Pin Voltage  
(Notes 3, 4)  
LT1764A  
V
= 2.21V, I  
= 1mA  
IN  
1.192  
1.168  
1.168  
1.210  
1.210  
1.210  
1.228  
1.246  
1.246  
V
V
V
IN  
LOAD  
E Grade: 2.7V < V < 20V, 1mA < I  
MP Grade: 2.8V < V < 20V, 1mA < I  
< 3A  
LOAD  
< 3A  
IN  
LOAD  
Line Regulation  
LT1764A-1.5  
LT1764A-1.8  
LT1764A-2.5  
LT1764A-3.3  
V = 2.21V to 20V, I  
= 1mA  
= 1mA  
= 1mA  
= 1mA  
= 1mA  
2.5  
3
4
4.5  
2
10  
10  
10  
10  
10  
mV  
mV  
mV  
mV  
mV  
IN  
LOAD  
V = 2.3V to 20V, I  
IN  
LOAD  
V = 3V to 20V, I  
IN  
IN  
LOAD  
V = 3.8V to 20V, I  
LOAD  
LT1764A (Note 3) V = 2.21V to 20V, I  
IN  
LOAD  
Load Regulation  
LT1764A-1.5  
LT1764A-1.8  
LT1764A-2.5  
LT1764A-3.3  
V
V
= 2.7V, I  
= 2.7V, I  
= 1mA to 3A  
= 1mA to 3A  
3
4
4
4
2
7
23  
mV  
mV  
IN  
IN  
LOAD  
LOAD  
V
V
= 2.8V, I  
= 2.8V, I  
= 1mA to 3A  
= 1mA to 3A  
8
25  
mV  
mV  
IN  
IN  
LOAD  
LOAD  
V
V
= 3.5V, I  
= 3.5V, I  
= 1mA to 3A  
= 1mA to 3A  
10  
30  
mV  
mV  
IN  
IN  
LOAD  
LOAD  
V
V
= 4.3V, I  
= 4.3V, I  
= 1mA to 3A  
= 1mA to 3A  
12  
40  
mV  
mV  
IN  
IN  
LOAD  
LOAD  
LT1764A (Note 3) V = 2.7V, I  
= 1mA to 3A  
5
20  
20  
mV  
mV  
mV  
IN  
LOAD  
E Grade: V = 2.7V, I  
MP Grade: V = 2.8V, I  
= 1mA to 3A  
IN  
LOAD  
= 1mA to 3A  
LOAD  
IN  
Dropout Voltage  
I
I
= 1mA  
= 1mA  
0.02  
0.07  
0.14  
0.25  
0.34  
0.05  
0.10  
V
V
LOAD  
LOAD  
V
= V  
IN  
OUT(NOMINAL)  
(Notes 5, 6, 11)  
I
I
= 100mA  
= 100mA  
0.13  
0.18  
V
V
LOAD  
LOAD  
I
I
= 500mA  
= 500mA  
0.20  
0.27  
V
V
LOAD  
LOAD  
I
I
= 1.5A  
= 1.5A  
0.33  
0.40  
V
V
LOAD  
LOAD  
I
I
= 3A  
= 3A  
0.45  
0.66  
V
V
LOAD  
LOAD  
GND Pin Current  
= V  
(Notes 5, 7)  
I
I
I
I
I
I
= 0mA  
= 1mA  
= 100mA  
= 500mA  
= 1.5A  
= 3A  
1
1.5  
1.6  
5
18  
75  
mA  
mA  
mA  
mA  
mA  
mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
V
+ 1V  
OUT(NOMINAL)  
1.1  
3.5  
11  
40  
120  
IN  
200  
Output Voltage Noise  
ADJ Pin Bias Current  
Shutdown Threshold  
C
= 10µF, I  
= 3A, BW = 10Hz to 100kHz  
40  
3
µV  
RMS  
OUT  
LOAD  
(Notes 3, 8)  
10  
2
µA  
V
V
= Off to On  
= On to Off  
0.9  
0.75  
V
V
OUT  
OUT  
0.25  
55  
SHDN Pin Current  
(Note 9)  
V
V
= 0V  
= 20V  
0.01  
7
1
30  
µA  
µA  
SHDN  
SHDN  
Quiescent Current in Shutdown  
Ripple Rejection  
V
= 6V, V  
= 0V  
0.01  
63  
1
µA  
IN  
IN  
SHDN  
V
– V  
= 1.5V (Avg), V  
= 0.5V ,  
P-P  
dB  
OUT  
RIPPLE  
f
= 120Hz, I  
= 1.5A  
RIPPLE  
LOAD  
1764afb  
3
LT1764A Series  
ELECTRICAL CHARACTERISTICS  
The  
denotes specifications which apply over the full operating temperature range, otherwise specifications are T = 25°C. (Note 2)  
A
PARAMETER  
CONDITIONS  
= 7V, V  
MIN  
TYP  
MAX  
UNITS  
Current Limit  
V
= 0V  
OUT  
4
A
A
IN  
E Grade: LT1764A; LT1764A-1.5;  
= 2.7V, V = 0.1V  
3.1  
3.1  
V
IN  
OUT  
MP Grade: LT1764A  
A
V
= 2.8V, V  
= 0.1V  
IN  
OUT  
Input Reverse Leakage Current  
V
= 20V, V  
= 0V  
1
mA  
IN  
OUT  
Reverse Output Current (Note 10) LT1764A-1.5V  
= 1.5V, V < 1.5V  
600  
600  
600  
600  
300  
1200  
1200  
1200  
1200  
600  
µA  
µA  
µA  
µA  
µA  
OUT  
OUT  
OUT  
OUT  
IN  
LT1764A-1.8V  
LT1764A-2.5V  
LT1764A-3.3V  
= 1.8V, V < 1.8V  
IN  
= 2.5V, V < 2.5V  
IN  
= 3.3V, V < 3.3V  
IN  
LT1764A (Note 3) V  
= 1.21V, V < 1.21V  
OUT  
IN  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
2.42V. The external resistor divider will add a 300µA DC load on the output.  
Note 6: Dropout voltage is the minimum input to output voltage differential  
needed to maintain regulation at a specified output current. In dropout, the  
output voltage will be equal to: V – V  
.
IN  
DROPOUT  
Note 2: The LT1764A regulators are tested and specified under pulse load  
Note 7: GND pin current is tested with V = V  
+ 1V or V =  
IN  
IN  
OUT(NOMINAL)  
conditions such that T T . The LT1764A (E grade) is 100% tested at  
J
A
2.7V (E grade) or V = 2.8V (MP grade), whichever is greater, and a current  
IN  
T = 25°C; performance at 40°C and 125°C is assured by design,  
A
source load. The GND pin current will decrease at higher input voltages.  
Note 8: ADJ pin bias current flows into the ADJ pin.  
Note 9: SHDN pin current flows into the SHDN pin.  
characterization and correlation with statistical process controls. The  
LT1764A (MP grade) is 100% tested and guaranteed over the –55°C to  
125°C temperature range.  
Note 10: Reverse output current is tested with the IN pin grounded and the  
OUT pin forced to the rated output voltage. This current flows into the OUT  
pin and out the GND pin.  
Note 11. For the LT1764A, LT1764A-1.5 and LT1764A-1.8 dropout voltage  
will be limited by the minimum input voltage specification under some  
output voltage/load conditions.  
Note 3: The LT1764A (adjustable version) is tested and specified for these  
conditions with the ADJ pin connected to the OUT pin.  
Note 4. Operating conditions are limited by maximum junction temperature.  
The regulated output voltage specification will not apply for all possible  
combinations of input voltage and output current. When operating at max-  
imum input voltage, the output current range must be limited. When operat-  
ing at maximum output current, the input voltage range must be limited.  
Note 5: To satisfy requirements for minimum input voltage, the LT1764A  
(adjustable version) is tested and specified for these conditions with an  
external resistor divider (two 4.12k resistors) for an output voltage of  
Note 12. All combinations of absolute maximum input voltage and  
absolute maximum output voltage cannot be achieved. The absolute  
maximum differential from input to output is ±20V. For example, with  
V
= 20V, V  
cannot be pulled below ground.  
IN  
OUT  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Typical Dropout Voltage  
Guaranteed Dropout Voltage  
Dropout Voltage  
600  
500  
400  
300  
200  
100  
0
700  
600  
500  
400  
300  
200  
100  
0
600  
= TEST POINTS  
500  
400  
T
125°C  
J
T
= 125°C  
I
= 3A  
J
L
300  
I
= 1.5A  
L
T
25°C  
J
200  
100  
0
I
= 0.5A  
T
= 25°C  
L
J
I
= 100mA  
L
I
= 1mA  
L
2.0  
3.0  
50  
100 125  
1764 G03  
0
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
2.5  
–50 –25  
0
25  
75  
0.5  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
TEMPERATURE (°C)  
1764 G01  
1764 G02  
1764afb  
4
LT1764A Series  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Quiescent Current  
LT1764A-1.5 Output Voltage  
LT1764A-1.8 Output Voltage  
1.4  
1.2  
1.54  
1.84  
1.83  
1.82  
1.81  
1.80  
1.79  
1.78  
1.77  
1.76  
I
= 1mA  
I
= 1mA  
L
L
LT1764A-1.5/1.8/2.5/3.3  
1.53  
1.52  
1.0  
0.8  
0.6  
0.4  
0.2  
LT1764A  
1.51  
1.50  
1.49  
1.48  
1.47  
V
= 6V  
IN  
L
R
=
I
= 0  
L
V
SHDN  
= V  
IN  
0
1.46  
50  
100 125  
25  
0
50  
75 100 125  
25  
0
50  
75 100 125  
–50 –25  
0
25  
75  
50  
25  
50  
25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1764 G04  
1764A G40  
1756 G05  
LT1764A-2.5 Output Voltage  
LT1764A-3.3 Output Voltage  
LT1764A ADJ Pin Voltage  
2.58  
2.56  
2.54  
2.52  
2.50  
2.48  
2.46  
2.44  
2.42  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
1.230  
1.225  
1.220  
1.215  
1.210  
1.205  
1.200  
1.195  
1.190  
I
= 1mA  
I
= 1mA  
I = 1mA  
L
L
L
25  
0
50  
75 100 125  
50  
25  
25  
0
50  
75 100 125  
50  
25  
50  
25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1756 G06  
1756 G07  
1756 G08  
LT1764A-1.5 Quiescent Current  
LT1764A-1.8 Quiescent Current  
LT1764A-2.5 Quiescent Current  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
T
R
V
= 25°C  
=  
SHDN  
T
= 25°C  
T
R
V
= 25°C  
J
L
J
L
J
L
R
=
=
= V  
V
= V  
IN  
= V  
IN  
SHDN  
SHDN  
IN  
0
0
0
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1764 G41  
1764 G10  
1764 G09  
1764afb  
5
LT1764A Series  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
LT1764A-3.3 Quiescent Current  
LT1764A Quiescent Current  
LT1764A-1.5 GND Pin Current  
40  
35  
30  
25  
20  
15  
10  
5
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
20.0  
17.5  
15.0  
12.5  
10.0  
7.5  
T
= 25°C  
SHDN  
T
R
V
= 25°C  
T
R
V
= 25°C  
= 4.3k  
= V  
J
J
L
J
L
SHDN  
V
= V  
=
IN  
*FOR V  
= 1.5V  
= V  
OUT  
SHDN  
IN  
IN  
R
= 3Ω  
L
R
= 5Ω  
L
I
= 500mA*  
L
I
= 300mA*  
L
5.0  
R
L
= 15Ω  
L
2.5  
I
= 100mA*  
0
0
0
1
2
3
4
5
6
7
8
9
10  
0
2
4
6
8
10 12 14 16 18 20  
0
1
2
3
4
5
6
7
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1764 G11  
1764 G12  
1764 G42  
LT1764A-1.8 GND Pin Current  
LT1764A-2.5 GND Pin Current  
LT1764A-3.3 GND Pin Current  
20.0  
17.5  
15.0  
12.5  
10.0  
7.5  
40  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
= 25°C  
SHDN  
T
= 25°C  
SHDN  
T = 25°C  
J
J
J
V
= V  
V
= V  
IN  
V
= V  
SHDN IN  
IN  
= 1.8V  
35  
30  
25  
20  
15  
10  
5
*FOR V  
*FOR V  
= 2.5V  
*FOR V  
= 3.3V  
OUT  
OUT  
OUT  
R
L
= 5Ω  
L
R
L
= 3.6Ω  
L
R
L
= 6Ω  
L
I
= 500mA*  
I
I
= 500mA*  
R
L
= 6.6Ω  
L
I
= 300mA*  
I
= 500mA*  
R
L
= 11Ω  
L
R
L
= 25Ω  
R = 8.33Ω  
L
I = 300mA*  
L
L
I
= 300mA*  
I
= 100mA*  
R
L
= 33Ω  
L
5.0  
I
= 100mA*  
R
= 18Ω  
L
2.5  
= 100mA*  
L
0
0
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1764 G15  
1764 G13  
1764 G14  
LT1764A GND Pin Current  
LT1764A-1.5 GND Pin Current  
LT1764A-1.8 GND Pin Current  
150  
120  
90  
15  
12  
9
150  
120  
90  
T
= 25°C  
SHDN  
T
= 25°C  
SHDN  
T
= 25°C  
SHDN  
J
J
J
V
= V  
V
= V  
V
= V  
IN  
= 1.5V  
IN  
IN  
= 1.8V  
*FOR V  
*FOR V  
= 1.21V  
*FOR V  
OUT  
OUT  
OUT  
R
L
= 2.42Ω  
L
R
= 0.6Ω  
= 3A*  
I
= 500mA*  
L
L
R
= 0.5Ω  
= 3A*  
L
L
I
I
R
L
= 4.33Ω  
L
I
= 300mA*  
R = 1Ω  
L
= 1.5A*  
L
60  
30  
0
6
3
0
60  
30  
0
R
I
= 1.2Ω  
I
R
L
= 2.14Ω  
= 0.7A*  
L
L
L
R
L
= 2.57Ω  
R
L
= 12.1Ω  
L
L
= 1.5A*  
I
I
= 0.7A*  
I
= 100mA*  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1764A G43  
1764 G16  
1764 G17  
1764afb  
6
LT1764A Series  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LT1764A-2.5 GND Pin Current  
LT1764A GND Pin Current  
LT1764A-3.3 GND Pin Current  
200  
160  
120  
200  
160  
120  
150  
120  
90  
T = 25°C  
J
T
= 25°C  
SHDN  
T
= 25°C  
SHDN  
J
J
V
= V  
V
SHDN  
= V  
IN  
V
= V  
IN  
IN  
= 2.5V  
*FOR V  
= 3.3V  
OUT  
*FOR V  
= 1.21V  
*FOR V  
OUT  
OUT  
R
= 0.4Ω  
L
R
= 1.1Ω  
= 3A*  
I
= 3A*  
L
R
= 0.83Ω  
L
L
L
L
I
I
= 3A*  
R
= 0.81Ω  
L
L
60  
30  
0
80  
40  
0
80  
40  
0
I
= 1.5A*  
R
L
= 1.73Ω  
R
L
= 3.57Ω  
L
L
R
L
= 4.71Ω  
R
I
= 2.2Ω  
R
I
= 1.66Ω  
L
L
L
L
L
I
= 0.7A*  
I
= 0.7A*  
I
= 0.7A*  
= 1.5A*  
= 1.5A*  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1764 G20  
1764 G18  
1764 G19  
SHDN Pin Threshold  
(On-to-Off)  
SHDN Pin Threshold  
(Off-to-On)  
GND Pin Current vs ILOAD  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
160  
140  
120  
100  
I
= 1mA  
V
= V  
+ 1V  
OUT(NOM)  
L
IN  
I
= 3A  
L
I
L
= 1mA  
80  
60  
40  
20  
0
–50  
0
25  
50  
75 100 125  
–25  
0.5  
1.0  
2.0  
–50  
0
25  
TEMPERATURE (°C)  
50  
75 100 125  
0
2.5  
3.0  
1.5  
–25  
TEMPERATURE (°C)  
OUTPUT CURRENT (A)  
1764 G22  
1764 G21  
1764 G23  
SHDN Pin Input Current  
SHDN Pin Input Current  
ADJ Pin Bias Current  
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 20V  
SHDN  
4
6
8
10 12 14 16 18 20  
SHDN PIN VOLTAGE (V)  
–50  
0
25  
50  
75 100 125  
50 25  
0
25  
50  
75 100 125  
0
2
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1764 G24  
1764 G25  
1756 G26  
1764afb  
7
LT1764A Series  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Current Limit  
Current Limit  
Reverse Output Current  
6
5
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
6
5
4
3
V
IN  
V
OUT  
= 7V  
LT1764A-1.5  
LT1764A-1.8  
LT1764A-2.5  
= 0V  
T
= –50°C  
J
4
3
LT1764A-3.3  
LT1764A  
T
J
= 125°C  
T
J
= 25°C  
T
= 25°C  
IN  
J
V
= 0V  
2
1
0
2
1
0
CURRENT FLOWS  
INTO OUTPUT PIN  
(LT1764A)  
OUT  
(LT1764A-1.5/1.8/-2.5/-3.3)  
V
= V  
OUT  
ADJ  
V
= V  
FB  
0
2
4
6
8
10 12 14 16 18 20  
INPUT/OUTPUT DIFFERENTIAL (V)  
50  
TEMPERATURE (°C)  
100 125  
0
1
2
3
4
5
6
7
8
9
10  
–50 –25  
0
25  
75  
OUTPUT VOLTAGE (V)  
1764 G27  
1764 G29  
1764 G28  
Reverse Output Current  
Ripple Rejection  
Ripple Rejection  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
75  
70  
65  
60  
55  
50  
V
V
V
V
V
= 1.21V (LT1764A)  
V
= 0V  
I = 1.5A  
L
OUT  
OUT  
OUT  
OUT  
OUT  
IN  
= 1.5V (LT1764A-1.5)  
= 1.8V (LT1764A-1.8)  
= 2.5V (LT1764A-2.5)  
= 3.3V (LT1764A-3.3)  
V
= V  
+ 1V  
IN  
OUT(NOM)  
+ 0.5V RIPPLE  
P-P  
AT f = 120Hz  
C
= 100µF  
OUT  
LT1764A-1.5/1.8/-2.5/-3.3  
TANTALUM +  
10 × 1µF  
CERAMIC  
LT1764A  
C
= 10µF  
OUT  
TANTALUM  
I
= 1.5A  
L
V
= V  
+ 1V  
RIPPLE  
IN  
OUT(NOM)  
+ 50mV  
100  
RMS  
10  
1k  
10k  
100k  
1M  
–50  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
–25  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1764 G31  
1764 G30  
1764 G32  
Load Regulation  
Output Noise Spectral Density  
LT1764A Minimum Input Voltage  
1
10  
5
3.0  
2.5  
2.0  
1.5  
C
OUT  
= 10µF  
= 3A  
I
LOAD  
LT1764A  
I
I
= 3A  
L
L
0
–5  
= 1.5A  
LT1764A-1.5  
LT1764A-1.8  
LT1764A-2.5  
LT1764A-3.3  
LT1764A  
LT1764A-2.5  
0.1  
–10  
–15  
–20  
–25  
–30  
I
= 500mA  
L
I
= 100mA  
L
LT1764A-3.3  
1.0  
0.5  
0
LT1764A-1.8  
LT1764A-1.5  
I = 1mA TO 3A  
L
V
V
= 2.7V (LT1764A/LT1764A-1.5)  
IN  
IN  
= V  
+ 1V  
OUT(NOM)  
(LT1764A-1.8/-2.5/-3.3)  
0.01  
25  
0
50  
75 100 125  
50  
25  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
1764 G35  
1764 G34  
1764 G33  
1764afb  
8
LT1764A Series  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
RMS Output Noise vs Load Current  
(10Hz to 100kHz)  
LT1764A-3.3 10Hz to 100kHz  
Output Noise  
40  
C
= 10µF  
OUT  
LT1764A-3.3  
35  
30  
25  
20  
15  
10  
5
LT1764A-2.5  
V
OUT  
100µV/DIV  
LT1764A-1.8  
LT1764A-1.5 LT1764A  
C
L
= 10µF  
1ms/DIV  
1764A G37  
OUT  
= 3A  
I
0
0.0001 0.001  
0.01  
0.1  
1
10  
LOAD CURRENT (A)  
1764 G36  
LT1764A-3.3 Transient Response  
LT1764A-3.3 Transient Response  
0.2  
0.1  
0.2  
0.1  
0
0
V
C
C
= 4.3V  
–0.1  
–0.2  
–0.1  
–0.2  
1.00  
0.75  
0.50  
0.25  
0
IN  
IN  
V
C
C
= 4.3V  
IN  
IN  
= 3.3µF TANTALUM  
= 33µF  
= 10µF TANTALUM  
OUT  
= 100µF TANTALUM  
+ 10 × 1µF CERAMIC  
OUT  
3
2
1
0
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14  
16  
18 20  
TIME (µs)  
TIME (µs)  
1764 G38  
1764 G39  
1764afb  
9
LT1764A Series  
U
U
U
PI FU CTIO S DD/TO-220/TSSOP  
SHDN (Pin 1/1/10): Shutdown. The SHDN pin is used to  
put the LT1764A regulators into a low power shutdown  
state. The output will be off when the SHDN pin is pulled  
low. The SHDN pin can be driven either by 5V logic or  
open-collector logic with a pull-up resistor. The pull-up  
resistor is required to supply the pull-up current of the  
open-collector gate, normally several microamperes, and  
the SHDN pin current, typically 7µA. If unused, the SHDN  
pin must be connected to VIN. The device will be in  
the low power shutdown state if the SHDN pin is not  
connected.  
Applications Information section for more information on  
output capacitance and reverse output characteristics.  
SENSE (Pin 5/Pin 5/Pin 6): Sense. For fixed voltage  
versions of the LT1764A (LT1764A-1.5/LT1764A-1.8/  
LT1764A-2.5/LT1764A-3.3), the SENSE pin is the input  
to the error amplifier. Optimum regulation will be ob-  
tainedatthepointwheretheSENSEpinisconnectedtothe  
OUT pin of the regulator. In critical applications, small  
voltage drops are caused by the resistance (RP) of PC  
traces between the regulator and the load. These may be  
eliminated by connecting the SENSE pin to the output at  
the load as shown in Figure 1 (Kelvin Sense Connection).  
Note that the voltage drop across the external PC traces  
willaddtothedropoutvoltageoftheregulator. TheSENSE  
pin bias current is 600µA at the nominal rated output  
voltage. The SENSE pin can be pulled below ground (as in  
a dual supply system where the regulator load is returned  
to a negative supply) and still allow the device to start  
and operate.  
IN (Pin 2/Pin 2/Pins 12, 13, 14): Input. Power is supplied  
to the device through the IN pin. A bypass capacitor is  
required on this pin if the device is more than six inches  
away from the main input filter capacitor. In general, the  
output impedance of a battery rises with frequency, so it  
is advisable to include a bypass capacitor in battery-  
poweredcircuits. Abypasscapacitorintherangeof1µFto  
10µFissufficient.TheLT1764Aregulatorsaredesignedto  
withstand reverse voltages on the IN pin with respect to  
ground and the OUT pin. In the case of a reverse input,  
which can happen if a battery is plugged in backwards, the  
device will act as if there is a diode in series with its input.  
There will be no reverse current flow into the regulator and  
no reverse voltage will appear at the load. The device will  
protect both itself and the load.  
ADJ(Pin5/Pin5/Pin6):Adjust.FortheadjustableLT1764A,  
this is the input to the error amplifier. This pin is internally  
clamped to ±7V. It has a bias current of 3µA which flows  
into the pin. The ADJ pin voltage is 1.21V referenced to  
ground and the output voltage range is 1.21V to 20V.  
R
P
2
4
IN  
OUT  
LT1764A  
NC (Pins 2, 11, 15) TSSOP Only: No Connect.  
+
1
5
+
GND (Pin 3/Pin 3/Pins 1, 7, 8, 9, 16, 17): Ground.  
SHDN SENSE  
GND  
LOAD  
V
IN  
OUT (Pin 4/Pin 4/Pins 3, 4, 5): Output. The output  
supplies power to the load. A minimum output capacitor  
of 10µF is required to prevent oscillations. Larger output  
capacitors will be required for applications with large  
transient loads to limit peak voltage transients. See the  
3
R
P
1764 F01  
Figure 1. Kelvin Sense Connection  
1764afb  
10  
LT1764A Series  
W U U  
APPLICATIO S I FOR ATIO  
U
The LT1764A series are 3A low dropout regulators opti-  
mized for fast transient response. The devices are capable  
of supplying 3A at a dropout voltage of 340mV. The low  
operating quiescent current (1mA) drops to less than 1µA  
in shutdown. In addition to the low quiescent current, the  
LT1764A regulators incorporate several protection fea-  
tures which make them ideal for use in battery-powered  
systems. The devices are protected against both reverse  
input and reverse output voltages. In battery backup  
applications where the output can be held up by a backup  
battery when the input is pulled to ground, the LT1764A-X  
actslikeithasadiodeinserieswithitsoutputandprevents  
reverse current flow. Additionally, in dual supply applica-  
tions where the regulator load is returned to a negative  
supply, the output can be pulled below ground by as much  
as 20V and still allow the device to start and operate.  
IN  
OUT  
LT1764A  
ADJ  
V
OUT  
+
V
IN  
R2  
R1  
R2  
R1  
VOUT = 1.21V 1+  
+ I  
R2  
(
ADJ)(  
)
GND  
VADJ = 1.21V  
IADJ = 3µA AT 25°C  
OUTPUT RANGE = 1.21V TO 20V  
1764 F02  
Figure 2. Adjustable Operation  
Output Capacitors and Stability  
The LT1764A regulator is a feedback circuit. Like any  
feedback circuit, frequency compensation is needed to  
makeitstable. FortheLT1764A, thefrequencycompensa-  
tion is both internal and external—the output capacitor.  
The size of the output capacitor, the type of the output  
capacitor,andtheESRoftheparticularoutputcapacitorall  
affect the stability.  
Adjustable Operation  
The adjustable version of the LT1764A has an output  
voltage range of 1.21V to 20V. The output voltage is set by  
theratiooftwoexternalresistorsasshowninFigure2.The  
deviceservostheoutputtomaintainthevoltageatthe ADJ  
pin at 1.21V referenced to ground. The current in R1 is  
then equal to 1.21V/R1 and the current in R2 is the current  
in R1 plus the ADJ pin bias current. The ADJ pin bias  
current, 3µA at 25°C, flows through R2 into the ADJ pin.  
The output voltage can be calculated using the formula in  
Figure 2. The value of R1 should be less than 4.17k to  
minimize errors in the output voltage caused by the ADJ  
pinbiascurrent.Notethatinshutdowntheoutputisturned  
off and the divider current will be zero.  
Inadditiontostability, theoutputcapacitoralsoaffectsthe  
high frequency transient response. The regulator loop has  
a finite band width. For high frequency transient loads,  
recovery from a transient is a combination of the output  
capacitor and the bandwidth of the regulator. The  
LT1764A was designed to be easy to use and accept a  
wide variety of output capacitors. However, the frequency  
compensation is affected by the output capacitor and  
optimumfrequencystabilitymayrequiresomeESR,espe-  
cially with ceramic capacitors.  
Foreaseofuse,lowESRpolytantalumcapacitors(POSCAP)  
are a good choice for both the transient response and  
stability of the regulator. These capacitors have intrinsic  
ESR that improves the stability. Ceramic capacitors have  
extremely low ESR, and while they are a good choice in  
many cases, placing a small series resistance element will  
sometimes achieve optimum stability and minimize ring-  
ing. In all cases, a minimum of 10µF is required while the  
maximum ESR allowable is 3.  
The adjustable device is tested and specified with the ADJ  
pin tied to the OUT pin for an output voltage of 1.21V.  
Specifications for output voltages greater than 1.21V will  
be proportional to the ratio of the desired output voltage to  
1.21V: VOUT/1.21V. For example, load regulation for an  
output current change of 1mA to 3A is 3mV typical at  
V
OUT = 1.21V. At VOUT = 5V, load regulation is:  
(5V/1.21V)(–3mV) = 12.4mV  
The place where ESR is most helpful with ceramics is low  
output voltage. At low output voltages, below 2.5V, some  
ESR helps the stability when ceramic output capacitors  
are used. Also, some ESR allows a smaller capacitor  
value to be used. When small signal ringing occurs with  
ceramics due to insufficient ESR, adding ESR or increas-  
1764afb  
11  
LT1764A Series  
W U U  
U
APPLICATIO S I FOR ATIO  
ing the capacitor value improves the stability and reduces  
the ringing. Table 1 gives some recommended values of  
ESR to minimize ringing caused by fast, hard current  
transitions.  
Capacitor types with inherently higher ESR can be com-  
bined with 0mESR ceramic capacitors to achieve both  
good high frequency bypassing and fast settling time.  
Figure 9 illustrates the improvement in transient response  
that can be seen when a parallel combination of ceramic  
and POSCAP capacitors are used. The output voltage is at  
the worst case value of 1.2V. Trace A, is with a 10µF  
ceramic output capacitor and shows significant ringing  
withapeakamplitudeof25mV. ForTraceB, a22µF/45mΩ  
POSCAP is added in parallel with the 10µF ceramic. The  
output is well damped and settles to within 10mV in less  
than 5µs.  
Table 1. Capacitor Minimum ESR  
V
10µF  
22µF  
47µF  
100µF  
OUT  
1.2V  
1.5V  
1.8V  
2.5V  
3.3V  
5V  
10mΩ  
7mΩ  
5mΩ  
0mΩ  
0mΩ  
0mΩ  
5mΩ  
5mΩ  
5mΩ  
0mΩ  
0mΩ  
0mΩ  
3mΩ  
3mΩ  
3mΩ  
0mΩ  
0mΩ  
0mΩ  
0mΩ  
0mΩ  
0mΩ  
0mΩ  
0mΩ  
0mΩ  
For Trace C, a 100µF/35mPOSCAP is connected in  
parallel with the 10µF ceramic capacitor. In this case the  
peak output deviation is less than 20mV and the output  
settles in about 5µs. For improved transient response the  
value of the bulk capacitor (tantalum or aluminum electro-  
lytic) should be greater than twice the value of the ceramic  
capacitor.  
Figures3through8showtheeffectofESRonthetransient  
response of the regulator. These scope photos show the  
transient response for the LT1764A at three different  
output voltages with various capacitors and various val-  
ues of ESR. The output load conditions are the same for all  
traces. In all cases there is a DC load of 1A. The load steps  
up to 2A at the first transition and steps back to 1A at the  
second transition.  
Tantalum and Polytantalum Capacitors  
There is a variety of tantalum capacitor types available,  
with a wide range of ESR specifications. Older types have  
ESR specifications in the hundreds of mto several  
Ohms. Some newer types of polytantalum with multi-  
electrodes have maximum ESR specifications as low as  
5m.IngeneralthelowertheESRspecification,thelarger  
the size and the higher the price. Polytantalum capacitors  
have better surge capability than older types and generally  
lower ESR. Some types such as the Sanyo TPE and TPB  
series have ESR specifications in the 20mto 50mΩ  
range, which provide near optimum transient response.  
At the worst case point of 1.2VOUT with 10µF COUT  
(Figure 3), a minimum amount of ESR is required. While  
5mis enough to eliminate most of the ringing, a value  
closer to 20mprovides a more optimum response. At  
2.5V output with 10µF COUT (Figure 4) the output rings  
at the transitions with 0ESR but still settles to within  
10mV in 20µs after the 1A load step. Once again a small  
value of ESR will provide a more optimum response.  
At 5VOUT with 10µF COUT (Figure 5) the response is well  
damped with 0ESR.  
With a COUT of 100µF at 0ESR and an output of 1.2V  
(Figure 6), the output rings although the amplitude is only  
10mVp-p. With COUT of 100µF it takes only 5mto 20mΩ  
of ESR to provide good damping at 1.2V output. Perfor-  
mance at 2.5V and 5V output with 100µF COUT shows sim-  
ilar characteristics to the 10µF case (see Figures 7-8). At  
2.5VOUT 5mto 20mcan improve transient response.  
At 5VOUT the response is well damped with 0ESR.  
Aluminum Electrolytic Capacitors  
Aluminumelectrolyticcapacitorscanalsobeusedwiththe  
LT1764. These capacitors can also be used in conjunction  
with ceramic capacitors. These tend to be the cheapest  
and lowest performance type of capacitors. Care must be  
used in selecting these capacitors as some types can have  
ESR which can easily exceed the 3maximum value.  
1764afb  
12  
LT1764A Series  
V
I
= 1.2V  
= 1A WITH  
1A PULSE  
V
I
= 1.2V  
OUT  
OUT  
OUT  
0
5
= 1A WITH  
1A PULSE  
0
5
OUT  
C
OUT  
= 10µF CERAMIC  
C
= 100µF CERAMIC  
OUT  
10  
20  
50  
10  
20  
1764A F06  
1764A F03  
1764A F04  
1764A F05  
20µs/DIV  
20µs/DIV  
Figure 6  
Figure 3  
V
I
= 2.5V  
= 1A WITH  
1A PULSE  
V
LOAD  
= 2.5V  
= 1A WITH  
1A PULSE  
OUT  
OUT  
OUT  
I
0
0
5
C
OUT  
= 10µF CERAMIC  
C
OUT  
= 100µF CERAMIC  
5
10  
20  
10  
20  
50  
1764A F07  
20µs/DIV  
20µs/DIV  
Figure 4  
Figure 7  
V
I
= 5V  
V
I
= 5V  
OUT  
OUT  
OUT  
LOAD  
= 1A WITH  
1A PULSE  
= 10µF CERAMIC  
= 1A WITH  
1A PULSE  
= 100µF CERAMIC  
0
0
5
C
OUT  
C
OUT  
5
10  
20  
10  
20  
1764A F08  
20µs/DIV  
20µs/DIV  
Figure 8  
Figure 5  
V
= 1.2V  
= 1A WITH 1A PULSE  
=
OUT  
OUT  
I
A
B
C
OUT  
A = 10µF CERAMIC  
B = 10µF CERAMIC IN PARALLEL WITH 22µF/  
45mPOLY  
C = 10µF CERAMIC IN PARALLEL WITH 100µF/  
35mPOLY  
C
1764A F09  
20µs/DIV  
Figure 9  
1764afb  
13  
LT1764A Series  
U
W U U  
APPLICATIONS INFORMATION  
Ceramic Capacitors  
Voltage and temperature coefficients are not the only  
sources of problems. Some ceramic capacitors have a  
piezoelectric response. A piezoelectric device generates  
voltage across its terminals due to mechanical stress,  
similar to the way a piezoelectric accelerometer or micro-  
phone works. For a ceramic capacitor the stress can be  
induced by vibrations in the system or thermal transients.  
Extra consideration must be given to the use of ceramic  
capacitors. Ceramic capacitors are manufactured with a  
variety of dielectrics, each with different behavior over  
temperature and applied voltage. The most common  
dielectrics used are Z5U, Y5V, X5R and X7R. The Z5U and  
Y5V dielectrics are good for providing high capacitances  
in a small package, but exhibit strong voltage and tem-  
perature coefficients as shown in Figures 3 and 4. When  
used with a 5V regulator, a 10µF Y5V capacitor can exhibit  
an effective value as low as 1µF to 2µF over the operating  
temperature range. The X5R and X7R dielectrics result in  
more stable characteristics and are more suitable for use  
as the output capacitor. The X7R type has better stability  
across temperature, while the X5R is less expensive and  
is available in higher values.  
“FREE” Resistance with PC Traces  
The resistance values shown in Table 1 can easily be made  
using a small section of PC trace in series with the output  
capacitor. The wide range of noncritical ESR makes it easy  
to use PC trace. The trace width should be sized to handle  
the RMS ripple current associated with the load. The  
output capacitor only sources or sinks current for a few  
microsecondsduringfastoutputcurrenttransitions.There  
Table 2. PC Trace Resistors  
10mΩ  
20mΩ  
0.011 (0.28mm)  
0.204  
0.006  
0.220  
30mΩ  
0.011 (0.28mm)  
0.307  
0.006  
0.330  
0.006  
0.670  
0.5oz C  
1.0oz C  
2.0oz C  
Width  
0.011  
"
"
(0.28mm)  
(2.6mm)  
"
"
"
"
U
U
U
Length  
0.102  
(5.2mm)  
(7.8mm)  
Width  
0.006  
"
"
(0.15mm)  
(2.8mm)  
"
"
(0.15mm)  
(5.6mm)  
"
"
(0.15mm)  
(8.4mm)  
Length  
0.110  
Width  
0.006  
"
"
(0.15mm)  
(5.7mm)  
0.006  
0.450  
"
"
(0.15mm)  
(11.4mm)  
"
(0.15mm)  
Length  
0.224  
"
(17mm)  
40  
20  
20  
0
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10µF  
X5R  
X5R  
0
–20  
–40  
–60  
–80  
–100  
–20  
–40  
–60  
–80  
–100  
Y5V  
Y5V  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10µF  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
0
14 16  
2
4
6
8
10 12  
DC BIAS VOLTAGE (V)  
1764 F10  
1764 F11  
Figure 3. Ceramic Capacitor DC Bias Characteristics  
Figure 4. Ceramic Capacitor Temperature Characteristics  
1764afb  
14  
LT1764A Series  
U
W U U  
APPLICATIONS INFORMATION  
is no DC current in the output capacitor. Worst case ripple  
current will occur if the output load is a high frequency  
(>100kHz) square wave with a high peak value and fast  
edges (< 1µs). Measured RMS value for this case is 0.5  
times the peak-to-peak current change. Slower edges or  
lower frequency will significantly reduce the RMS ripple  
current in the capacitor.  
intersection, the input power supply may need to be  
cycled down to zero and brought up again to make the  
output recover.  
Output Voltage Noise  
The LT1764A regulators have been designed to provide  
low output voltage noise over the 10Hz to 100kHz band-  
width while operating at full load. Output voltage noise is  
typically 50nVHz over this frequency bandwidth for the  
LT1764A (adjustable version). For higher output voltages  
(generated by using a resistor divider), the output voltage  
noise will be gained up accordingly. This results in RMS  
noise over the 10Hz to 100kHz bandwidth of 15µVRMS for  
the LT1764A increasing to 37µVRMS for the LT1764A-3.3.  
This resistor should be made using one of the inner  
layers of the PC board which are well defined. The resis-  
tivityisdeterminedprimarilybythesheetresistanceofthe  
copper laminate with no additional plating steps. Table 2  
gives some sizes for 0.75A RMS current for various  
copper thicknesses. More detailed information regarding  
resistors made from PC traces can be found in Application  
Note 69, Appendix A.  
Higher values of output voltage noise may be measured  
when care is not exercised with regards to circuit layout  
and testing. Crosstalk from nearby traces can induce  
unwanted noise onto the output of the LT1764A-X. Power  
supply ripple rejection must also be considered; the  
LT1764A regulators do not have unlimited power supply  
rejection and will pass a small portion of the input noise  
through to the output.  
Overload Recovery  
Like many IC power regulators, the LT1764A-X has safe  
operating area protection. The safe area protection de-  
creases the current limit as input-to-output voltage in-  
creases and keeps the power transistor inside a safe  
operating region for all values of input-to-output voltage.  
Theprotectionisdesignedtoprovidesomeoutputcurrent  
at all values of input-to-output voltage up to the device  
breakdown.  
Thermal Considerations  
The power handling capability of the device is limited  
by the maximum rated junction temperature (125°C).  
The power dissipated by the device is made up of two  
components:  
When power is first turned on, as the input voltage rises,  
the output follows the input, allowing the regulator to start  
up into very heavy loads. During the start-up, as the input  
voltage is rising, the input-to-output voltage differential is  
small, allowing the regulator to supply large output cur-  
rents. With a high input voltage, a problem can occur  
wherein removal of an output short will not allow the  
output voltage to recover. Other regulators, such as the  
LT1085, also exhibit this phenomenon, so it is not unique  
to the LT1764A series.  
1. Output current multiplied by the input/output voltage  
differential: (IOUT)(VIN – VOUT), and  
2. GND pin current multiplied by the input voltage:  
(IGND)(VIN).  
The GND pin current can be found using the GND Pin  
Current curves in the Typical Performance Characteris-  
tics. Power dissipation will be equal to the sum of the two  
components listed above.  
The problem occurs with a heavy output load when the  
input voltage is high and the output voltage is low. Com-  
mon situations are immediately after the removal of a  
short circuit or when the SHDN pin is pulled high after the  
input voltage has already been turned on. The load line  
for such a load may intersect the output current curve at  
two points. If this happens, there are two stable output  
operating points for the regulator. With this double  
The LT1764A series regulators have internal thermal lim-  
iting designed to protect the device during overload con-  
ditions. For continuous normal conditions, the maximum  
junction temperature rating of 125°C must not be  
exceeded. It is important to give careful consideration to  
1764afb  
15  
LT1764A Series  
U
W U U  
APPLICATIONS INFORMATION  
allsourcesofthermalresistancefromjunctiontoambient.  
Additional heat sources mounted nearby must also be  
considered.  
The maximum junction temperature will then be equal to  
the maximum junction temperature rise above ambient  
plus the maximum ambient temperature or:  
For surface mount devices, heat sinking is accomplished  
by using the heat spreading capabilities of the PC board  
and its copper traces. Surface mount heatsinks and plated  
through-holes can also be used to spread the heat gener-  
ated by power devices.  
TJMAX = 50°C + 39.5°C = 89.5°C  
Protection Features  
The LT1764A regulators incorporate several protection  
featureswhichmakethemidealforuseinbattery-powered  
circuits. In addition to the normal protection features  
associated with monolithic regulators, such as current  
limiting and thermal limiting, the devices are protected  
against reverse input voltages, reverse output voltages  
and reverse voltages from output to input.  
The following table lists thermal resistance for several dif-  
ferent board sizes and copper areas. All measurements were  
taken in still air on 1/16" FR-4 board with one ounce copper.  
Table 3. Q Package, 5-Lead DD  
COPPER AREA  
THERMAL RESISTANCE  
Current limit protection and thermal overload protection  
areintendedtoprotectthedeviceagainstcurrentoverload  
conditions at the output of the device. For normal opera-  
tion, the junction temperature should not exceed 125°C.  
TOPSIDE* BACKSIDE BOARD AREA (JUNCTION-TO-AMBIENT)  
2500mm2  
1000mm2  
125mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
23°C/W  
25°C/W  
33°C/W  
The input of the device will withstand reverse voltages  
of 20V. Current flow into the device will be limited to  
less than 1mA and no negative voltage will appear at the  
output. The device will protect both itself and the load.  
This provides protection against batteries which can be  
plugged in backward.  
*Device is mounted on topside.  
T Package, 5-Lead TO-220  
Thermal Resistance (Junction-to-Case) = 2.5°C/W  
Calculating Junction Temperature  
Example: Given an output voltage of 3.3V, an input voltage  
range of 4V to 6V, an output current range of 0mA to  
500mA and a maximum ambient temperature of 50°C,  
what will the maximum junction temperature be?  
The output of the LT1764A-X can be pulled below ground  
withoutdamagingthedevice.Iftheinputisleftopencircuit  
or grounded, the output can be pulled below ground by  
20V. For fixed voltage versions, the output will act like a  
large resistor, typically 5k or higher, limiting current flow  
to typically less than 600µA. For adjustable versions, the  
output will act like an open circuit; no current will flow out  
of the pin. If the input is powered by a voltage source, the  
output will source the short-circuit current of the device  
and will protect itself by thermal limiting. In this case,  
grounding the SHDN pin will turn off the device and stop  
the output from sourcing the short-circuit current.  
The power dissipated by the device will be equal to:  
IOUT(MAX)(VIN(MAX) – VOUT) + IGND(VIN(MAX)  
where,  
)
IOUT(MAX) = 500mA  
VIN(MAX) = 6V  
IGND at (IOUT = 500mA, VIN = 6V) = 10mA  
So,  
The ADJ pin of the adjustable device can be pulled above  
or below ground by as much as 7V without damaging the  
device. Iftheinputisleftopencircuitorgrounded, theADJ  
pin will act like an open circuit when pulled below ground  
and like a large resistor (typically 5k) in series with a diode  
when pulled above ground.  
P = 500mA(6V – 3.3V) + 10mA(6V) = 1.41W  
Using a DD package, the thermal resistance will be in the  
range of 23°C/W to 33°C/W depending on the copper  
area. So the junction temperature rise above ambient will  
be approximately equal to:  
1.41W(28°C/W) = 39.5°C  
1764afb  
16  
LT1764A Series  
U
W U U  
APPLICATIONS INFORMATION  
will typically drop to less than 2µA. This can happen if the  
input of the device is connected to a discharged (low  
voltage) battery and the output is held up by either a  
backup battery or a second regulator circuit. The state of  
the SHDN pin will have no effect on the reverse output  
current when the output is pulled above the input.  
In situations where the ADJ pin is connected to a resistor  
divider that would pull the ADJ pin above its 7V clamp  
voltage if the output is pulled high, the ADJ pin input  
current must be limited to less than 5mA. For example, a  
resistor divider is used to provide a regulated 1.5V output  
fromthe1.21Vreferencewhentheoutputisforcedto20V.  
The top resistor of the resistor divider must be chosen to  
limitthecurrentintotheADJpintolessthan5mAwhenthe  
ADJpinisat7V. The13VdifferencebetweenOUTandADJ  
pinsdividedbythe5mAmaximumcurrentintotheADJpin  
yields a minimum top resistor value of 2.6k.  
5.0  
T
J
= 25°C  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= OV  
IN  
LT1764A-1.5  
LT1764A-1.8  
CURRENT FLOWS INTO  
OUTPUT PIN  
V
V
LT1764A-1.8, LT1764A-2.5,  
LT1764A-3.3)  
= V  
(LT1764A)  
OUT  
OUT  
ADJ  
= V (LT1764A-1.5  
FB  
LT1764A  
In circuits where a backup battery is required, several  
different input/output conditions can occur. The output  
voltage may be held up while the input is either pulled to  
ground, pulled to some intermediate voltage, or is left  
open circuit. Current flow back into the output will follow  
the curve shown in Figure 5.  
LT1764A-2.5  
LT1764A-3.3  
0
1
2
3
4
5
6
7
8
9
10  
OUTPUT VOLTAGE (V)  
1764 F12  
WhentheINpinoftheLT1764A-XisforcedbelowtheOUT  
pin or the OUT pin is pulled above the IN pin, input current  
Figure 5. Reverse Output Current  
U
TYPICAL APPLICATIO S  
SCR Preregulator Provides Efficiency Over Line Variations  
L1  
500µH  
LT1764A-3.3  
IN OUT  
SHDN FB  
GND  
NTE5437  
V
3.3V  
3A  
OUT  
L2  
1N4148  
1k  
+
+
10V AC  
10000µF  
22µF  
AT 115V  
IN  
IN  
90V AC  
TO 140V AC  
34k*  
10V AC  
AT 115V  
12.1k*  
NTE5437  
1N4002  
1N4002  
1N4002  
+
V
“SYNC”  
2.4k  
TO  
+
200k  
ALL “V ”  
+
1N4148  
+
POINTS  
C1A  
1/2 LT1018  
22µF  
750  
0.1µF  
+
V
+
V
750Ω  
0.033µF  
+
C1B  
+
1N4148  
10k  
1/2 LT1018  
A1  
LT1006  
10k  
10k  
+
V
L1: COILTRONICS CTX500-2-52  
L2: STANCOR P-8560  
*1% FILM RESISTOR  
1µF  
+
V
LT1004  
1.2V  
1764 TA03  
1764afb  
17  
LT1764A Series  
U
TYPICAL APPLICATIO S  
Adjustable Current Source  
R5  
0.01  
IN  
OUT  
R1  
LT1764A-1.8  
SHDN FB  
GND  
+
1k  
C1  
10µF  
LT1004-1.2  
LOAD  
V
> 2.7V  
IN  
R2  
40.2k  
R4  
2.2k  
R6  
2.2k  
R8  
100k  
R3  
2k  
C3  
1µF  
R7  
470Ω  
ADJUST R1 FOR 0A TO 3A  
CONSTANT CURRENT  
2
3
8
1
1/2 LT1366  
+
4
C2  
3.3µF  
1764 TA04  
U
PACKAGE DESCRIPTION  
Q Package  
5-Lead Plastic DD Pak  
(Reference LTC DWG # 05-08-1461)  
0.060  
(1.524)  
TYP  
0.390 – 0.415  
(9.906 – 10.541)  
0.060  
(1.524)  
0.165 – 0.180  
(4.191 – 4.572)  
0.256  
(6.502)  
0.045 – 0.055  
(1.143 – 1.397)  
15° TYP  
+0.008  
0.004  
–0.004  
0.060  
(1.524)  
0.183  
(4.648)  
0.059  
(1.499)  
TYP  
0.330 – 0.370  
(8.382 – 9.398)  
+0.203  
–0.102  
0.102  
(
)
0.095 – 0.115  
(2.413 – 2.921)  
0.075  
(1.905)  
0.067  
(1.70)  
BSC  
0.050 ± 0.012  
(1.270 ± 0.305)  
0.300  
(7.620)  
0.013 – 0.023  
(0.330 – 0.584)  
+0.012  
0.143  
–0.020  
0.028 – 0.038  
(0.711 – 0.965)  
+0.305  
BOTTOM VIEW OF DD PAK  
HATCHED AREA IS SOLDER PLATED  
COPPER HEAT SINK  
3.632  
Q(DD5) 1098  
(
)
–0.508  
1764afb  
18  
LT1764A Series  
U
PACKAGE DESCRIPTION  
T Package  
5-Lead Plastic TO-220 (Standard)  
(Reference LTC DWG # 05-08-1421)  
0.147 – 0.155  
0.390 – 0.415  
(9.906 – 10.541)  
0.165 – 0.180  
(4.191 – 4.572)  
0.045 – 0.055  
(1.143 – 1.397)  
(3.734 – 3.937)  
DIA  
0.230 – 0.270  
(5.842 – 6.858)  
0.570 – 0.620  
(14.478 – 15.748)  
0.620  
(15.75)  
TYP  
0.460 – 0.500  
(11.684 – 12.700)  
0.330 – 0.370  
(8.382 – 9.398)  
0.700 – 0.728  
(17.78 – 18.491)  
0.095 – 0.115  
(2.413 – 2.921)  
SEATING PLANE  
0.152 – 0.202  
0.260 – 0.320 (3.861 – 5.131)  
(6.60 – 8.13)  
0.155 – 0.195*  
(3.937 – 4.953)  
0.013 – 0.023  
(0.330 – 0.584)  
0.135 – 0.165  
(3.429 – 4.191)  
0.067  
BSC  
0.028 – 0.038  
(0.711 – 0.965)  
(1.70)  
* MEASURED AT THE SEATING PLANE  
T5 (TO-220) 0399  
FE Package  
16-Lead Plastic TSSOP (4.4mm)  
(Reference LTC DWG # 05-08-1663)  
Exposed Pad Variation BB  
4.90 – 5.10*  
(.193 – .201)  
3.58  
(.141)  
3.58  
(.141)  
16 1514 13 12 1110  
9
6.60 ±0.10  
4.50 ±0.10  
2.94  
(.116)  
6.40  
2.94  
SEE NOTE 4  
(.252)  
(.116)  
0.45 ±0.05  
1.05 ±0.10  
BSC  
0.65 BSC  
5
7
8
1
2
3
4
6
RECOMMENDED SOLDER PAD LAYOUT  
1.10  
(.0433)  
MAX  
4.30 – 4.50*  
(.169 – .177)  
0.25  
REF  
0° – 8°  
0.65  
(.0256)  
BSC  
0.05 – 0.15  
0.09 – 0.20  
0.50 – 0.75  
0.195 – 0.30  
(.0077 – .0118)  
TYP  
(.002 – .006)  
(.0035 – .0079)  
(.020 – .030)  
FE16 (BB) TSSOP 0204  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS 4. RECOMMENDED MINIMUM PCB METAL SIZE  
FOR EXPOSED PAD ATTACHMENT  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.150mm (.006") PER SIDE  
MILLIMETERS  
(INCHES)  
2. DIMENSIONS ARE IN  
3. DRAWING NOT TO SCALE  
1764afb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
19  
LT1764A Series  
U
TYPICAL APPLICATIO  
Paralleling of Regulators for Higher Output Current  
R1  
0.01Ω  
3.3V  
6A  
IN  
OUT  
FB  
+
+
LT1764A-3.3  
C1  
100µF  
C2  
22µF  
V
> 3.7V  
IN  
SHDN  
GND  
R2  
0.01Ω  
IN  
OUT  
R6  
6.65k  
LT1764A  
SHDN  
SHDN  
ADJ  
R7  
4.12k  
GND  
R3  
2.2k  
R4  
2.2k  
3
2
8
R5  
1k  
+
1
1/2 LT1366  
C3  
0.01µF  
4
1764 TA05  
RELATED PARTS  
PART NUMBER  
LT1120  
DESCRIPTION  
125mA Low Dropout Regulator with 20µA I  
COMMENTS  
Includes 2.5V Reference and Comparator  
Q
LT1121  
150mA Micropower Low Dropout Regulator  
700mA Micropower Low Dropout Regulator  
30µA I , SOT-223 Package  
Q
LT1129  
50µA Quiescent Current  
LT1175  
500mA Negative Low Dropout Micropower Regulator  
4.5A, 500kHz Step-Down Converter  
45µA I , 0.26V Dropout Voltage, SOT-223 Package  
Q
LT1374  
4.5A, 0.07Internal Switch, SO-8 Package  
LT1521  
300mA Low Dropout Micropower Regulator with Shutdown  
15µA I , Reverse Battery Protection  
Q
LT1529  
3A Low Dropout Regulator with 50µA I  
500mV Dropout Voltage  
Q
LT1573  
UltraFastTM Transient Response Low Dropout Regulator  
UltraFast Transient Response Low Dropout Regulator  
Synchronous Step-Down Converter  
Drives External PNP  
LT1575  
Drives External N-Channel MOSFET  
High Efficiency, OPTI-LOOP® Compensation  
LTC1735  
LT1761 Series  
LT1762 Series  
LT1763 Series  
LT1962  
100mA, Low Noise, Low Dropout Micropower Regulators in SOT-23 20µA Quiescent Current, 20µV  
Noise, ThinSOTTM Package  
Noise, MSOP Package  
Noise, SO-8 Package  
RMS  
RMS  
RMS  
150mA, Low Noise, LDO Micropower Regulators  
500mA, Low Noise, LDO Micropower Regulators  
300mA, Low Noise, LDO Micropower Regulator  
1.5A, Low Noise, Fast Transient Response LDO  
200mA, Low Noise, Negative LDO Micropower Regulator  
25µA Quiescent Current, 20µV  
30µA Quiescent Current, 20µV  
20µV  
40µV  
30µV  
Noise, MSOP Package  
RMS  
RMS  
RMS  
LT1963A  
LT1964  
Noise, SOT-223 Package  
Noise, ThinSOT Package  
OPTI-LOOP is a registered trademark of Linear Technology Corporation. UltraFast and ThinSOT are trademarks of Linear Technology Corporation.  
1764afb  
LT 0706 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2002  

相关型号:

LT1764AEQ-3.3

3A, Fast Transient Response, Low Noise,LDO Regulators
Linear

LT1764AEQ-3.3#TR

Fixed Positive LDO Regulator, 3.3V, 0.66V Dropout, PSSO5
Linear

LT1764AET

3A, Fast Transient Response, Low Noise,LDO Regulators
Linear

LT1764AET#06PBF

LT1764A - 3A, Fast Transient Response, Low Noise, LDO Regulators; Package: TO-220; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1764AET#31PBF

LT1764A - 3A, Fast Transient Response, Low Noise, LDO Regulators; Package: TO-220; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1764AET#33PBF

LT1764A - 3A, Fast Transient Response, Low Noise, LDO Regulators; Package: TO-220; Pins: 5; Temperature: E
Linear

LT1764AET#TR

Adjustable Positive LDO Regulator, 1.21V Min, 20V Max, 0.66V Dropout, PZFM5
Linear

LT1764AET#TRPBF

Adjustable Positive LDO Regulator, 1.21V Min, 20V Max, 0.66V Dropout, PZFM5
Linear

LT1764AET-1.5

3A, Fast Transient Response, Low Noise,LDO Regulators
Linear

LT1764AET-1.5#PBF

暂无描述
Linear

LT1764AET-1.5#TR

IC VREG 1.5 V FIXED POSITIVE LDO REGULATOR, 0.66 V DROPOUT, PZFM5, PLASTIC, TO-220, 5 PIN, Fixed Positive Single Output LDO Regulator
Linear

LT1764AET-1.5#TRPBF

IC VREG 1.5 V FIXED POSITIVE LDO REGULATOR, 0.66 V DROPOUT, PZFM5, LEAD FREE, PLASTIC, TO-220, 5 PIN, Fixed Positive Single Output LDO Regulator
Linear